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Abstract. Despite its popularity as a relevance criterion for feature
selection, the mutual information can sometimes be inadequate for this
task. Indeed, it is commonly accepted that a set of features maximising
the mutual information with the target vector leads to a lower probabil-
ity of misclassification. However, this assumption is in general not true.
Justifications and illustrations of this fact are given in this paper.

1 Introduction

For a lot of machine learning and data mining applications, feature selection is a
task of major importance. In particular, many regression or classification algo-
rithms perform particularly bad when faced to high-dimensional data, due to the
so-called curse of dimensionality. By reducing the dimensionality of the dataset
while preserving the original features (by opposition to projection techniques),
feature selection allows building efficient and easy-to-interpret models.

Filter methods, which are based on a statistical criterion to evaluate the
relevance of a set of features, are often used in practice; this is mainly due to
their low computational cost and their independence from any prediction model,
in comparison to wrapper approaches which directly optimize the performances
of a specific prediction model. Indeed, filter methods can be used prior to the
construction of any prediction model.

As it is well-known, the mutual information (MI) [1] is a quantity measur-
ing the dependency between two (groups of) random variables. Many reasons
detailed below, including bounds relating it to the probability of classification
error, made the MI criterion very popular for filter based feature selection [2].
However, despite its popularity, there exists a significant number of problems
for which the MI should probably not be the criterion of choice. Indeed, the
subset of features maximising the MI with a target class vector may not always
minimise the probability of misclassification, which is often the final quantity
of interest in real-world applications. The objective of the paper is to clearly
point out and illustrate this fact. A sufficient condition for the MI criterion to
be relevant for a certain problem is also given.

Section 2 briefly recalls basic notions about MI and presents the reasons why
it is popular for feature selection. In Section 3, the possible inadequacy of the MI
for this task is discussed, the potential problems are illustrated and a sufficient
condition for optimality is given. Section 4 concludes the work.
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2 Mutual Information

This section introduces mutual information in the context of feature selection.

2.1 Basic Definitions

Shannon’s mutual information (MI) [1] measures the dependency between two
discrete random variables X and Y . If X (resp. Y ) takes on nX (nY ) possible
values xi (yi) with probability P (X = xi) (P (Y = yi)), MI is defined as

I(X;Y ) =

nX∑
i=1

nY∑
j=1

P (X = xi, Y = yj) log2
P (X = xi, Y = yj)

P (X = xi)P (Y = yj)
(1)

where P (X,Y ) is the joint probability of X and Y . Equation (1) can be seen as
the Kullback-Leibler divergence [1] between P (X) P (Y ) and the joint probability
P (X,Y ). Knowing that the entropy of a discrete random variable is

H(X) = −
nx∑
i=1

P (X = xi) log2 P (X = xi), (2)

it is possible to show [1] from Eq. (1) that the MI can be rewritten as

I(X;Y ) = H(Y )−H(Y |X) (3)

with H(Y |X) being the conditional entropy of Y given X. Similar definitions
can derived for continuous variables, the sums being then replaced by integrals.

2.2 Use for Feature Selection

Since the seminal paper of Battiti [2], the MI criterion has been used extensively
for filter feature selection as it possesses many desirable properties for this task.

First, as detailed in [2], the MI has a natural interpretation in terms of
uncertainty reduction. Indeed, it is well known that the entropy of a random
variable measures the uncertainty on the values taken by this variable. Let Y
be a target class vector and X a (set of) feature(s). Equation (3) translates the
fact that I(X;Y ) is the reduction of uncertainty about the value of Y once X
is known; this appears to be a natural criterion for feature selection. Equation
(1) can also be interpreted in the same way. If X and Y are independent,
P (X,Y ) = P (X)P (Y ) and the MI is zero. On the contrary, as the dependency
between X and Y grows so does the divergence (1) and thus the MI.

Then, it is also stressed in [2] that MI has the advantage over other popular
criteria (such as the correlation coefficient) that it is able to detect non-linear
relationships between variables. Moreover, the MI criterion can naturally be
defined for multivariate random variables, which again is not true for correlation.
This property is of fundamental importance if greedy search procedures (such
as forward or backward) have to be used to construct the feature subset.
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Figure 1: Weak Fano bound (dashed line), strong Fano bound (plain line) and
Hellman-Raviv bound (dash-dotted line) on the probability of misclassification
Pe for an optimal classifier with three balanced classes (nY = 3), with respect
to the conditional entropy H(Y |X). This figure is inspired by [4, 6].

Eventually, the use of MI is also supported by the existence of bounds relating
the probability of misclassification Pe for an optimal classifier to the conditional
entropy H(Y |X). More specifically, Fano [3] derived two lower bounds on Pe.
The weak Fano bound states that

H(Y |X) ≤ 1 + Pe log2(nY − 1) (4)

where nY is the number of classes, whereas the strong Fano bound is

H(Y |X) ≤ H(Pe) + Pe log2(nY − 1). (5)

The two above upper bounds on H(Y |X) can be inverted to obtain lower bounds
on Pe. It is important to notice that the weak bound (4) is useless in binary
classification problems, since it cannot be inverted to get a lower bound on Pe

when nY = 2. Moreover, the bound (4) is generally much looser than the bound
(5), especially if Pe is small, which is precisely the situation of interest for classi-
fier design [4]. However, the strong bound (5) on Pe is less easy to manipulate in
practice since it has no closed-form and must be solved numerically. An upper
bound on Pe is also given by the Hellman-Raviv inequality [5]

Pe ≤
1

2
H(Y |X). (6)

As can be seen in Figure 1 inspired by [4, 6], decreasing the conditional
entropy decreases both the upper and the lower bound on Pe, motivating the
use of this criterion for feature selection. Since H(Y ) is a constant value for a
given classification problem, Equations (4), (5) and (6), together with Equation
(3), also give a justification to the maximisation of the MI for feature selection.
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Figure 2: Examples of pairs 〈H(Y |X), Pe〉 corresponding to random binary clas-
sification problems with two binary features. The strong Fano bound (plain line)
and the Hellman-Raviv bound (dash-dotted line) on Pe are shown.

3 Potential Inadequacy of Mutual Information

As mentioned in Section 2, the actual goal in many applications is to minimise
the probability of misclassification. In other words, the utility of a feature subset
can be quantified using Pe, which is a tight lower bound for the misclassification
probability of any classifier. Using Figure 1 and Equations (3), (4), (5) and
(6), several papers [4, 6, 7] conclude (i) that minimising MI is equivalent to
minimising Pe and (ii) that MI can therefore be used equivalently for feature
selection. This section shows that both claims are not necessarily true.

3.1 Relationships Between Misclassification Probability and Entropy

Figure 2 shows (i) the strong Fano bound and the Hellman-Raviv bound for
Pe in terms of H(Y |X) and (ii) several examples of actual pairs 〈H(Y |X), Pe〉.
The pairs correspond to random binary classification problems with two binary
features. For each problem, both Pe and H(Y |X) are computed exactly, which
is possible since all necessary probabilities are known. The problems are drawn
as follows: (i) the values P (Y = y) and P (X = x|Y = y) are randomly drawn
from the uniform distribution U(0, 1), (ii) these values are normalised to enforce∑

y P (Y = y) = 1 and
∑

x P (X = x|Y = y) = 1 for each y and (iii) probabilities
P (X) and P (Y |X) are computed using marginalisation and Bayes’ theorem.

Figure 2 shows that the pairs 〈H(Y |X), Pe〉 are scattered between the strong
Fano lower bound and the Hellman-Raviv upper bound. Moreover, it is possible
to find two pairs such that the entropy H(Y |X) decreases and the probability of
misclassification Pe increases (and vice versa). In other words, contrary to what
is often claimed, it is not sufficient to reduce H(Y |X) in order to reduce Pe. It
suggests that minimising MI may not be sufficient, which is illustrated below.
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3.2 Illustration of Mutual Information Failure for Feature Selection

Let us now review a simple, artificial example of mutual information failure. In
a context of disease diagnosis, two classes are distinguished with prior

P (Y ) =
(
0.316 0.684

)
(7)

where columns correspond to possible values of Y ∈ {0, 1}. Furthermore, two
tests are available to classify a new patient, whose binary outcomes are denoted
X1 ∈ {0, 1} and X2 ∈ {0, 1}. However, the practician can only perform one of
these tests. In terms of feature selection, he has to select the best feature.

Through experimentation, the practician discovers that the conditional dis-
tributions of X1 and X2 with respect to Y are

P (X1|Y ) =

(
0.417 0.104
0.583 0.896

)
and P (X2|Y ) =

(
0.991 0.479
0.009 0.521

)
(8)

where rows correspond to values of Xi and columns correspond to values of Y .
Hence, using marginalisation and Bayes’ theorem, one obtains the posteriors

P (Y |X1) =

(
0.649 0.231
0.351 0.769

)
and P (Y |X2) =

(
0.489 0.008
0.511 0.992

)
(9)

where rows correspond to values of Y and columns correspond to values of Xi.
On one hand, the test with outcome X1 allows discriminating between both
classes, but there is an important error probability (Pe = .351 if X1 = 0 and
Pe = .231 if X1 = 1). On the other hand, the test with outcome X2 allows
discriminating almost perfectly when it is positive (Pe = .008 if X2 = 1), but it
is almost useless when it is negative (Pe = .489 if X2 = 0).

Using the first test, one obtains Pe = 0.255 and I(X1;Y ) = 0.089. Using
the second test, one obtains Pe = 0.316 and I(X2;Y ) = 0.236. Here, the MI
is significantly larger using X2. However, Pe is also larger, which means that
selecting X2 based on mutual information leads here to an increase in error. This
phenomenon is not rare: using pairs of random problems drawn as explained in
the previous subsection, about 20% of the pairs violate the common belief that
increasing mutual information decreases the misclassification probability.

Figure 3 illustrates the example. Each pair 〈H(Y |X), Pe〉 stands between the
Fano and Hellman-Raviv bounds. It is clear that I(X2;Y ) = H(Y )−H(Y |X2) is
larger than I(X2;Y ) = H(Y )−H(Y |X2), whereas Pe(X2) is larger than Pe(X1).

3.3 Conditions of Optimality

According to the above discussion, mutual information seems to be more a heuris-
tic than a never-failing criterion. However, it is possible to guarantee whether
MI is valuable or not. Indeed, let us define two feature subsets X1 and X2 which
must be compared. If the value of the Hellman-Raviv bound for X1 is smaller
than the value of the strong Fano bound for X2, then an increase in mutual
information always leads to a decrease in misclassification probability.
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Figure 3: Example of mutual information failure for feature selection, with the
strong Fano bound (plain line) and the Hellman-Raviv bound (dash-dotted line).

In the above example, the Fano bound for X1 is Pe ≥ .250, whereas the
Hellman-Raviv bound for X2 is Pe ≤ .332. Here, it is not possible to guarantee
that mutual information is a relevant criterion to choose between X1 and X2.
Figure 3 also shows an other candidate X3 for which the Hellman-Raviv bound
is Pe ≤ .249. Here, the new feature X3 is guaranteed to be a better choice.

4 Conclusion

This paper shows that mutual information is not necessarily an optimal criterion
to select features, if the actual goal is to achieve minimal probability of misclas-
sification. The behaviour of mutual information is described and related to Fano
and Hellman-Raviv bounds. An example of MI failure is given, which shows that
increasing MI can sometimes increase the misclassification probability as well.
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