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Abstract. In this work the principle of homogeneity between labels and
data clusters is exploited in order to develop a semi-supervised Feature
Selection method. This principle permits the use of cluster information to
improve the estimation of feature relevance in order to increase selection
performance. Mutual Information is used in a Forward-Backward search
process in order to evaluate the relevance of each feature to the data dis-
tribution and the existent labels, in a context of few labeled and many
unlabeled instances.

1 Introduction

The solution of machine learning problems is often hampered by redundant
information embeded into a large number of variables, which are usually chosen
to represent the problem according to their availability and to some sort of
a priori knowledge. Reducing the number of variables by Feature Selection
(FS) may improve learning performance by smoothing the effects of the well
known “curse of dimensionality” and “concentration of the euclidean norm” [1]
problems. FS may also contribute to a better understanding of the variable
behavior, bringing more clearly physical interpretation of real problems [2];

A common approach to FS is to estimate the relevance and to rank each
feature according to their relation (or correlation) with the output targets [3, 4].
This approach is intuitive and easy to implement but it usually fails to consider
the relevance of a given feature in the presence of others[2], since most filter
methods are univariate [4, 5]. In this context, Mutual Information (MI) [6]
arises as a good “relation” criterion, since it is a multivariate measure which is
widely used to evaluate relations among sets of features and output labels.

Basically, labels and data are the available sources of information to perform
FS. Many methods [3, 7] are able to deal only with labeled data while others only
deal with unlabeled data [8, 9]. However, in many real situations, the amount
of labeled data is not sufficient to characterize well the relations between input
data and output classes. Since labeling by human experts can be costly, it is
common in many kinds of problems to have large unlabeled data sets available
and very few labeled data. Due to the availability of the large unlabeled data
set, the question that arises in such a context is “why not to use information
extracted from the unlabeled data in order to estimate feature relevance and
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to induce models?” The joint use of labeled and unlabeled data to perform FS
characterizes the semi-supervised feature selection paradigm.

Some machine learning approaches include clustering methods in order to la-
bel instances. They are based on the assumption that the underlying distribuc-
tions of the data, and their modes, can be estimated from the sampled data by
clustering methods. One of the basic principles of structural data analysis is
that labels are consistent with data distributions. Accordingly, the relevance of
features to labels should also be reflected by the relevance of features to clusters.

In this work a semi-supervised FS strategy based on MI will be introduced.
The basic principle of the method is replace, for unsupervised data, the label
information by cluster information in order to estimate the relevance of each
feature or feature subset.

This paper is organized as follows: first the FS framework will be summa-
rized. Then the use of unlabeled data into this framework will be detailed.
Next some experiments will be presented as well as their results leading to the
conclusions.

2 Feature Selection

Feature selection is usually accomplished according to a relevance criterion and
to a search strategy. The former aims to assess how relevant a single feature sub-
set is, while the latter aims to guide the search towards the most relevant feature
subset, since, in practice, testing all possible subsets (exhaustive search) can be
unfeasible even for problems with few variables. In this work a filter method is
implemented using MI as a relevance criterion. Roughly speaking, MI measures
the amount of information shared among two or more sets of variables [6] cap-
turing even nonlinear relations among them. The multivariate properties of MI
makes it an important approach to assess the relevance of subsets of features,
since it may be affected by joint behavior of a feature in the presence of others.
Equation 1 shows the relevance evaluation between the input data X and the
output vector Y :

r = MI (X,Y ) . (1)

The implemented search technique is the forward-backward (FB) proce-
dure [10, 2]. The forward strategy has smaller capability to finding more com-
plementary features, compared to backward selection. On the other hand even
the smallest nested subset is predictive. The backward strategy, in turn, is ca-
pable of finding complementary features, however, its performance is degraded
for smallest nested subsets. So, the forward-backward process tries to get the
best of both approaches.

3 Using Unlabeled Data

Evaluating feature relevance using MI requires that the data set contains some
labeled data; however, small data sets may fail to represent well the general
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Fig. 1: For the two class XOR problem, in 1(a) none of the features alone can
explain the distribution of the classes, defined by circles and crosses, and in
1(b), even without the labels, features 1 and 2 are still able to explain data
distribution.

relation between input and output variables as shown in the illustrative example1

of Figure 1(a). Is this example, the distribution of labels is not well represented if
a small data set is sampled within the central circle. Since labeling can be costly,
it is expected that unlabeled data could provide some information about the
posterior probability of labels that could improve FS. The feature selection task
could be performed by searching for those features that are important not only
for labels, but also for clusters, which are expected to be consistent with labels.
The use of both labeled and unlabeled data characterizes the semi-supervised
paradigm.

Data distribution information can be useful even when there is a reasonable
amount of labeled data. As an example, consider a forward FS procedure applied
to a three dimensional problem, for which features X1 and X2 together fully
explain the labels in Y and X3 is completely random (Fig. 1(a) shows the
relevant features). Individually none of the three features is able to explain the
labels, so in the first iteration of the algorithm (that will be univariate), their MI
value will be small and, by chance, feature X3 could be ranked first, resulting in
a poor initial subset selection. In such a situation the distribution of the dataset
may provide additional information about the relevance of X1 and X2.

Features X1 and X2, together, are still able to discriminate the instances into
four different clusters according to the distribution of the dataset, regardless of
labels, as shown at Figure 1(b). So, if we are able to estimate the cluster structure
that best fits data generator functions, we can estimate the relevance of each
feature subset according to the dataset distribution. Each pattern, especially the
unlabeled ones, can be associated to a given cluster and receive a tag according

1This is an hypothetical example to illustrate the problem. In real problems labeled and
unlabeled data are not expected to be concentrate in different space regions.
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to the cluster number (Figure 1(b)). These “cluster labels” assigned to each
unlabeled data, results on the cluster label vector Ycl. In addition, the number
of clusters Nc should be sufficiently large in order to guarantee label homogeneity
within clusters.

In general, the MI between a feature set X and its vector of labels Y can be
defined in terms of their joint and marginals probabilities as

MI (X,Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)
. (2)

Equation 2 can be rewritten by splitting the data according to their classes as
shown in Equation 3 for a binary case, where superscripts (1) and (−1) indicate
respectively the data belonging to classes +1 and -1:

MI (X,Y ) =
∑

x∈X(1)

∑

y∈Y (1)

p (x, y) log
p (x, y)

p (x) p (y)
+

∑

x∈X(−1)

∑

y∈Y (−1)

p (x, y) log
p (x, y)

p (x) p (y)
.

(3)

Assuming that, after clustering procedures, clusters Ci, i = 1, 2, ..., k are
homogeneous and correspond to instances from the same class, i.e., they were
generated in such a way that {C1, C2, ..., Ci} ⊂ Y 1 and {Ci+1, ..., Ck} ⊂ Y −1,
the MI can be rewritten as

MI (X,Y ) =
∑

x∈X(1)

∑

c∈C1

p (x, c) log
p (x, c)

p (x) p (c)
+ . . .+

∑

x∈X(1)

∑

c∈Ci

p (x, c) log
p (x, c)

p (x) p (c)
+

∑

x∈X(−1)

∑

c∈Ci+1

p (x, c) log
p (x, c)

p (x) p (c)
+ . . .+

∑

x∈X(−1)

∑

c∈Ck

p (x, c) log
p (x, c)

p (x) p (c)

.

(4)

In such situation, MI(X,Ycl) = MI(X,Y ). In practice, as we are dealing
with unlabeled data, if the number of clusters is defined sufficiently large to
allow that clusters encompass mostly instances from same class, we have that
MI(X,Ycl) ≈ MI(X,Y ). Equation 1 can now be rewritten as

rs = MI
(
X(�) ∪X(u), Y ∪ Ycl

)
, (5)

where X(�) and X(u) are respectively the labeled and unlabeled data sets, Y is
the label vector and Ycl is the vector of cluster labels. Equation 5 can be directly
used in our forward-backward FS filter method. In this way more information
about the relevance of each feature subset is provided taking into account the
cluster information. Therefore cluster information replaces the “label” infor-
mation for unlabeled data in order to consider them in the evaluation of the
MI.

4 Experiments and Results

The experiments consist in comparing the performances of feature subsets se-
lected according to a pure supervised approach and the semi-supervised method
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presented in this paper. A sequential FB FS strategy [10, 2] was implemented
and applied to some real and synthetic datasets, using a MI estimator tailored
to classification problems. This estimator was developed by Goméz et al. [10]
which has high performance even in a context of scarce data. Data was clustered
with K-means algorithm [11]; the number of clusters Nc is shown in Table 1. Nc

was empirically chosen in such way to be sufficiently large in order to guarantee
label homogeneity within clusters.

The final results aim at comparing the final feature subset obtained when us-
ing only labeled data S�, with the one obtained using both labeled and unlabeled
data S�u. After sampling the two sets, the Linear Discriminant Analysis Method
(LDA) was used in order to classify the test set in three different conditions: con-
sidering only S�, S�u or the set F of all features. The mean classification accuracy
and standard deviation for 10 different trials are presented in Table 2. LDA was
chosen to perform the classification tests due its simplicity and robustness.

Three data sets were used in the experiments. The first one (FBench) is
a synthetic data set, originally developed for benchmark regression problems
[12], whose output is a function of some of their random input variables. Its
output was discretized into two classes (1 for Y > 0 and −1 for Y < 0) in order
to transform it into a classification problem. Two other problems come from
the UCI Machine Learning Repository (www.ics.uci.edu/∼mlearn/): the sonar
data set, composed by instances of a sonar response from rocks and mines, and
the Pen-Based Handwritten Digits data set, composed by digit samples from 44
different writers. For this last problem we considered only instances of digits 1
and 2 in the experiments.

On each trial a very small portion of data N� was chosen as labeled data,
another Nt quantity was selected as a test set and the rest Nu instances was
considered as unlabeled data, so their labels were not considered in the FS task.

Table 1: Data and algorithm parameters: N is the total number of instances an
Nf is the total number of features

Problem Nf N N� Nu Nt Nc S� S�u

FBench 10 10000 49 7952 1999 100 4 1 5 1-5-4-10-2-3
Sonar 60 208 11 147 41 40 46 46-36-20-27-30-16-43-24
Pen 16 2287 114 1717 456 30 4 4-15

Table 2: Shows the results for each test, where #f is the final number of features
of each subset.

Problem
(#f ) Accuracy ± σ

F S� S�u

FBench (10) 0.8502±0.0123 (3) 0.8199±0.0127 (6) 0.8504±0.0122
Sonar (60) 0.7117±0.6667 (1) 0.6052±0.1343 (8) 0.6924±0.0803
Pen (16) 0.9808±0.0075 (1) 0.8478±0.0251 (2) 0.8780±0.0264

In all experiments the obtained accuracy for the subset S�u is higher than
those obtained using the features selected when using only the labeled data. It is
possible to observe in Table 2 that, for Fbench and Sonar problems, there is no
representative accuracy loss when using only the features in S�u instead of using
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all features. Only for the Pen data set there is a loss with respect to F . However,
there is an improvement in accuracy with respect to using only the supervised set
S�, as expected, since the objective here is to show that cluster information from
unlabeled data, and consequently the proposed method, conveys information to
improve FS.

5 Conclusion

This work proposes a semi-supervised FS method based on the principle of ho-
mogeneity between labels and data clusters. According to this principle the
label distribution is consistent and coherent with the distribution of data. In
that sense, estimation of data clusters can provide some hints about the poste-
rior label distribution. Therefore, features that are relevant to labels are also
relevant to data distribution and, consequently to clusters. The results show
that information retrieved from clusters can improve the estimation of feature
relevance and of feature selection tasks, specially when the number of labeled
data is too small and the unlabeled data is numerous.
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