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Abstract. In the context of classification, the dissimilarity between data
elements is often measured by a metric defined on the data space. Often,
the choice of the metric is often disregarded and the Euclidean distance is
used without further inquiries. This paper illustrates the fact that when
other noise schemes than the white Gaussian noise are encountered, it can
be interesting to use alternative metrics for similarity search.

1 Introduction

Many nonlinear tools for data analysis, among which many Artificial Neural Net-
works (ANN) models, rely on some similarity or dissimilarity measure between
data elements. Examples include the k-Nearest Neighbours (k-NN) classifier,
Kohonen maps (SOM), etc [1].

Many of those tools use the Euclidean distance to measure the similarity
between data elements. The Euclidean distance might be a good choice a priori ;
however this paper arguments that the metric should be chosen according to the
noise scheme that is assumed to affect the data.

The problem of nearest neighbour search is recalled in Section 2, while Section
3 will present Minkowski and fractional metrics. Section 4 will develop a general
noise model, and Section 5 will give some insights on how to choose the right
metric when a given noise scheme is assumed. Section 6 will describe some
experiments and conclusions are drawn in Section 7.

2 Nearest Neighbour search for classification

The problem of nearest neighbour search consists in finding, among a dataset,
the most similar data element to a given one, the latter is called query point.
Mathematically, it is defined as follows : given S = {xj}N

j=1 ⊂ �d a dataset of
d-dimensional observations, xq a query point, and d(·, ·) a metric, find xnq ∈ S
the nearest neighbour of xq among S such that d(xq, xnq) ≤ d(xq , xj)∀xj �= xnq.
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The search for nearest neighbours is essential in many supervised and unsu-
pervised classification techniques. For example the k-NN classifier determines
the class label of a newly encountered data element according to the major-
ity class among the nearest neighbours of the new data. Many unsupervised
methods such as the Kohonen maps, as well as many methods for hierarchical
clustering are based on the concept of nearest neighbour.

In this paper, we will focus on the choice of the metric for nearest neighbour
search. Indeed, the choice of the metric is of high importance because the above-
mentioned methods and tools rely on the fact that similar data elements are close
according to the chosen metric. If the metric does not reflect the ‘right’ notion
of similarity, the methods will not perform well.

3 Minkowski and Fractional metrics

In this study, we will focus on the Minkowski metrics, based on the Minkowski
norms. The Minkowski norms (also called Lp norms) are a family of norms
parameterized by their exponent 1 ≤ p ≤ ∞ : For a xj = [xj1, . . . , xjd] ∈ �d

‖xj‖p =

(∑
i

|xji|p
) 1

p

. (1)

When p = 2, we have the Euclidean norm. For p = 1, it induces the Manhattan
metric. The limit for p → ∞ induces the Chebychev metric.

Minkowski metrics have been successfully used in classification when the
classes cannot be assumed to be hyper-spherical, or, equivalently, their popu-
lations to be Gaussian-distributed [2]. They have also been considered in the
context of regression to build robust estimators. One interesting result is that
the most robust estimator for regression are found by minimizing the Lp-norm of
the residuals when the residuals are distributed as a generalized p-Gaussian [3].
Therefore, it has been proposed to choose the value of p according to the kurtosis
of the noise distribution [4], according to the following relationship: p = 9

γ2 + 1
where γ is the kurtosis of the noise.

Recently, fractional norms have been brought into light for high-dimensional
data [5]. Those norms look like Minkowski norms except the value of the expo-
nent p is still positive but less than one. Although those norms cannot be named
norm in general because the triangle inequality is not ensured, they still can be
used for nearest neighbour search.

4 A noise model

One of the most popular additive noise model is the white Gaussian noise. The
term ‘white’ refers to the fact that the noise affects equally every component
of the data. The term ‘Gaussian’ means that the perturbations are normal
distributed : x′

ji = xji + ni 1 ≤ i ≤ d where ni is draw from a normally
distributed random variable with mean zero and variance σ2

n. However, in many



real cases, the effective noise has the property to alter only a few components,
but in a way that their values change drastically. We will call this scheme a
highly coloured noise, meaning that few components are altered, in contrast to
white noise. Examples of such noise scheme include the so called ‘impulsive
noise’ or ‘salt and pepper noise’, or even ‘burst noise’ in the signal processing
community [6, 7]. Coding errors and missing data markers can also be seen as
highly coloured noise. The white noise model cannot fit such types of noise.

The noise model we propose to consider is the following :

x′
ji =

{
xji + ni with probability pn

xji with probability 1 − pn
(2)

with ni drawn from a random zero-mean variable. This model is general enough
to represent both types of noises mentioned above : if pn = 1, the model describes
a white noise, while if p is low it describes an impulse noise.

5 The right metric for the right noise

The role of a metric is to map a pair of points, or data elements x1 and x2, to a
single value called the distance between those elements. If the components of x1

and x2 do not differ much, the distance will be small. In the case of absence of
noise of any kind, virtually all metrics are equivalent. However this paper argues
the fact that in the presence of noise, the metric must be carefully chosen.

If we observe a positive distance between x1 and x2, the natural question
which arises is the following : is the distance due to real dissimilarity between
x1 and x2, or is it due to noise in measurements ? If we suppose the noise is
white, then very small componentwise differences between x1 and x2 will indicate
that the distance is most probably due to noise, and not to real dissimilarity.
In contrast, if many components are very close but some others are completely
different, the distance should be interpreted as resulting from real dissimilarity.
On the other side, if the noise is assumed to be coloured, opposite conclusions
must be drawn. In any way, the metric should map differences due to noise to
small values of the distance, and differences due to real dissimilarities to larger
values of the distance.

The thesis of this paper is that fractional norms are a better dissimilarity
estimator than the Euclidean norm when a highly coloured noise is present.
Looking at the shapes of the isocurves can help us understand why fractional
norms will better handle coloured noise than the Euclidean norm would. We can
see in Figure 1 that, in dimension 2, provided one component is very similar,
the other can be altered by a significant level of noise while still being a small
distance to the center.

6 Experiments

This section will present the results of experiments carried out on both synthetic
and real datasets. The performances of Minkowski and fractional metrics at the
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(a) Euclidean norm (L2) (b) Fractional norm (L1/2)

Fig. 1: Isocurves from center for two different metrics. Depending on the metric, the
nearest neighbour of the center is the square or the circle.

task of recovering a data element from its noisy version are evaluated. Given a
dataset, we alter one by one the data elements according to a given noise scheme.
Then, the nearest neighbour of the altered data element is searched in the hope
that the nearest neighbour found is the original point. The score associated to
a metric is the proportion of searches that recovered the original data element.

6.1 Synthetic dataset

This dataset consists in 100 points uniformly distributed in [0, 1]20. In a first
experiment, a white Gaussian noise with standard deviation σn ranging from 0
(no noise) to 0.3. In the second experiment, a more coloured noise is added,
with pn ranging from 0 to 1 (σn = 1). Results are averaged over 10 trials and
presented on Figure 2. The leftmost graph refers to a white noise, while the
rightmost graph presents the scores of the same metrics for a coloured noise. We
can see that, whatever noise level is considered, the Euclidean norm performs
better at the white noise experiment, while the fractional norm outperforms the
euclidean norm when the noise is coloured.

6.2 Chemometrics data

This section presents experiments conducted on databases of spectra of meat1

and of orange juice 2. As all measurements, spectra are subject to white noise,
but averaging techniques exist to deal with it. Another type of noise is often en-
countered for such data. Sometimes, the spectra are shifted i.e. labels or indices
of components do not match. Such shifts give rise to high differences between
spectra in the sense of the Euclidean distance, but we can hope that fractional
distances will handle them in a better way. Indeed, a shift of coordinates gives
rise to very low componentwise differences in the flat regions of the spectrum,
but results in large differences near the peaks of the spectra. An example from

1Tecator Meat sample dataset, http://lib.stat.cmu.edu/, 215 100-dimensional spectra
2Orange juice dataset, http://www.ucl.ac.be/mlg, 216 700-dimensional spectra
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Fig. 2: Scores (see text for definition) of several metrics for experiments with (a) white
noise and (b) coloured noise; the value of p identifies the metric (See Eq (1)).
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Fig. 3: Orange juice dataset : (a) sample spectrum and (b) componentwise differences
between this spectrum and itself shifted one component to the right. Some differences
are very small while others are much larger, contrasting from Gaussian noise.

the orange juice dataset is presented in Figure 3 along with the component-
wise differences between this spectrum and the same spectrum shifted from one
component to the right. Figure 4, presents the scores of retrieval of the right
spectrum from a shifted version of it. Minkowski and fractional metrics were
used with values of p from 2−7 to 27. As expected, fractional norms perform
significantly better than the Euclidean norm, which in Fig. 4 is related to the
bars of value log2(p) = 1.

7 Conclusions

Since the notion of metric is crucial in many classification methods, it is impor-
tant to choose the right metric for the right problem. This paper suggests to
choose the metric according to the shape of the noise that is assumed on the
data. While it is known that the Euclidean metric is optimal in presence of
white Gaussian noise, it is shown that other type of noise require other metric.



−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

log
2
(p)

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

log
2
(p)

(a) TECATOR dataset (b) Orange Juice dataset

Fig. 4: Scores of several metrics in presence of coloured noise induced by spectrum
shifts on Tecator and Orange Juice datasets.

Many high-dimensional data are prone to impulse or burst noise, that is a
noise which affects only a minority of the components of the data elements,
but in a significant way. Such noises are encountered in many signal processing
applications. The experiments conducted on both synthetic and real datasets
show that fractional norms are preferable when such noise scheme is encountered.
The Euclidean norm, although heavily used, fails at measuring dissimilarity
correctly in those cases.

Based on the idea developped in this paper and confirmed by experiments
on artificial and real datasets, further work will consist in choosing in a more
quantitative way the metric that should be used when a specific type of coloured
noise in assumed on high-dimenisonal data.
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