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Abstract— Denoising is a key step in the processing of medical
images. It aims at improving both the interpretability and visual
aspect of the images. Yet, designing a robust and efficient
denoising tool remains an unsolved challenge and a specific
issue concerns the noise model. Many filters typically assume
that noise is additive and Gaussian, with uniform variance.
In contrast, noise in medical images often has more complex
properties. This paper considers images with Poissonian noise
and the patch-based bilateral filters, that is, filters that involve
a tonal kernel and pair wise comparisons between shifted
blocks of the images. The main aim is then to integrate two
variance stabilizing transformations that allow the filters to
work with Gaussianized noise. The performances of these filters
are compared to those of the classical bilateral filter with the
same transformations. The experiments include an artificial
benchmark as well as a positron emission tomography image.

I. INTRODUCTION

Dealing with noisy data turns out to be one of the toughest
challenges in image processing. Noise naturally arises in
difficult conditions such as poorly illuminated environments,
short exposure times, and low-efficiency photon detectors.
The statistical properties of noise will depends on these con-
ditions as well as on the characteristics of the imaging device.
In this context, denoising can help recover the underlying
signal. In biomedical applications, quality requirements are
high and optimal denoising increases both the readability
and interpretability of the images. A typical example occurs
in radiation oncology, where positron emission tomography
(PET) is used to diagnose tumors. Noise and resolution limit
the accuracy of the tumor delineation, which can reduce the
treatment benefit. This motivates the use of denoising tools
that satisfy two conditions. First, they must deal with multi-
plicative noise, such as Poissonian noise, which is typical in
PET data. Second, they have to be edge-preserving, that is,
they must be able to attenuate noise without decreasing the
resolution and smoothing the underlying signal.

The issue of unsupervised edge-preserving denoising can
be addressed with various tools, such as wavelets [1], [2],
partial differential equations [3], total variation [4], Bayesian
denoising [5], kernel regression [6], gradient approximation
[7]. Yet another approach focuses on local filters with a
tonal kernel [8]. The local M-smoother (LMS) [9] and the
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bilateral filter (BF) [10], [11] fall in this category. These
filters are generalized in [12] in such a way that the tonal
kernel compares image blocks (patches) instead of single
pixels. Patches in the tonal kernel were also used outside of
the bilateral filter framework by [13], [14].

In the case of Gaussian noise, the patch-based bilateral
filter (PBBF) has been shown to outperform both the BF
and LMS. However, all filters with a tonal kernel implicitly
assume that noise is Gaussian and additive. In order to
optimally perform in the case of Poissonian noise, they
can be combined with variance stabilizing transformations
(VSTs) such as Anscombe’s and Fisz’s [15]. This paper
shows how to integrate the VSTs into both the BF and PBBF.
Experiments with an artificial benchmark and a real PET
image compare the filters and illustrate the performance gains
brought by the VSTs.

The rest of this paper are organised as follows. Section II
defines the VSTs, introduces the PBBF, and explains how
the VSTs can be integrated into it. Section III describes
the experiments and discusses their results. Finally, Section
IV gathers the conclusions and some perspectives for future
work.

II. THEORY

A. Variance Stabilizing Transformation

A transformation that stabilizes the variance is basically
intended to ‘Gaussianize’ non-Gaussian data. For a given
statistical law, an optimal VST converts any sufficiently large
sample into another sample that is as close as possible to
normality. In the case of Poisson distributions, two well
known VSTs are the Anscombe’s and Fisz’s [15]. If X ∼
Pois(λ ), Anscombe’s VST is defined as Y = 2

√
X +3/8,

where Y is approximately Gaussian with zero mean and unit
variance, provided λ > 5 [16].

Fisz’s VST is derived from Fisz’s theorem [15], which
states that if two independent vectors Xi ∼ Pois(λi), i = 1,2,
then function ζ : ℜ2 →ℜ defined as

ζ (X1,X2)
.=

{
0 if X1 = X2 = 0

X1−X2√
X1+X2

otherwise (1)

is such that if (λ1,λ2)→ (∞,∞) and λ1/λ2 → 1, then

ζ (X1,X2)−ζ (λ1,λ2)→ N(0,1) . (2)

Function ζ is called Fisz’s VST. As demonstrated in
[16], Fisz’s VST converges to normality much faster than
Anscombe’s VST and is already effective for small values
of λ1 and λ2.
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B. The Bilateral Filter

Let us consider a D-dimensional image wherein the lo-
cation of the ith pixel is given by coordinate vector xi =
[xi1, . . . ,xiD]T . The intensity of the ith pixel is written as
fi = ui + εi, where ui is the noise free signal and εi the
noise component. In the following developments, we assume
that each pixel corresponds to a photon count, and therefore
εi ∼ Pois(ui).

Denoising basically aims at recovering signal ui starting
from noisy measurement fi. In order to achieve this, the BF
replaces intensity fi with a weighted average of neighboring
pixel intensities f j. The iterative application of this principle
yields an estimate of ui that can be written as

ûk+1
i =

∑ j∈Ni wi jΨ
′
(
(ûk

i − ûk
j)

2
)

ûk
j

∑ j∈Ni wi jΨ′
(
(ûk

i − ûk
j)2

) , (3)

In this update, k is the iteration index and Ni denotes the
neighborhood of the ith pixel. Symbol wi j is defined as

wi j = exp
(
−
‖xi−x j‖2

2ρ2

)
(4)

and modulates the weight of the jth neighbor in the com-
putation of ûk+1

i ; wi j decays as the distance between xi and
x j grows. In contrast, tonal kernel Ψ′ depends on the pixel
intensities and is the first derivative of Ψ(v) = exp(− v

2σ2 ).
The BF is a state-of-the-art unsupervised edge-preserving
filter, with only two parameters, namely ρ and σ , which
are the respective widths of the spatial and tonal kernels.
More details about the derivation of the BF can be found in
[8] and [17].

C. Patch-Based Bilateral Filter

The PBBF [12] extends the classical bilateral filter in order
to use patches of the image instead of single pixels in the
tonal kernel. This generalization has been shown to signifi-
cantly improve the filtering performances [12]. Considering
an iterative filter, patch Pk

i refers to the vector of intensities
that are found at the kth iteration in the image block centered
on xi. The block size is equal to pD, where p is a parameter
of the PBBF, constrained to be an odd integer. Patches can
be compared, for instance by using the Euclidean norm. The
distance between Pk

j and Pk
i can then be written as

d(Pk
j ,P

k
i ) =

√√√√ pD

∑
n=1

(Pk
jn −Pk

in)
2 , (5)

where Pk
jn is the nth pixel intensity in patch Pk

j . Such a metric
can easily be plugged in the tonal kernel of the BF, instead
of the squared difference of pixel intensities. This leads to
the update

ûk+1
i =

∑ j∈Ni wi jΨ
′
(

d2(Pk
j ,P

k
i )

)
ûk

∑ j∈Ni wi jΨ′
(

d2(Pk
j ,P

k
i )

) . (6)

D. Variance Stabilizing Transformation in the Patch-Based
Bilateral Filter

The presence of a tonal kernel in the above-mentioned
filters makes them optimal only for additive Gaussian noise
with uniform variance. In the case of Poissonian data, the
noise variance of each pixel depends on its intensity. This
would require a local adaptation of the tonal kernel width.
In order to optimally filter Poissonian noise, we propose to
use Anscombe’s and Fisz’s VSTs. Using Anscombe’s VST
to filter an image with Poissonian noise consists of three
easy steps: i) transform the data before filtering, ii) filter
the data as if it was Gaussian, and iii) apply the inverse
transformation.

The case of Fisz’s VST is slightly more complex, as it
involves sums and differences of Poisson variables. This
particular form can however be elegantly exploited in order
to integrate the transformation directly into the tonal kernel
of the filters. The update then becomes

ûk+1
i =

∑ j∈Ni wi jΨ
′
(

ζ 2(ûk
i , û

k
j)

)
ûk

j

∑ j∈Ni wi jΨ

(
ζ 2(ûk

i , û
k
j)

) . (7)

It is noteworthy that constant term ζ (λ1,λ2) in (2) is dropped
for the obvious reason that the argument of the tonal kernel
should have a Gaussian distribution but not necessarily a
zero mean. We can indeed distinguish two cases. If λ1 = λ2
is true, then ζ (λ1,λ2) = 0 and ζ (X1,X2)→ N(0,1). On the
other hand, if λ1 and λ2 suffciently differ from each other,
then it is highly probable that ζ (X1,X2) will fall in the tails
of N(0,1). This leads the tonal kernel to behave exactly as
expected: its value should by high when considering two
pixels having similar intensities and low if the pixels In either
case, the knowledge of λ1 and λ2 is not necessary.

As to the PBBF, the update rule (6) remains unchanged,
except that the distance between two patches is redefined as

d(Pk
j ,P

k
i ) =

√√√√ pD

∑
n=1

(ζ (Pk
jn ,P

k
in)

2) . (8)

III. EXPERIMENTS & RESULTS

A. Benchmark Image Denoising

The task of assessing the filtering performances on images
acquired on medical devices is difficult because the ground
truth, the noise free image, remains unknown. For this
reason, the denoising performances of each combination of
VST and algorithm have been tested on a 64×64 benchmark
gray level image. This image is a pattern (see Fig. 1, left)
consisting in a combination of constant plateaus, edges, and
gradients. Together, these regions summarize all types of
types of difficulties encountered in medical images.

This pattern is slightly blurred in order to avoid sharp
edges are never observed in real world images.

The filtering performances are measured by the RMSE:

RMSE =

√
1

M ∑
N
i=1 νi

M

∑
m=1

N

∑
i=1

νi(ûk
i −ui)2 , (9)
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Fig. 1. From left to right: Blurred benchmark image without noise, plateaus mask, edges mask, ramps mask.

where M is the number of trials and m then trial index. The
weights νi either have a value of {0,1} and are used to define
the masks. These masks allow to evaluate the RMSE over
the selected areas of the image (whole image, plateaus, edges
or ramps (Fig. 1)). More details about the benchmark image,
its generation and the performances evaluation can be found
in [17].

The PBBF and BF have been used with Anscombe’s and
Fisz’s VSTs to denoise the benchmark image with added
poisson noise. The denoising performances of each algorithm
are then evaluated and compared. First, the parameters of
the PBBF and BF are optimized for the RMSE on a training
image. Then, these parameters are used to filter the same
benchmark image, with additional noise generated with the
same noise model. This process is repeated over 100 images.
The results presented in Table I are the mean and standard
deviation of the RMSE between the original image and the
denoised test image for the PBBF and the BF with both
VST. They should be compared with the results of the same
algorithm applied on the image with poisson noise, without
any VST (gaussian filter). On this table, L controls the length
of the square patch in one direction from the central pixel:
D = 2L+1, and n is the optimal number of iterations. These
results show that the two VSTs improve the results over
the same algorithm for gaussian noise. Independently of the
chosen VST, and even without any VST, the patch-based
algorithms outperform the BF on all masks. Even if the
RMSE of the gaussian PBBF and the VSTs PBBF denoised
images are close, a visual examination of those shows that
using the VSTs leads to a improvement: the ramps and
constant areas have a lower intensity in the case of the
gaussian PBBF.

B. PET Image Denoising

In order to complete its performance assessment, the
PBBF has been applied to a real PET image. As the ground
truth image is not available, the RMSE cannot be computed
and the parameters have been adjusted by visual inspection
of the residuals ri = ûi− fi. Optimal parameter values lead to
a residual image that contains mainly the noise component
and few or no remaining structural elements. If the filter
alters the underlying signal of the image, parts of it, such as
edges, will appear in the residual image. Figure 3 shows the
results of the experiment. The result of the PBBF in panel

(b) seems to perform well and smoothes the constant areas
of the image while preserving the structure. In contrast, panel
(d) shows that the BF smoothes the edges, as confirmed by
visual inspection of the residuals in (e). The residuals of
the PBBF that are illustrated in (c) contain less structural
elements.

IV. CONCLUSION

This paper shows how Anscombe’s and Fisz’s variance
stabilizing transformations can be cast within the framework
of the patch-based bilateral filter. It is shown that with
these transformations, the patch-based bilateral filter effi-
ciently succeeds in attenuating Poissonian noise in images.
Experiments show that the patch-based bilateral filter clearly
outperforms the classical bilateral filter both qualitatively and
quantitatively.
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TABLE I
RMSE AND STD OF THE RMSE FOR EACH MASKS OVER 100 BENCHMARK IMAGES
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RMSE std RMSE std RMSE std RMSE std
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BF Gaussian 3.8701 0.08501 5.1491 0.1354 4.7355 0.2290 2.5687 0.1162 16.7582 1.3726 0 4

Fig. 2. Example of denoised images: from left to right. (a) Original image. (b) BF denoising with Fisz transform: (RMSE = 3.7066). (c) BF denoising
with Anscombe transform: (RMSE = 3.693). (d) Gaussian BF denoising: (RMSE = 3.8701). (e) Noisy image: (RMSE = 5.7304). ( f ) PBBF denoising with
Fisz transform: (RMSE = 2.6222). (g) PBBF denoising with Anscombe transform: (RMSE = 2.664). (h) Gaussian PBBF denoising: (RMSE = 2.8906).

Fig. 3. PET phantom image: from left to right. (a) Original PET image. (b) PBBF denoised image. (c) Residuals of the PBBF image. (d) BF denoised
image. (e) Residuals of the BF image.
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