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Abstract. Nonlinear dimensionality reduction aims at providing low-
dimensional representions of high-dimensional data sets. Many new meth-
ods have been proposed in the recent years, but the question of their
assessment and comparison remains open. This paper reviews some of the
existing quality measures that are based on distance ranking and K-ary
neighborhoods. Many quality criteria actually rely on the analysis of one
or several sub-blocks of a co-ranking matrix. The analogy between the
co-ranking matrix and a Shepard diagram is highlighted. Finally, a unify-
ing framework is sketched, new measures are proposed and illustrated in
a short experiment.

1 Introduction

Dimensionality reduction (DR) gathers techniques that provide a meaningful
low-dimensional representation of a high-dimensional data set. Linear DR is
well known, with techniques such as principal component analysis. On the other
hand, nonlinear dimensionality reduction [1] (NLDR) emerged later and has
deeply evolved for the past twenty five years, with neural approaches [2, 3, 4]
and spectral techniques [5, 6, 7]. Modern NLDR encompasses the domain of
manifold learning and is also closely related to graph embedding [8].

In the most general setting, dimensionality reduction transforms a set of
N high-dimensional vectors, denoted Ξ = [ξi]1≤i≤N , into N low-dimensional
vectors, denoted X = [xi]1≤i≤N . In manifold learning, it is assumed that the
vectors in Ξ are sampled from a manifold. NLDR aims at providing a low-
dimensional representation that is meaningful in some sense. Most often, the
goal is to preserve the structure of the data set, which is indicated by proximities,
similarities, or neighborhood relationships. These proximities can be obtained
by measuring pairwise distances in Ξ with some metric.

As a matter of fact, the scientific community has been focusing on the design
of new NLDR methods and the question of quality assessment remains mostly
unanswered. As most NLDR methods optimize a given objective function, a
simplistic way to assess the quality is to look at the value of the objective func-
tion after convergence. Obviously, this allows us to compare several runs with
e.g. different parameter values, but makes the comparison of different methods
unfair. Furthermore, objective functions often fulfill some requirements, such
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as being continuous and differentiable, in order to be easily optimized. In con-
trast, a quality criterion just needs to be evaluated and so these constraints
are no longer relevant. This allows the development of quality criteria that are
potentially more complex and truly assess the preservation of the data set struc-
ture. First attempts in this direction can be found in the particular case of
self-organizing maps [2]; see for instance the topographic product [9] and the
topographic function [10]. More recently, new criteria for quality assessment
have been proposed, with a broader applicability, such as the trustworthiness
and continuity measures [11], the local continuity meta-criterion [12], and the
mean relative rank errors [1]. All these criteria analyze what happens in K-ary
neighborhoods, for a varying value of K. In practice, these neighborhoods re-
sult from the ranking of distance measures. This is a fundamental difference,
compared to older quality criteria that classically quantify the preservation of
pairwise distances.

The aim of this paper is to review some of these recent rank based criteria.
The definition of a co-ranking matrix allows us to compare them from a theo-
retical point of view, so that a unifying framework can emerge. This framework
also provides us with arguments to propose new measures.

This paper is organized as follows. Section 2 introduces the notations for
distances, ranks, and neighborhoods. Section 3 reviews existing rank-based cri-
teria. Section 4 unifies the different approaches and proposes new ones. Section 5
shows some experimental results. Finally, Section 6 draws the conclusions.

2 Distances, ranks, and neighborhoods

Most NLDR techniques involve distances in a more or less direct way. The
symbol δij denotes the distance from ξi to ξj in the high-dimensional space.
Similarly, dij is the distance from xi to xj in the low-dimensional space. Notice
that we assume that δij = δji and dij = dji, although this hypothesis is not
always required. For instance, it does not hold true if δij and δji come from
distinct experimental measures. Starting from distances, we can compute ranks.

The rank of ξj with respect to ξi in the high-dimensional space is written as
ρij = |{k : δik < δij or (δik = δij and k < j)}|. Similarly, the rank of xj with
respect to xi in the low-dimensional space is rij = |{k : dik < dij or (dik =
dij and k < j)}|. Hence, reflexive ranks are set to zero (ρii = rii = 0) and ranks
are unique, i.e. there are no ex aequo ranks: ρij �= ρik for k �= j, even if δij = δik.
This means that nonreflexive ranks belong to {1, . . . , N − 1}. The nonreflexive
K-ary neighborhoods of ξi and xi are denoted by νK

i = {j : 1 ≤ ρij ≤ K} and
nK

i = {j : 1 ≤ rij ≤ K}, respectively.
The co-ranking matrix can then be defined as Q = [qkl]1≤k,l≤N−1 with qkl =

|{(i, j) : ρij = k and rij = l}|. The co-ranking matrix is the joint histogram of
the ranks and is actually a sum of N permutation matrices of size N −1. Matrix
Q can be divided into four blocks that separate the first K rows and columns.
If we define FK = {1, . . . , K} and LK = {K + 1, . . . , N − 1}, the index sets of
the four blocks are ULK = FK × FK , URK = FK × LK , LLK = LK × FK , and
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LRK = LK × LK . Similarly, the block covered by ULK can be split into its
main diagonal DK = {(i, i) : 1 ≤ i ≤ K} and lower and upper triangles LTK =
{(i, j) : 1 < i ≤ K and j < i} and UTK = {(i, j) : 1 ≤ i < K and j > i}.
The co-ranking matrix can also be displayed and interpreted in a similar way
as a Shepard diagram [13]. (Shepard’s scatterplot shows the distances δij with
respect to the distances dij , for all pairs (i, j), with i �= j.)

3 Rank-based criteria

This section reviews some of the recently published criteria that rely on ranks.
Beside the definition found in the literature, we give an equivalent expression in
terms of the co-ranking matrix. For instance, the trustworthiness and continuity
(T&C) measures [11] are defined as:

WT(K) = 1 − 2
GK

N∑
i=1

∑
j∈nK

i \νK
i

(ρij − K) = 1 − 2
GK

∑
(k,l)∈LLK

(k − K)qkl , (1)

WC(K) = 1 − 2
GK

N∑
i=1

∑
j∈νK

i \nK
i

(rij − K) = 1 − 2
GK

∑
(k,l)∈URK

(l − K)qkl , (2)

where the normalizing factor GK = N min{K(2N−3K−1), (N−K)(N−K−1)}
considers the worst case, i.e. ranks are reversed in the low-dimensional space [14].
Notice that the two criteria distinguish two kinds of errors: faraway points that
becomes neighbors and neighbors that are embedded faraway from each other.

The mean relative rank errors [1] (MRREs) rely on the same principle and
are defined as

En(K) =
1

HK

N∑
i=1

∑
j∈nK

i

|ρij − rij |
ρij

=
1

HK

∑
(k,l)∈ULK∪LLK

|k − l|
l

qkl , (3)

Eν(K) =
1

HK

N∑
i=1

∑
j∈νK

i

|ρij − rij |
rij

=
1

HK

∑
(k,l)∈ULK∪URK

|k − l|
k

qkl , (4)

where the normalizing factor HK = N
∑K

k=1 |N−2k|/k considers the worst case.
The differences between the MRREs and the T&C hold in the weighting of the
elements qkl and the blocks of Q that are covered. The MRREs involve the first
K rows and colums of Q.

The local continuity meta-criterion [12] (LCMC) is defined as

ULC(K) =
1

NK

N∑
i=1

(
|nK

i ∩ νK
i | − K2

N − 1

)
=

K

1 − N
+

1
NK

∑
(k,l)∈ULK

qkl , (5)

where the subtracted term is a “baseline” that corresponds to the expected
overlap between two subsets of K elements out of N − 1. In contrast to the
MRREs and T&C, the LCMC yields a single quantity that is computed over the
block ULK of Q. Elements qkl in the block are not weighted in the sum.
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4 Unifying framework

The quality measures described in the previous section can be related to the con-
cepts of precision and recall (P&R) in the domain of information retrieval. The
precision is the proportion of relevant items among the retrieved ones, whereas
the recall is the proportion of retrieved items among the relevant ones. For
rank-based criteria, relevant items are the indices that belong to νK

i , whereas
nK

i contains the retrieved indices. The P&R are themselves related to the con-
cepts of false positive and false negative in classification. False positive decrease
the precision and false negatives decrease the recall.

If we compare the retrieved neighborhoods to the relevant ones, the blocks of
Q covered by ULK , LLK , URK , and LRK contain the true positives, the false
positives, the false negatives, and the true negatives, respectively. Hence, the
LCMC quantifies the true positives, the T&C focus on the false positives and
false negatives, and the MRREs encompass the positives (true and false) and
negatives (true and false). Obviously, as nK

i and νK
i have the same size, the

numbers of false positives and false negatives are the same. Each element of νK
i

that is missed in nK
i (a false negative) is replaced with an incorrect neighbor (a

false positive). Formally, as Q is a sum of N permutation matrix, we can see
that

∑N−1
l=1 qkl = N and

∑N−1
k=1 qkl = N . Therefore,

∑
(k,l)∈ULK∪LLK

qkl =
∑

(k,l)∈ULK∪URK

qkl = KN and
∑

(k,l)∈LLK

qkl =
∑

(k,l)∈URK

qkl .

This shows that we would have WT(K) = WC(K) and Eν(K) = En(K), without
an appropriate weighting of the elements qkl. On the other hand, the absence of
weighting in the LCMC is not critical.

At this point, we see that the analogy between T&C on one side, and false
positives and negatives on the other side, must be interpreted carefully. Hence,
the interest does not lie in the average number of false positives/negatives in
K-ary neighborhoods, but rather in how bad they are misranked. This suggests
that meaningful criteria should be computed on both sides of the diagonal of Q.
This resembles the usual interpretation of a Shepard diagram. The two regions
to consider are thus LTK ∪ LLK and UTK ∪ URK . They respectively gather
elements of nK

i for which ρij > rij and elements of νK
i for which rij > ρij . In the

same way as the existing criteria, we can distinguish weighted and unweighted
sums of elements qkl. For instance, weighted averages can be written as

W v,w
LT (K) =

1
CK

∑
(k,l)∈LTK∪LLK

(k − l)v

kw
qkl , (6)

W v,w
UT (K) =

1
CK

∑
(k,l)∈UTK∪URK

(l − k)v

lw
qkl , (7)

where CK = N
∑K

k=1 max{0, (N − 2k)w/kv}. The exponents w and v can be
adjusted in order to emphasize large rank differences, relatively to the reference
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rank. Unweighted average can be written as

UUT(K) =
1

KN

∑
(k,l)∈UTK

qkl , ULT(K) =
1

KN

∑
(k,l)∈LTK

qkl , (8)

and UD(K) = 1
KN

∑
(k,l)∈DK

qkl. Notice that W 0,0
LT − W 0,0

UT = ULT(K) − UUT(K)
and ULC(K) = UD(K) + UUT(K) + ULT(K) − K/(N − 1). The quantity UD(K)
indicates the average proportion of vectors that keep the same rank in both νK

i

and nK
i . Similarly, ULT(K) and UUT(K) are the average proportions of vectors

that are respectively “promoted” and “downgraded”, but still remain in both
νK

i and nK
i . If ULT(K) ≈ UUT(K) � UD(K), then many permutations occur in

the K-ary neighborhoods (due to noise flattening, for instance). On the other
hand, if the difference |ULT(K) − UUT(K)| is large, then vectors that remain in
the K-ary neighborhoods are promoted due to the escape of some others.

5 Experiments

For this brief experimental section, the test manifold is a (hollow) unit sphere.
Thousand randomly drawn points of the manifold are available; Gaussian noise
is added, with a standard deviation equal to 0.05. The manifold has been embed-
ded with Sammon’s nonlinear mapping [15] (NLM) and curvilinear component
analysis [3] (CCA). Due to space limitations, we show only the value of ULT(K),
UUT(K), UD(K), and their sum in Fig. 1. NLM is known to “crush” the manifold
(faraway points can become neighbors), whereas CCA can “tear” the manifold
(some close neighbors can be embedded faraway from each other). The results
show that these two antagonist behaviors can be markedly distinguished using
unweighted averages of elements of the co-ranking matrix.
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Fig. 1: Values of ULT(K), UUT(K), UD(K), and their sum, for an hollow unit
sphere (1000 points with Gaussian noise; σ = 0.05). The two compared methods
are Sammon’s NLM and CCA.
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6 Conclusions

This paper has reviewed several quality criteria for the assessment of nonlin-
ear dimensionality reduction. All of them rely on distance rankings and the
definition of a co-ranking matrix allows us to cast them within a unifying frame-
work. The literature emphasizes the connection of these rank-based criteria with
fundamental concepts taken from information retrieval (precision and recall) or
classification (false positives and false negatives). Properties of the co-ranking
matrix show that these analogies should however be considered carefully.

In constrast, we see that the co-ranking matrix can be interpreted in the same
way as a Shepard diagram. This means that quality crieria should focus on the
density on both sides of the diagonal of the co-ranking matrix. An experiment
with these densities reveals the antagonist behavior of two well known NLDR
techniques such as Sammon’s NLM and CCA.
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