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Abstract. Predicting time series necessitates choosing adequate re-

gressors. For this purpose, prior knowledge of the data is required. By

projecting the series on a low-dimensional space, the visualization of the

regressors helps to extract relevant information. However, when the series

includes some periodicity, the structure of the time series is better pro-

jected on a sphere than on an Euclidean space. This paper shows how

to project time series regressors on a sphere. A user-defined parameter is

introduced in a pairwise distance criterion to control the trade-off between

trustworthiness and continuity. Moreover, the theory of optimization on

manifolds is used to minimize this criterion on a sphere.

1 Introduction

Time series forecasting is an important topic in many application domains. Con-
ceptually, traditional methods [1, 2, 3] use the past values of a time series to
predict future ones; these methods fit a linear or a nonlinear model between the
vectors that gather the past values of the series, the regressors, and the values
that have to be predicted. Note that exogenous variables and prediction errors
may be used as inputs to the model too.

A first difficulty encountered by these methods is the choice of a suitable
regressor size. Indeed, the regressors have to contain the useful information to
allow a good prediction [4]. If the regressor size is too small, the information
contained in the vector yields a poor prediction. Conversely, with oversized
regressors, there can be redundancies such that the methods will overfit and
predict the noise of the series.

For this reason and many other ones, including the choice of the model
itself, it is useful to visualize the data (here the regressors) for a preliminary
understanding before using them for prediction. This can be achieved by data
projection methods [5, 6, 7, 8] which are aimed at representing high-dimensional
data in a lower dimensional space. The projection of the regressors makes, for
example, easier the visualization of some peculiarity in the time series.
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Moreover, assuming that data projection methods minimize the loss of in-
formation between the initial regressors and the projected ones, the forecasting
of a time series can be achieved by using the projected regressors instead of the
original ones, expecting that the smoothing resulting from the projection will
help increasing the prediction performance.

In a first step, oversized regressors are projected to remove their potential
redundancies and to reduce the noise. Most distance-based projection methods
define the loss of information by the preservation of the pairwise distances. How-
ever, projection methods have to deal with a trade-off between trustworthiness
and continuity [9], respectively the risk of flattening and tearing the projection.
To control these types of behaviour, a user-defined parameter is introduced in
the criterion [10] that implements the trade-off and that allows its control.

Furthermore, when time series have a periodic behaviour, it is difficult to
embed them in an Euclidean space because of their complex structure [11]. In-
deed, let us assume that the oversized regressors are lying close to an unknown
manifold embedded in a high-dimensional space. Since the series is periodic,
the manifold probably intercepts itself. In this context, the choice of a suitable
projection manifold is motivated by its ability to keep the loops observed in the
original space; the quality of the projection relies on its ability to preserve the
global topology underlying the data distribution. The constraint of preserving
loops is widely used in the context of topology-based projection methods, as
the Self-organizing maps, where spheres [12, 13] and tori [14] are often used as
projection manifolds; this paper presents a distance-based projection method on
a sphere, a manifold that allows loops in the projection space.

The projection is achieved by the minimization of the pairwise distance crite-
rion presented in Section 2. Since the projection space is non-Euclidean, Section
3 presents an adequate optimization procedure. Next to a brief introduction of
the theory of optimization on manifolds [15], the theory is adapted to project
data on a sphere. The projection of a sea temperature series on a sphere is
presented in Section 4.1.

In order to take into consideration the advantages of the projection on mani-
folds, the forecasting methods should be adapted such that the prediction of
time series can be based on the projected regressors. Section 4.2 is dedicated to
the prediction of time series. By projecting the regressors on a sphere, a new
projected time series is defined on the sphere; this series can easily be predicted
using the Optimal-Pruned Learning Machine method [16]. Following these first
results, the original time series is predicted with the projected regressors; the
results of the forecasting are compared with the prediction of the series based
on a 52-dimensional oversized regressors.

2 Projection criterion

This section aims at defining a projection criterion. As previously mentioned,
data projection methods have to deal with a trade-off between trustworthiness
and continuity. Two illustrative examples of the projection of a cylinder on R

2
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comment the trustworthiness and the continuity of a projection. Having in mind
the compromise to reach these two objectives, a pairwise criterion can then be
defined without restriction on the structure of the manifold.

Assuming that data close to a cylinder must be projected on the two-dimen-
sional Euclidean space, a first option is to cut the cylinder along a generating
line and to unfold it on the R

2 Euclidean space. The resulting projection is
trustworthy since two data that are close in the projected space (R2) are also
close in the original space (the cylinder). However, because the cylinder has
been torn, the projection cannot be continuous.

A second option is to flatten the cylinder to preserve the continuity. Actually,
two data that are close in the original space, the cylinder, remain close in the
projected one; the projection is thus continuous. Nevertheless, this projection is
no more trustworthy since data coming from opposite part of the cylinder may
be projected close from each other.

By counting the points that are close in one space but not in the other space,
the trustworthiness and the continuity quality measures [9] are intuitively de-
fined. Nevertheless, these measures are discrete and the optimization of these
criteria is therefore difficult. To bypass this problem, distance-based projection
methods minimize some weighted mean square errors between the original dis-
tance Dij and the distance δij on the projection manifold; the distances Dij

and δij are defined between points i and j in their corresponding space with
1 ≤ i, j ≤ N , N being the number of data.

The minimization of the unweighted cost function

f ≡
N−1
∑

i=1

N
∑

j>i

(Dij − δij)
2

cannot yield good results since large distances increase the cost function. In the
projection context, this situation is against the intuition; one prefers to preserve
the pairwise distances between close data rather than minimizing f .

By dividing each term of the cost function by the original distance Dij ,
the minimization of the tearing error favours the continuity of the projection.
Indeed, if it happens that two original data are close despite they are faraway
in the projected space, they will dominate. Therefore, the minimization of the
following cost function tends to make these data closer in the projected space:

Tearing error ≡

N−1
∑

i=1

N
∑

j>i

(Dij − δij)
2

Dij

.

Conversely, by weighting each term with the corresponding distance δij in
the projected space, the trustworthiness of the projection is favoured:

Flattening error ≡

N−1
∑

i=1

N
∑

j>i

(Dij − δij)
2

δij

.
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The flattening error expresses that points that are close in the projected space
while they are not in the original space (small δij and large Dij) have to move
faraway from each other during the optimization procedure.

Finally, to implement a trade-off between the trustworthiness and the conti-
nuity, a user-defined parameter λ ∈ [0, 1] is introduced:

f ≡

N−1
∑

i=1

N
∑

j>i

(

λ
(Dij − δij)

2

Dij

+ (1 − λ)
(Dij − δij)

2

δij

)

. (1)

3 Optimization on manifolds

This section shows how to minimize the pairwise distance criterion (1). Be-
cause the projected points have to lie on a manifold, traditional optimization
procedures cannot be used; the theory of optimization on manifolds proposes a
powerful alternative. After an introduction to the topics from the theory of op-
timization on manifolds, adaptations to project data on a sphere are presented.

One could argue that to perform an optimization while keeping the projected
points on a sphere, it is possible to perform a standard optimization in the spheri-
cal coordinate space. Unfortunately, this is not true since there are singularities
in the two poles of the sphere. Actually, these two points are represented by two
segments in the spherical coordinate space. Moreover, because the search space
is limited to {(φ, θ) ∈ [0, 2π[×[−π

2
, π

2
]} and because it is not an Euclidean space

anymore, traditional optimization methods cannot be used.
To circumvent these difficulties, the theory of optimization on manifolds pro-

poses to consider the problem as an unconstrained minimization problem but
by taking in mind that each point has to stay on the manifold all along the
optimization procedure [15].

Working on a manifold does not allow movements through straight lines, as
it is the case in the steepest descent gradient method; the curves of the manifold
can however replace these straight directions since they include the curvature of
the manifold and its global topology.

Searching for a minimum of a cost function f can be achieved by adapted line-
search algorithm. Let us assume that the algorithm has successfully performed
the k first iterations and that it has found the vector y(k) = (y1(k), ...,yN (k))
where yi(k) is the location of data i on the projection manifold after iteration
k. Moreover, let us denote the vector ν(k) that gathers the parameters of the
manifold; since the optimal projection manifold cannot be determined a priori,
this vector has to be optimized too. For example, in the case of the sphere, ν(k)
will denote the radius of the sphere (which is unknown a priori).

First the gradient −∇f(y1(k), ...,yN (k), ν(k)) is evaluated. Nevertheless,
this direction may point faraway from the manifold. To take into consideration
the manifold constraint and its curvature, the gradient −∇f is projected on the
tangent space TyM. In this way, the new direction −∇′f(y1(k), ...,yN (k), ν(k))
is tangent to some curve γ : R 7→ M : t 7→ γ(t) and therefore close to the
manifold.
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By searching in this direction with a step size α, a new location y′(k) can
be found on the tangent space TyM. However, this location is not on the
manifold; it has then to be retracted on the latter. The retraction, which is a
kind of deterministic projection from the tangent space to the manifold, has to
be chosen such that the new candidate location y(k + 1) belongs to the curve γ

determined by the direction −∇′f . The step size α is chosen under the Armijo
condition [15] that ensures a sufficient decrease of the cost function. This means
that the decrease of the cost function must be larger than the expected decrease
of the first order approximation of the cost function f with a smaller step size
σα where σ ∈ [0, 1]. In other words, if the Armijo condition

f(y(k)) − f(y(k + 1)) ≥ σα||∇′f ||2 (2)

is satisfied, the cost function has sufficiently decreased.
For details of the propose line-search algorithm see [15]. Fig. 1 shows the

different steps of a single iteration.

Fig. 1: Optimization iteration

After this brief introduction to the theory of optimization on manifolds, the
latter is adapted to the problem of minimizing criterion (1) on a sphere. First,
one has to define the manifold M and the tangent space TyM. In addition to
the spherical form of the manifold, one has also to add its radius R. The value
of the radius is a scaling factor; this means that the radius R is considered as a
parameter of the manifold because the adequate sphere is not known a priori.
As each vector on the sphere has to have the same norm, the definition of the
manifold can be expressed by:

M ≡ {(y1, ...,yN , R) ∈ S3
R × ... × S3

R × R
+|yT

i yi − R2 = 0, 1 ≤ i ≤ N}.

By differentiating the set of constraints, the tangent space TyM is defined
by:

TyM ≡ {(u1, ...,uN , uR) ∈ R
3 × ... × R

3 × R|yT
i ui − RuR = 0, 1 ≤ i ≤ N}.

Finally, if the angle between the vectors yi and yj is known, the product
between the radius and this angle defines the distance between yi and yj . In
order to evaluate this angle, the geodesic distance between yi and yj on the

sphere is defined by the expression δij ≡ R arccos
y
′

iyj

‖yi‖‖yj‖
. Concerning the

distance in the high-dimensional space, the geodesic distance is approximated
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by the construction of a graph through the data where the edges are weighted
by the Euclidean distances. The distance Dij is evaluated by a shortest path
algorithm [17, 18] such as Dijkstra’s one. At the end, the evaluation of the
gradient −∇f is defined by the partial derivatives with respect to the locations
yi and the radius R.

4 Experiments

In this section, the data projection method is illustrated on the ESTSP2007
competition dataset of the weekly evolution of the sea temperature. The series
is represented in Fig. 2 where the colour varies with the temperature. The series
contains 875 temperature measures; a yearly periodicity can easily be observed.
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Fig. 2: Weekly evolution of the sea temperature

The methodology to forecast a periodic time series, as proposed in this pa-
per, begins by building oversized regressors. The size of the regressors is chosen
experimentally with respect to the length of a single period: 52-dimensional
oversized regressors are built. Even if they probably contain all useful infor-
mation for the prediction, these regressors are noisy and they certainly contain
redundancies. The regressors are thus projected on a sphere according to the
above methodology. The forecasting of the time series is, at the end, based on
the projected regressors.

Section 4.1 shows the results of the projection; hence, the projected regressors
define a curve on the optimal sphere. Section 4.2 first studies the forecasting of
this new time series on the sphere to show the accuracy of the projection and of
the methodology. Finally, the prediction of the original time series is performed
and evaluated. Both the prediction of the projected time series on the sphere,
and the prediction of the original time series based on the projected regressors,
use the OPELM method [16].

4.1 Projection of the sea temperature series

The intrinsic dimension of the 52-dimensional oversized regressors is much lower
than the embedding Euclidean space. For example, by projecting the data with
Principal Component Analysis [19] in order to reduce the dimensionality to
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the 10 principal components, the residual variance is less than 1 percent; this
motivates the idea of projecting the regressors on a low-dimensional manifold.

The geodesic distance in the high-dimensional space Dij is approximated by
the shortest path in the graph built through the 50 closest neighbours [17, 18].

Fig. 3: 52-regressors projected on the sphere with λ = 0.9

The result of the projection on the sphere is shown in Fig. 3 where the colour
varies smoothly with respect to the value of y(t). The colours used are the same
as in Fig. 2; it can be easily seen that similar values of the original time series,
thus similar colours, are close on the sphere. The additional curve in Fig. 3
joins points that are consecutive in time to illustrate the path of the projected
time series on the manifold. The projected time series turns around the sphere
such that the sphere keeps the periodicity of the time series. Furthermore, the
isolated part of the projected data in the upper left region of the sphere in Fig.
3 corresponds to the irregularities of the time series observed between times
t = 380 and t = 420 in Fig. 2.

In Fig. 4, the corresponding result in the spherical coordinate space is repre-
sented in order to visualize all the data; the glyph in the center of the figure
corresponds to the above-mentioned irregularities. According to both Fig. 3 and
4, the projection of the times series makes it possible to isolate its irregularities
in a visual way.
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Fig. 4: 52-regressors projected on the sphere, in the spherical coordinate space
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4.2 Prediction of the sea temperature series using the projected re-

gressors

Besides the visualization applications, the projection of the time series defines
new regressors where redundancies are removed and noise is probably reduced.
This subsection shows how the projected regressors can be used.

Let us consider the projected time series defined by the locations y(t) on
the sphere, with t between 1 and N . To test the quality of the projected time
series, a model ŷ(t + 1) = f(y(t),y(t − 1), θ) is built with the Optimal-Pruned
Learning Machine method [16]. OPELM is a two-layer regression model, where
the first layer is chosen randomly among a set of possible activation functions
and kernels, and the second layer is optimized with linear tools. The speed of
optimizing such models makes it possible to test a large number of them, among
which the best according to some validation criterion is selected. θ represents the
parameters of the method, more specifically the number and the types of kernels
or functions; both Gaussian and sigmoidal functions are used. The learning and
validation errors are estimated according to the following definitions:

Learning error ≡

∑N1

t=1
||ŷ(t) − y(t)||2

N1

V alidation error ≡

∑N2

t=1
||ŷ(t) − y(t)||2

N2

,

where N1 and N2 represent respectively the size of the learning and of the
validation sets. The learning set is randomly built with 66 percent of the initial
set; 10000 simulations are performed in order to estimate the learning and the
validation errors as average over all the 5000 experiments. The results are shown
in Fig. 5 with respect to the number of kernels/functions used in the OPELM
tool.
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Fig. 5: Learning and validation errors of the normalized projected time series
versus the number of kernels/functions used

Fig. 5 shows that the projected time series on the sphere can easily be pre-
dicted. However, this result does not mean that the original series can be easily
predicted too. As a first attempt in this direction, we propose to build another
prediction model based on the projected regressors. Assuming that the locations
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y(t) on the sphere are known, they define reduced regressors such that it can be
used to forecast the original time series x(t). In [20], the authors define new re-
gressors by concatenating the projected regressors with the corresponding value
x(t). Here, we use an alternative idea, which consists in predicting the variations
in the time series using the projected regressors. The model is thus defined by:

x(t + 1) = x(t) + f̃(y(t), θ). (3)

The quality of the prediction is close to the forecasting with the 52-dimensio-
nal regressors as shown in Fig. 6. In this figure the learning error of the prediction
based on the projected regressors is higher than the learning error based on the
52-dimensional initial regressors, but the validation error is lower when using
the projection. This is likely to be due to overfitting of the model based on the
52-dimensional regressors.
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Fig. 6: Learning and validation errors for the prediction of the normalized time
series with the initial regressors and the projection on the sphere

5 Conclusion

This paper presents a nonlinear method aimed at projecting the regressors of a
time series on a sphere such that redundancies are removed and noise is reduced.
The method minimizes a pairwise distance cost function where the trade-off bet-
ween trustworthiness and continuity is controlled by a user-defined parameter.
The projection on a sphere is aimed at embedding the periodicity of time series
using a dedicated optimization method. The quality of the projection is assessed
through the trustworthiness and the continuity quality measures and is compared
to the same measures obtained after projecting on Euclidean spaces.

The projected regressors can be used to forecast the original time series.
First results are shown using the OPELM algorithm. Nevertheless, the OPELM
prediction method is not specifically adapted to spherical data for which the
manifold contains another part of useful information. This will be studied in
future work.
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