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Abstract. Signal denoising proves to be important in many domains such
as pattern recognition and image analysis. This paper investigates several
refinements of adaptive local filters that rely on local mode finding. These
spatial filters are anisotropic and offer the advantage of attenuating noise
without smoothing salient signal features such as discontinuities or other
sharp transitions. In particular, a bootstrapped procedure is developed
and leads to an improvement of the denoising quality without increasing
the computational complexity. Experiments with an artificial benchmark
allow the quantification of the performance gain.

1 Introduction

Denoising of multidimensional signals such as images is a well known problem
and can be achieved through different paradigms. A classical strategy con-
sists in damping or trimming high-frequency components, by means of either a
Fourier or wavelet transform. In the spatial domain, popular approaches rely
on partial differential equations [1, 2], on regularisation techniques such as total
variation [3], or on local regression [4]. Denoising can also be formulated as a
mode finding problem, which can be solved by robust statistics [5] or probability
density estimation [6]. Many surveys [7, 8, 9] connect these different approaches.

This paper focus on mode finding techniques and proposes a bootstrapped
procedure. The objective is to enhance denoising by introducing some refine-
ments such as a local and data-driven adjustment of the main meta-parameter.

The rest of this paper is organised as follows. Section 2 describes some
usual denoising tools that rely on local mode finding. Next, Section 3 details
the proposed bootstrapped scheme. Section 4 gives experimental results and
comments them. Finally, Section 5 draws the conclusions and sketches some
perspectives for future work.

2 Denoising as local mode finding problem

Let us denote collected data by (X,Y), where each pair (xi,yi)1≤i≤N consists
of a noisy measurement yi that is performed at some given location xi. Under
the assumption of i.i.d. Gaussian noise, each measurement can be written as
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yi ∼ G(μi, ν), where μi is the unknown noisefree value and ν is the noise
standard deviation. Any statistical estimation of μi must overcome the fact
that a single measurement is available at each location. For this purpose, if the
signal is locally constant, then we can compute a local average that minimises

E(Υ,Y,X) =
1
2

N∑
i=1

N∑
j=1

Kσ
ij(X)‖υi − yj‖2 ,

where Kσ
ij(X) = exp(−‖xi−xj‖2/(2σ2)) is a spatial kernel. Equating the deriva-

tive w.r.t. υi leads to the closed-form solution

υi =

∑N
j=1 Kσ

ij(X)yj∑N
j=1 Kσ

ij(X)
.

This corresponds to classical Gaussian smoothing. Parameter σ must be tuned
in order to attenuate noise without excessive smoothing of salient features such
as discontinuities or high-gradient transitions.

If the signal is piecewise constant, then the local distribution is multimodal
and a more appropriate objective function is

E(Υ,Y,X) =
1
2

N∑
i=1

N∑
j=1

Kσ
ij(X) exp

(
−‖υi − yj‖2

2ρ2

)
.

In line with the idea behind robust statistics [5], the standard least squares are
replaced with a radiometric kernel with width ρ. With an appropriate normali-
sation, the last objective function also corresponds to a Parzen window density
estimator [6]. Finding any local maximum of E(Υ,Y,X) turns out to identify
a mode of the local signal distribution. In practice, this is achieved by equating
the derivative w.r.t. υi with zero. Although a closed-form solution does not
exist, it is easy to obtain a fixed-point update that is written as

υk+1
i =

∑N
j=1 Kσ

ij(X) exp(−‖υk
i − yj‖2/(2ρ2))yj∑N

j=1 Kσ
ij(X) exp(−‖υk

i − yj‖2/(2ρ2))

and initialised with υ0
i = yi. This procedure is known as the local M-smoother [9]

(LMS). In contrast to Gaussian smoothing, the LMS computes a local weighted
average with potentially anisotropic contributions.

The image processing community also uses an intuitive update rule that is
known as bilateral filtering [10] (BF) and written as

υk+1
i =

∑N
j=1 Kσ

ij(X) exp(−‖υk
i − υk

j ‖2/(2ρ2))υk
j∑N

j=1 Kσ
ij(X) exp(−‖υk

i − υk
j ‖2/(2ρ2))

.

As can be seen, the noisy data is used solely in the initialisation step; the follow-
ing updates involve only previously filtered values. Dropping the spatial weights
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Kσ
ij(X) reduces BF to the popular mean-shift procedure [11] that is used in clus-

tering and image segmentation. The update actually results from the fixed-point
minimisation of

E(Υ,Y,X) =
1
2

N∑
i=1

N∑
j=1

Kσ
ij(X) exp

(
−‖υi − υj‖2

2ρ2

)
,

which admits the trivial solution υi = υj for 1 ≤ i, j ≤ N . Early stopping with
some adequate criterion prevents convergence on a flat signal.

3 Bootstrapped anisotropic local least squares

The good performance of bilateral filtering can be explained by looking at the
argument of the radiometric kernel. It involves the comparison of the free vari-
able with filtered values instead of noisy ones, the former ones being supposedly
more reliable than the latter ones. On the other hand, convergence on a trivial
solution results from averaging filtered values instead of the original ones. As a
workaround, we propose to maximise

E(Υk+1,Y,X) =
1
2

N∑
i=1

N∑
j=1

‖υk+1
i − yj‖2Kσ

ij(X) exp

(
−‖υk

i − υk
j ‖2

2ρ2

)
.

This objective function is quadratic w.r.t. υk+1
i and it entails some sort of boot-

strapping: we assume that some previously filtered values υk
i are available. Just

as with the other filters, we start the process with υ0
i = yi. A closed-form

solution is expressed by

υk+1
i =

∑N
j=1 Kσ

ij(X) exp(−‖υk
i − υk

j ‖2/(2ρ2))yk
j∑N

j=1 Kσ
ij(X) exp(−‖υk

i − υk
j ‖2/(2ρ2))

.

Convergence of this update rule cannot be guaranteed. Nevertheless, it is easy
to see that this filter is strictly local, as the weighted average always resorts to
the initial noisy data. This eliminates any trivial solution such as a flat signal,
in the same way as the fidelity term in total variation denoising [3].

The idea of comparing the free variable to filtered values leads to a further
refinement if we observe that the variance of the filtered value υk

i is smaller
than that of the noisy signal yi, provided k > 0. Therefore the radiometric
width should be adapted according to the variance of υk

i . More specifically, we
propose to individualise ρ for each datum and to decrease it in order to hopefully
better separate partially overlapping modes. If we consider that all previously
defined filters can written as either Υk+1 = YWk or Υk+1 = ΥkWk, where
Wk = [wk

i ]1≤i≤N is a square matrix that contains all filter weights after the kth
update. This reformulation allows us to write

E(Wk+1,Y,X) =
1
2

N∑
i=1

N∑
j=1

‖Ywk+1
i − yj‖2Kσ

ij(X) exp

(
−‖Y(wk

i − wk
j )‖2

2ρ2‖wk
j ‖2

)
.
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The denominator in the radiometric kernel relies on the assumption that if two
independent random variables u and v have their variance equal to ν2

u and ν2
v

respectively, then the variance of αu + βv is equal to α2ν2
u + β2ν2

v . Maximising
the last objective function leads to

wk+1
ij =

Kσ
ij(X) exp(−‖υk

i − υk
j ‖2/(2ρ2‖wk

j ‖2))∑N
j=1 Kσ

ij(X) exp(−‖υk
i − υk

j ‖2/(2ρ2‖wk
j ‖2))

,

where W0 is initialised to the identity matrix. In practice, matrix Wk does not
need to be stored in memory, as the update involves only the products Ywk

i = υk
i

and the norms ‖wk
i ‖. A last refinement consists in controlling the spatial kernel

width at each update. Plugging σk = σ
√

k + 1 into Kσ
ij(X) allows us to simulate

the diffusion process of bilateral filtering without involving the filtered values.

4 Experiments

In order to evaluate the denoising quality, we use an artificial benchmark im-
age [12] comprised of 642 pixels and illustrated in Fig. 1. Transitions between
the various areas are slightly blurred, exactly as in a real image. Noisy images
are obtained by adding random i.i.d. Gaussian perturbations with unit variance
(the pixel intensity range is [1, 10]). An example is shown in Fig. 1 as well.
Quantitative assessment is provided by comparing the denoised image with the
noisefree reference, by means of the root mean square error (RMSE). RMSE
results are averaged over 50 images with different noise realisations (the average
is performed before applying the square root). As the proposed filter is intended
to be applied in biomedical applications, signal recovery is of prime importance
and perceptual criteria are thus not considered.

Fig. 1: Benchmark image without and with unit variance i.i.d. Gaussian noise.

Figure 2 reports a first experiment. RMSE curves are drawn w.r.t. σ for
Gaussian smoothing, and ρ for filters with a radiometric kernel. For these filters,
σ is fixed and four updates are performed. As expected, the outcome of the first
update is the same for all of them. Afterwards, it is noteworthy that the optimal
value of ρ is shifted to the left for filters with a non-adaptive radiometric width,
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and to the right for the others. Subsequent updates increase the RMSE, which
can be explained by the slight blur in the image. Divergence proves to be stronger
for BF. The RMSE minima in Fig. 2 are 0.673, 0.545, 0.554, 0.536, 0.500, and
0.493 respectively.
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Fig. 2: RMSE curves w.r.t. σ and ρ for the benchmark image.

Table 1 reports a second experiments, in which we determine the values of
σ and ρ that minimise the RMSE after two updates. This confirms that qual-
ity is improved by (i) comparing filtered values rather than noisy ones in the
radiometric kernel, (ii) averaging noisy values rather than filtered ones, (iii)
individualising and adapting the radiometric width, and (iv) simulating a diffu-
sion process by increasing the spatial width. The most noticeable performance
enhancement results from the combination of (i), (ii), and (iii).

5 Conclusions

Local mode finding proves to be a powerful tool for signal denoising. However,
classical implementations such as the local M-smoother and bilateral filtering are
optimal only if the mode overlap is minimal, which rarely happens in practice.
We have addressed the issue of mode overlap by developing a bootstrapped
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σ ρ RMSE
Local M-smoother 1.0948 1.9482 0.5381
Bilateral filtering 0.8680 1.8227 0.5352
Bootstrapped filter 1.1031 1.9113 0.5280
Bootstrapped filter (adaptive ρ) 1.3395 3.8995 0.4972
Bootstrapped filter (adaptive ρ and σ) 1.1477 3.5924 0.4905

Table 1: Values of σ and ρ that minimise the RMSE for the benchmark image.

filter and by introducing a locally adaptive radiometric width. Higher denoising
quality has been experimentally confirmed. Future work will investigate more
complex ways to adjust the radiometric width by means of local statistics.
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