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Abstract. The ever-growing amount of data stored in digital databases
raises the question of how to organize and extract useful knowledge. This
paper outlines some current developments in the domains of dimensionality
reduction, manifold learning, and topological learning. Several aspects
are dealt with, ranging from novel algorithmic approaches to their real-
world applications. The issue of quality assessment is also considered and
progress in quantitive as well as visual crieria is reported.

1 Introduction

The transformation of high-dimensional data to lower-dimensional spaces has
been a topic of interest for more than a century. Dimensionality reduction pur-
sues several goals: visualizing data in 2- or 3-dimensional spaces, extracting
a limited number of relevant features from the original ones, or even simply
removing some noise from the data. Principal component analysis (PCA) is
probably the first attempt towards dimensionality reduction. It has long been
the only method available and used by practitioners, before the advent of mul-
tidimensional scaling (MDS) and other more complex techniques. The issues of
data representation and dimensionality reduction have been addressed by several
communities. PCA and MDS were essentially developed by socio-psychologists.
The machine learning community then took the lead; in this community, (non-
linear) dimensionality reduction is often referred to as manifold learning. The
topic is also tightly connected to graph embedding techniques.

During the last decades, two revolutions greatly influenced the development
of the field: the need to process large datasets, and the advent of nonlinear
dimensionality reduction. Nonlinear methods are by definition more powerful
than linear methods, as they make fewer hypotheses about the model and/or
the manifold. At the same time, they face more difficulties: the need to define
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proper objective criteria compatible with the application goal, the use of opti-
mization techniques, the need for evaluation criteria, etc. DR methods can be
categorized by their optimization scheme, which can be spectral or non-spectral.
As a matter of fact, not all cost functions can be cast within the framework of
an eigenproblem. The appealing theoretical properties of spectral techniques,
such as the guarantee to find the global optimum, are thus counterbalanced by
the bigger flexibility offered by non-spectral optimization.

Dimensionality reduction amounts to associating low-dimensional coordi-
nates to data items, while preserving structural information as much as pos-
sible. The latter can be expressed in practice by pairwise distances or, more
generally, by (dis)similarities. The methods typically differ in their definition
of (dis)similarity measure, and in the weighting of small versus large similarity
discrepancies in the cost function. Alternatively, methods can also be driven
by topology preservation. They can attempt to reproduce distance ranks in the
low-dimensional space, for instance.

The variety of manifold learning techniques also raises the issue of their val-
idation with quality criteria that are both meaningful with respect to the con-
sidered application and independent of the compared methods’ cost functions.

The remainder of this paper presents a selection of state-of-the-art methods
of manifold learning based on distances and similarities (Section 2), as well as
recent topology-preserving tools (Section 3). Section 4 deals with quality criteria.

2 Distances and similarities to reduce the dimensionality

Principal component analysis [1, 2, 3] (PCA) is often viewed as a method of rep-
resenting data set Ξ = [ξi]|≤i≤N in a low-dimensional space while preserving a
maximal fraction of the data set variance. Actually, one can also show that PCA
is equivalent to classical metric multidimensional scaling [4, 5, 6] (MDS). These
two techniques are dual: while PCA involves the covariance matrix CΞΞ =
1
N (Ξ − 1

NΞ11T )T (Ξ − 1
NΞ11T ), MDS relies on the corresponding centered

Gram matrix of pairwise inner products G = (Ξ − 1
NΞ11T )(Ξ − 1

NΞ11T )T .
In both cases, a spectral decomposition is used to find low-dimensional co-
ordinates X = [xi]1≤i≤N that correspond to least-square approximations of
the mentioned matrices. Formally, these methods find the global optimum of
minX ‖CΞΞ−CXX‖2 and minX ‖GΞΞ−GXX‖2, respectively, where ‖·‖2 denotes
the Frobenius norm. The evolution of classical metric MDS towards nonlinear
variants the close relationship between inner products and Euclidean distances.
Translating the preservation of inner products into the preservation of the cor-
responding distances offers a much intuitive and versatile formulation. At the
expense of replacing the spectral decomposition with more general optimiza-
tion tools such as gradient descent, the cost function that formalizes distance
preservation can be extended and defined in more flexible ways. For example,
minX ‖GΞΞ − GXX‖2 can be replaced with minX

∑
i<j wij(δij − dij)

2, where
the minimized quantity is often called the stress, wij are weights, and distances
are denoted by δij = ‖ξi − ξj‖2 and dij = ‖xi − xj‖2. Weight wij modu-
lates the importance given to the preservation of small distances versus larger
ones. This principle is applied in Sammon’s nonlinear mapping [7], which fa-
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vors the preservation of small distances. In this case, wij is defined to be equal
to 1/δij . Giving less importance to large distances is supposed to allow data
to unfold, in order to make their embedding easier in a low-dimensional space.
Curvilinear component analysis [8] follows a similar approach, with the noticible
difference that wij = f(dij/σ), where f : R+ → R

+ is a decreasing function of
its argument and σ is a neighborhood width. Although at first glance it looks
very similar to Sammon’s mapping, CCA shows a completely different behavior,
due to the dependence of the weights upon the distance in the low -dimensional
space. This pecularity gives CCA the ability to tear manifolds, which improves
their unfolding. Recent studies about quality assesment of dimensionality re-
duction [9, 10] (see also Section 4) have shown that embedding errors can be
divided into two types: either distant points are erroneously embedded close
to each other or initially nearby points are mapped too far away. Within this
framework, Sammon’s mapping and CCA can be shown to tolerate more easily
the one type or the other. These antagonist behaviors have been combined in
hybrid methods such as Venna’s local multidimensional scaling [11, 12], where
wij = λf(dij/σ) + (1 − λ)f(δij/σ). Parameter λ controls the balance between
the two types of errors.

All previously mentioned methods can be extended to other metrics than the
Euclidean norm. The most famous example is undoubtedly Isomap [13], which
amounts to applying classical metric MDS to a matrix of pairwise geodesic dis-
tances. Geodesic distances are measured along the underlying manifold and thus
enable a better unfolding. In practice, geodesic distances are approximated by
computing shortest paths in a Euclidean graph corresponding toK-ary neighbor-
hoods or ε-balls [14]. Geodesic distances have been used in Sammon’s mapping
as well as in CCA [15].

Isomap also turns out to be a nonlinear generalization of classical metric MDS
that keeps using a spectral decomposition in its optimization process. Very few
other methods have succeeded in owning this advantage. Laplacian eigenmaps
[16], for instance, tries to unfold and project data by minimizing small distances
only. Formally, Laplacian eigenmaps uses a spectral decomposition to solve
minX

∑
i<j wij‖xi − xj‖22, subject to 1TX = 0 and CXX = I, where wij > 0

if and only if ξi and ξj are neighbors. (K-ary neighborhoods or ε-balls can be
used such as in Isomap.) While the connection between Laplacian eigenmaps
and distance preservation might seem unclear, several authors have shown that
it actually amounts to applying classical metric MDS to commute-time distances
[17], that is, to distances related to random walks in a graph. The connection
with distance preservation is perhaps more straightforward in maximum variance
unfolding [18]. The idea behind this spectral method is somehow dual to that of
Laplacian eigenmaps: MVU seeks to unfold and project data by preserving the
distances between neighboring points and maximizing all other ones. Formally,
it solves maxX

∑
i<j ‖xi − xj‖22, subject to 1TX = 0 and ‖xi − xj‖2 = δij if ξi

and ξj are neighbors. In practice, it amounts to modifying a Gram matrix by
means of semidefinite programming before applying classical metric MDS on it.

Since a few years, the interest in distance preservation is slowly evolving
toward similarity preservation. Whereas a pairwise dissimilarity typically grows
with its corresponding distance, a similarity is usually defined to be a decreasing
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function of the distance. In the context of dimensionality reduction, the use
of similarities is increasingly perceived as more consistent with the intuition
that local properties such as K-ary neighborhoods should be preserved prior
to global properties. This idea underlies all weighting schemes that are used
in MDS, Sammon’s mapping, CCA, and their variants. By using similarities,
the dominating terms in a cost function are naturally associated with small
distances. For instance, let us define normalized pairwise similarites with πij =
γ(δ2ij)/

∑
k<l γ(δ

2
kl) and pij = g(d2ij)/

∑
k<l g(d

2
kl), where γ and g are positive

and decreasing functions of their arguments. Following the idea of stochastic
neighbor embedding [19], the Kullback-Leibler divergence written as D(X;Ξ) =∑

i<j πij log(πij/pij) can be minimized by gradient descent. The formula of
the partial derivative w.r.t. the low-dimensional coordinates turns out to be
surprisingly concise and elegant:

∂D(X;Ξ)

∂xi
=

∑

j

(πij − pij)
g′(d2ij)
g(d2ij)

(xi − xj) .

It also shows that the gradient is negligible for large distances, that is, for small
similarities, provided k′(dij) ≤ k(dij). Recent papers investigates the choice
of the similarity functions [20] and the definition of the cost function [21]. As
the KL divergence is not symmetric, the authors of [21] consider a weighted
combination of two divergences, based on the same principle as their distance
preserving method in [11, 12]. In particular, this allows them to cast their
method within the framework of statistical information retrieval.

3 Learning topology

Applying geometrical and topological methods in order to analyze high-dimen-
sional data has attracted recent scientific attention in the machine learning
community, e.g. [22, 23, 24]. Starting from a finite set of points in a high-
dimensional space, several approaches intend to learn, explore and exploit the
topology of manifolds, from which these points are supposed to be drawn, or
shapes, i.e. topological invariants, such as the intrinsic dimension. There is a
wide scope of applications using such topology-based methods ranging from ex-
ploratory data analysis [25], pattern recognition [26], process control [27], semi-
supervised learning [28, 29], to manifold learning [30, 29] and clustering [31].

In structure-preserving dimensionality reduction, nonlinear embedding tech-
niques are used to represent high-dimensional data or as preprocessing step for
supervised or unsupervised learning tasks, e.g. [22, 32]. However, the final di-
mension of the projected data and the topological properties of the target space
are constrained a priori. In spectral methods, it is intended to perform manifold
regularization by taking into account the topology of the shapes using the Lapla-
cian of some proximity graph of the data [33, 28]. A similar approach is also
used in spectral clustering [34, 35, 36, 37]. Here, choosing an appropriate prox-
imity graph is essential and greatly impacts the results, making these methods
sensitive to noise [38] or outliers. Unfortunately, there is no universal objective
criterion of how to estimate the quality of such a data-induced graph.

If processing in geometric low-dimensional spaces is addressed, so-called
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‘computational geometry’ approaches can be applied. Relevant concepts range
from epsilon-samples [39] and restricted Delaunay triangulations [40] to various
concepts for estimating topological and geometrical properties of shapes [39, 41].
Again, to properly reconstruct given real-world data sets, assumptions on the
unknown shape as being represented by a smooth manifold have to be made,
which frequently will not be adequate in the presence of noise.

In the last few years, various approaches have stimulated the field of topol-
ogy learning, based on geometric and algebraic ideas. The concept of distance
functions, e.g. [42], allows for a re-interpretation of geometric inference [43].
The so-called ‘topological persistence’ [44] has been applied to noise reduction
[45] and to improved visualization methods for 3D image data sets [31]. Mani-
fold reconstruction in high-dimension [46] and the combination of statistical and
topological approaches should be mentioned here, extending Voronöı concepts
to Bregman divergence [47], or defining generative models based on simplicial
complexes [48]. These approaches aim at combining ideas of generative princi-
pal manifolds [30] and witness complexes [25].

The most powerful neural network topology learning method is the Self-
Organizing Map (SOM) which provides a robust method to visualize essential
properties of data [49]. Under certain conditions, it represents a topographic
mapping of high-dimensional input data onto a low-dimensional space usually
sampled by a regular grid. Here, topographic mapping means the preservation of
the continuity of the mapping between the two spaces [50]. After network train-
ing, this property can be assessed quantitatively, see e.g. [51]. Various extensions
of the basic SOM have been described in the literature, such as magnification
control schemes [52], or other modifications related to learning using auxiliary
data [53], probability density estimation [54], or kernel methods [55], nonlin-
ear embedding [56], and pattern matching [57, 58]. For a review on the SOM
literature, we refer to Kohonen’s textbook [59].

Recently, a novel computational approach to topology learning has been pro-
posed that systematically reverses the data-processing workflow in topology-
preserving mappings: the Exploration Machine (Exploratory Observation Ma-
chine, XOM) [60, 24, 61, 62]. By systematically exchanging functional and struc-
tural components of topology-preserving mappings, XOM can be seen as a com-
putational framework for both structure-preserving dimensionality reduction and
data clustering [63, 64]. This approach provides conceptual and computational
advantages when compared to SOM and other dimensionaliy reduction meth-
ods [65], which has been demonstrated by computer simulations and real-world
applications, such as in functional MRI and gene expression analysis [65, 61].
Specific advantages refer to (i) concise visualization and resolution of underlying
data cluster structures, (ii) substantially reduced computational expense, and
(iii) direct applicability to the analysis of non-metric data.

As pointed out in [65], XOM represents the general concept of inverting
topology-preserving mappings as a fundamental pattern recognition approach,
thus implying novel methods for data clustering, semi-supervised learning [66],
analysis of non-metric data, pattern matching, and incremental optimization
[60]. Moreover, current research [67] unveils that XOM provides interesting con-
ceptual cross-links between fast sequential online learning known from topology-
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preserving mappings (as in SOM) and principled direct optimization of diver-
gence measures (e.g. Kullback-Leibler divergence) which compare neighborhood
statistics in data and target spaces, such as in Stochastic Neighbor Embedding
(SNE) [68] and its variants.

4 Quality assessment

The variety of methods presented in the previous sections raises the question of
quality assessment. Relevant criteria are needed in order to compare methods
and evaluate the reliability of their results. For a long time, quality criteria
have been closely related to the cost functions of some dimensionality reduction
techniques. For instance, PCA variance fraction or stress functions [5, 6, 7] have
been very popular. Since the eighties, the SOM community has developed spe-
cific criteria based on topological considerations. Trustworthiness and continuity
[9] are such criteria based on rank preservation between data and their k-nearest
neighbors in original and projection space.

The previous criteria are given as a single or a pair of numbers. While this
may be a sufficient summary to compare several mappings and select the best
one, this is not enough considering that mappings are to be used as visual support
decision tools which must be interpreted with the eyes. We stress that nonlinear
maps which display multidimensional data as cloud of points, cannot be trusted
as such, because axes have no meaning so we cannot tell about the correlation
of some original variables, and distances are not well preserved in general so we
cannot tell about the authenticity of the cluster structure we observe.

Several authors [69, 10, 70, 9, 71] provided a taxonomy of the distorsions
which might occur. According to the one defined in [69]: compression and
stretching of the distances alter the geometry, while tears (nearby data mapped
far appart) and false neighborhoods (far appart data mapped as neighbors) alter
the topology of the underlying data structure. A statistical interpretation of
these different types of errors is given in [21]; it allows the authors to define
quality criteria that are closely related to quantities such as precision and recall,
which are standard tools in classification and information retrieval.

Not only the quantification of mapping errors is of interest: the location of
the errors in the low-dimensional representation proves to be important as well.
We must indeed know which part of the display we can trust before willing to
infer any property of the original multidimensional data structure. In the sequel,
SOM is simply considered as performing a non linear mapping of the neurons
instead of the data, so visualization initially dedicated to nonlinear mappings
apply to SOM too.

The Shepard diagram can be used as an auxiliary graphic which displays a
cloud of N(N − 1)/2 points having the original and mapped pairwise distances
as x and y components respectively. The cloud lays close to the diagonal y = x
if no or few distortions occur, above it for a majority of stretching and tears,
below for a majority of compressions and false neighborhoods. However, this
scatter plot is not visually correlated straight to the map making it difficult to
know where exactly in the map the distortions occur.

The problem is that the map shows N points while there are aboutN2 distor-

76

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence 
and Machine Learning.  Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.



tions to display (N2 pairwise distances) so one way is to display some statistic
about them. Aupetit proposed to visualize local amount of compression and
stretching, coloring Voronöı cells of edges in the Delaunay graph of the mapped
data[69], which is somehow similar to the U-matrix representation used with
SOM [72] where color shows the amount of empty space between the neurons in
the data space. However, both these approaches cannot show tears, making haz-
ardous to draw any conclusion about the data cluster structure (A single cluster
can be shared in very different parts of the map as Aupetit shows in [69]). Kaski
et al. [73] proposed to color SOM neurons based on their similarity in the data
space. The SOM is projected both in the data space and in an auxiliary percep-
tually uniform 2-dimensional color space which visually encodes the similarity.
However, the unfolding in the color space is prone to distortions itself and a
2-dimensional color space cannot account for all the topological states the data
structure may have. In this special session, Lespinats and Aupetit propose to
visualize the average stretching or compression measured at each point through
standard trustworthiness and continuity criteria devised by Venna and Kaski
[9], by coloring accordingly the Voronöı cell of these points. Thus, showing both
kinds of distortions makes visual inference possible in areas free of any of them.

Another way to deal with mappings prone to distortions, is not to show
distortions themselves, but to show some measure of the original data co-located
within the map. This is a kind of spatial correlation where the topological
structures of the original and projection spaces are displayed on top of each
other to allow for visual comparison.

Rousset et al. [74] are the first to implement this idea with a SOM by replac-
ing each neuron with a small clone of the map itself which displays as a color,
the original distances between the neuron and each neuron of the small map.
Neurons which look similar are close in the data space. However the approach is
limited to small maps. Pölzlbauer et al. [75] proposed to visualize a SOM with
a graph structure on top of it whose edges connect two neurons if some of their
data are neighbors based on a proximity criterion (k-nearest or ε-ball neigh-
borhoods). In this case, any kind of topological structure can be represented
but the method is prone to the hairball effect : many links crossing each other
through the whole map can hide distortion-free areas. In a similar way, a recent
paper by Tasdemir and Merenyi [76] shows the Induced Delaunay Triangulation
(IDT) [77] of the neurons built in the data space. Two neurons are connected
by an edge of the IDT if they are first and second best matching units of some
data points called the witnesses of this edge [25]. The edges of the graph are
weighted with respect to the number of witnesses they have, and colored accord-
ingly. However, the IDT is known to be prone to topological artefacts [78] so
may not show some topological distortion of the SOM. Aupetit [69] proposed the
proximity measure for nonlinear projection methods, which considers a reference
point, and displays its original distance to the other points as a color of their
Voronöı cells. This is similar to only displaying the neighborhood graph of one
neuron in the Pölzlbauer approach. Therefore the proximity measure cannot
show at once all the original topology, but that one can be discovered step by
step selecting reference points throughout the map. In these four methods the
original similarity is visualized (up to some quantization in SOM), so even with
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many mapping distortions, it is still possible to recover the original topology of
the data or neuron structure in the data space.

The main conclusion to draw from these last works its that mappings are
not an end, but only a means to display useable and useful information on top
of them. This is a usual way of thinking for SOM practitionners because the
location of the neurons on the map is not sufficient to show cluster structures,
for instance. But in any cases, practitionners should be aware of distorsions,
because eyes are prone to see patterns even in random clouds of points, so we
advise them not to use maps without being confident about what the map shows.
Displaying on the map the distortions at first, and the original similarities at
best are two ways to strengthen the relevance of their conclusions.
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