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Abstract

The analysis of financial time series is very useful in the economic world. This paper
deals with a data-driven empirical analysis of financial time series.

In this paper we present a forecasting method of the first stopping times, when the
prices cross for the first time a "high" or "low" threshold defined by the trader, based on
an empirical functional analysis of the past "tick data" of the series, without resampling.

An originality of this method is that it does not use a theoretical financial model but
a non-parametric space state representation with non-linear RBF neural networks. Mod-
elling and forecasting are made by Particles systems and Kalman filters.

This method can be applied to any forecasting problem of stopping time, but is par-
ticularly suited for data showing nonlinear dependencies and observed at irregularly and
randomly spaced times like financial time series of «tick data» do.

The method is applied to the forecasting of stopping times of "high" and "low" of
financial time series in order to be useful for speculators

1 Introduction
The topic of this paper is the forecasting of the first stopping time, when prices cross for
the first time a "high" or "low" threshold defined by the trader, estimated from a trading
model, and based on an empirical functional analysis, using a very high frequency data
set, as tick by tick asset prices, without resampling.



There is a distinction between a price forecasting and a trading recommendation.
A trading model includes a price forecasting, but it must also account for the specific
constraints of the dealer of the trading model because it is constrained by the trading
history and the positions to which it is committed. A trading model thus goes beyond a
price forecasting so that it must decide if and at what time a certain action has to be taken.

This trading model should give, at time t, a signal of buying or selling an asset, and
depending on the trader’s decision, when the price of this asset crosses for the first time a
threshold defined by the trader, in order to close his position with a yielding profit, also
it should be able to send a stop-loss order.

The paper is organized as follows, the models we use are presented in section 2.
Bayesian Estimation is introduced in section 3. Gaussian Bayesian Estimation is in-
troduced in section 4 in the framework of the Kalman filters, and Non-Gaussian Bayesian
Estimation in section 5 in the framework of the Particle filters. State, Parameters and
Dual estimations are introduced in section 6. Tests and results are shown in section 7,
and the Conclusions in section 8.

2 Methodology

2.1 Basic Models

The theory of finance is mainly treated in term of stochastic differential equations such as,
the value of a stock price S is supposed to follow a diffusion geometrical Wiener process

dSt = St

(
µtdt +

√
VtdBt

)
(1)

where µt is the drift function, and Vt is the volatility of the stock price. For a stochastic
volatility model, the variance function is also modeled as Brownian motion,

dVt = α(S, t)dt + β(S, t)dZt (2)

where Bt and Zt are correlated Brownian motions, and the form of Vt depends on the
particular stochastic volatility model under study, and where α(S, t) and β(S, t) are some
functions of Vt (Andersen et al., 2002).

2.2 Dynamic State-Space stochastic volatility Model

If we take the logarithms of stock price, yt = log(St) and of the volatility, ht = log(Vt),
and using the Itô’s formula we derive the process in a continuous dynamic state-space
formulation

dyt =
[
µt − 1

2
Vt

]
dt +

√
Vt dBt (3)

dht = κ
[
θ − Vt

]
dt + ξV p

t dZt (4)

where κ, θ, and ξ are fixed constants, and p = 1
2
for a Heston model, p = 1 for a Garch

model, and p = 3
2
for a 3

2
model.



2.3 Parameters Estimation

Maximum Likelihood estimation (MLE) is an approach to parameter estimation, and its
statistical efficiency is well known. It involves constructing a log-likelihood function that
relates the unknown parameters to the observations, and maximizing it to obtain the
parameters. But the likelihood function in diffusion-type volatility models is extremely
difficult to evaluate. Markov property is lost due to stochastic volatility, therefore it is
only possible to simulate the likelihood function (Ait-Sahalia, 2002).

Bayesian methods are easier, because inference can be jointly made for the augmented
parameter vector including the latent variable as an element.

2.4 Discrete Dynamic State Space Model

In practice, observations can be only made at random discrete time intervals and we must
approximate the continuous time stochastic volatility models by a system of stochastic
difference equations

log Vt+1 = log Vt +
1

Vt

[
κ(θ − Vt)− 1

2
ξ2V 2p−1

t − ρξV
p− 1

2
t (µ− 1

2
Vt)

]
∆t +

ρξV
p− 3

2
t

(
ln St − ln St−1

)
+ ξV p−1

t

√
∆t

√
1− ρZt (5)

ln St = ln St−1 +
(
µ− 1

2
Vt

)
∆t +

√
∆t

√
VtBt, (6)

we have got a Dynamic State Space Model (DSSM), where Equation 5 is the nonlinear
state equation, and Equation 6 is the nonlinear observation equation.

2.5 Non-parametric Dynamic State-Space Model

In our case, we would like forecast the future curve for a couple of hours and not only the
next value of the time series. Thus, we can not use the parametric Dynamic State Space
Model, but based on its development, we derive a non-parametric Dynamic State Space
Model where random variables may be scalars, vectors or curves.

xk+1 = f
(
xk,uk,vk

)
(7)

yk = h
(
xk,uk,nk

)
, (8)

where xk is the state, yk is the observation, uk is an exogenous input, vk is the process
noise, and nk is the measurement noise. These noises may be non-Gaussian. The functions
f and h will be nonlinear and we will use a non-parametric representation by Radial Basis
Functions (RBF) because they possess the universal approximation property (Haykin,
1999). But, in this case, the random states variables have not got economic signification
any longer.

2.6 How to realize the forecasting

The basic idea underlying this paper is to use a dynamic state-space model (DSSM)
with nonlinear, non-parametric equations, as Radial Basis Function (RBF), and to use
the framework of the Particle filters (PF) combined with the Unscented Kalman filters
(UKF) to estimate the parameters of the model as well as the hidden variables.



2.7 Which tools do we use for the forecasting

The Kalman filter (KF) can not be used for this analysis since the functions are nonlin-
ear and the transition density of the state space is non-Gaussian. But with the advent
of new estimation methods such as Markov Chain Monte Carlo (MCMC) and Particle
filters (PF), exact estimation tools for nonlinear state-space and non-Gaussian random
variables became available.

Particle filters are now widely employed in the estimation of models for financial mar-
kets, in particular for stochastic volatility models (Pitt and Shephard, 1999) and ( Lopes
and Marigno, 2001), applications to macroeconometrics, for the analysis of general equi-
librium models ( Villaverde and Ramirez, 2004a) and ( Villaverde and Ramirez, 2004b),
the extraction of latent factors in business cycle analysis (Billio, and al., 2004). The main
advantage of these techniques lies in their great flexibility when treating nonlinear dy-
namic models with non-Gaussian noises, which can not be handled through the traditional
Kalman filter.

3 Bayesian Estimation

3.1 Introduction

Suppose we have the data x =
(
x1, · · · , xn

)
with distribution p(x|θ) where θ is the un-

known parameter we want to estimate. The basic idea of the Bayesian approach is to treat
the parameter θ as a random variable and to use an a priori knowledge of the distribution
π(θ) of θ and then to estimate θ by calculating the a posteriori distribution π(θ|x) of θ.

The one-dimension case.
In the one-dimensional case the a posteriori distribution π(θ|x) of θ is calculated by the
so called Bayes’s formula using the a priori distribution π(θ) as follows

π(θ|x) =
p(x|θ) π(θ)∫
p(x|θ) π(θ) dθ

(9)

where the denominator is a proportionality constant making the total a posteriori prob-
ability equal to one. Now by using the a posteriori distribution π(θ|x) the parameter θ

can be estimated by the mean θ̂ = E
[
π(θ|x)

]
.

The multi-dimension case.
In the multi-dimensional case θ = (θ1, · · · , θk), the a posteriori distribution of θ can be
calculated by the Bayes formula as follow

π(θ|x) =
p(x|θ) π(θ)∫ · · · ∫ p(θ|x) π(θ) dθ1 · · · θk

. (10)

By using the marginal distribution π(θi|x) of the joint a posteriori distribution π(θ|x)

π(θi|x) =

∫
· · ·

∫
π(θ|x) dθ1 · · · dθi−1 dθi+1 · · · dθk (11)

we are able to estimate θ by the ways described in the one-dimensional case. Usually
problems arise in calculating the integrals in Equation 11 which require approximation
techniques as Markov Chain Monte Carlo methods (MCMC).



3.2 Markov Chain Monte Carlo methods (MCMC)

Suppose we want to generate a sample from an a posteriori distribution π(θ|x) for θ ∈
Θ ⊆ Rk but we can not directly do this. However, suppose we are able to construct
a Markov chain with state space Θ and with distribution π(θ|x). Then under suitable
regularity conditions asymptotic results exist, showing in which case the sample output
from such a chain with distribution π(θ|x) can be used to mimic a random sample from
π(θ|x) or to estimate the expected value of a function f(θ) with respect to π(θ|x). If
θ1, · · · , θk, · · · is a realization from a suitable chain then θk → θ in distribution as k tends
to infinity, θ ≈ π(θ|x) and 1

k

∑k
i=1 f

(
θi

) → Eθ|x
[
f
(
θ
)]
a.s. as k tends to infinity.

3.3 Why do we use a Bayesian representation :

Many real-world applications require estimation unknown quantities from some given ob-
servations at each time step. In most of the applications, even though the dynamics of the
system are not known exactly, prior knowledge about the phenomenon being modelling
is generally available to construct a suitable model. In the Bayesian modelling, prior
distributions for the states and likelihood functions relating these states to the observa-
tions are derived from the model. Within this context, estimates of the states is based
on the posterior distribution obtained from Bayes’s theorem. In order to avoid storing
the complete data one is interested in performing inference on-line with recursive filters
suitable for this task. These filters consist essentially of a prediction step, where the state
is predicted for the next time step according to the dynamical model, and an update step,
where the prediction is updated according to the latest observation.

3.4 Limitations of Kalman filters :

If the data are modeled by a linear Gaussian state-space model, then the Kalman filter
(Kalman, 1960) is the optimal filter in order to minimise the mean square error between
the true state and its estimate. For partially observed linear systems, the Hidden Markov
Model (HMM), gives the solution. However, for many practical applications, linear models
or the assumption of Gaussian noise, are not plausible. Various filters, such as Extended
Kalman Filter( EKF) (Anderson, and More, 1979) , Unscented Kalman Filter (UKF)
(Julier, 1997) , Gaussian Sum approximations (Alspach et al., 1972) have been devel-
oped to deal with this problem. But they are only suboptimal solutions since they only
approximate the nonlinearity and the non-Gaussianity of the model.

3.5 Why do we use Particle filters :

Sequential Monte Carlo (SMC), or Particle filters (Doucet, de Freitas, and Gordon, 2001)
methods are recursive Bayesian filters which provide a convenient and attractive approach
to approximate the posterior distributions when the model is nonlinear and when the
noises are not Gaussian. These techniques provide general solutions to many problems,
where linearisation and Gaussian approximations are intractable or would yield too low
performances. Non-Gaussian noise assumptions and incorporation of constraints on the
state variables can also be performed in a natural way. Moreover, SMC methods are very
flexible, easy to implement, parallelizable and applicable in very general settings (Del
Moral, 2004).



4 Gaussian Bayesian Estimation

4.1 Introduction

We will be addressing the sequential recursive probabilistic inference problem within
discrete-time non-linear dynamic systems that can be described by a dynamic state-space
model. The hidden system state xk, with initial probability density p(x0), evolves over
time as a partially observed first order Markov process according to the conditional prob-
ability density p(xk|xk−1). The observations yk are conditionally independent given the
state and are generated according to the conditional probability density p(yk|xk). The
evolution of the state sequence is given by the Transition equation :

xk = fk(xk−1,uk−1,vk;w) , (12)

and the Measurement equation is given by :

yk = hk(xk,nk;w) , (13)

where :

• xk : the state vector at the discrete time index k,

• yk : the measurement vector,

• uk : an exogenous input of the system, assumed known,

• vk : the process noise that drives the dynamic system,

• nk : the measurement noise corrupting the observation of the state,

• fk : a time-variant, linear or non-linear function,

• hk : a time-variant, linear or non-linear function.

• w : the parameters vector.

The state transition density p(xk|xk−1) is fully specified by fk and the process noise dis-
tribution p(vk), whereas hk and the observation noise distribution p(nk) fully specify the
observation likelihood p(yk|xk). The problem of sequential probabilistic inference can be
framed as follow : How do we estimate the hidden variables in a recursive fashion as noisy
observations becomes available online?

The process of recursive filtering is defined as calculating an a priori estimate of the
state x̂k|k−1 given the observation information {y1:k−1}

x̂k|k−1 = E[xk|y1:k−1] =

∫
xk p(xk|y1:k−1) dxk . (14)

After the observation yk has become available, the a posteriori estimate x̂k|k is made by

x̂k|k = E[xk|y1:k] = E[xk|yk] , (15)

where the latter equals sign comes from the fact that the process equation is a first order
Markov process.



The posterior at time (k−1), p(xk−1|y1:k−1), is first projected forward in time in order
to calculate the prior at time k. In terms of probability distributions, this means that
the prior distribution is obtained by

p(xk|k−1|y1:k−1) =

∫
p(xk|xk−1,y1:k−1) p(xk−1|y1:k−1) dxk−1 (16a)

=

∫
p(xk|xk−1) p(xk−1|y1:k−1) dxk−1 , (16b)

whereas it is assumed that the initial prior of the state vector p(x0|y0) ≡ p(x0) is available.

Next, the latest noisy measurement is incorporated using the observation likelihood to
generate the updated posterior. When the observation yk becomes available via Bayes’
rule we have got :

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
(17)

p(yk|y1:k−1) =

∫
p(yk|xk) p(xk|y1:k−1)dxk , (18)

and the state transition prior and the observation likelihood densities are given by

p(xk|xk−1) =

∫
δ(xk − f(xk−1,uk,vk;w)) p(vk) dvk (19)

p(yk|xk) =

∫
δ(yk − h(xk,uk,nk;w)) p(nk) dnk , (20)

where δ(.) is the Dirac function. This way, the posterior density is computed from the
prior density.

The above equations describe the optimal Bayesian solution which can, in general case,
not be calculated analytically. Solutions only exist under certain restrictions, as is the
case for the Kalman filter. In addition, Extended Kalman filter, Unscented Kalman filter
and Particle filters approximate the optimal Bayesian solution when there is no analytical
solution.

4.2 Kalman Filter (KF)

A misconception about the Kalman framework is that it requires the state space to be
linear as well as all probability densities to be Gaussian. This is in fact incorrect. In the
original derivation of the Kalman filter we only have the following assumptions (Kalman,
1960):

• consistent minimum variance estimates of the random variables, thus the posterior
state distribution can be calculated by maintaining only their first and second order
moments;

• the estimator (measurement update) itself is a linear function of the prior knowledge
of the system, summarized by p(xk|y1:k−1)

• accurate predictions of the state and of the system observations can be calculated.
These predictions are needed to approximate the first and second order moments of
p(xk|y1:k−1) and p(yk|xk).



Based on these assumptions, Kalman derived the following recursive form of the optimal
Gaussian approximate linear Bayesian update of the conditional mean of the state
x̂k = E[xk|k|y1:k) and its covariance Px̂k|k :

x̂k|k−1 = (prediction of xk) + Kk(yk − (prediction of yk))

= x̂k|k−1 + Kk(yk − ŷk|k−1) (21)
Px̂k|k = Px̂k|k−1

−KkPỹk
KT

k . (22)

The optimal terms in this recursion are given by :

x̂k|k−1 = E[f(xk−1,vk−1,uk)] (23)
ŷk|k−1 = E[h(x̂k|k−1,nk)] (24)

Kk = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T ]E[(yk − ŷk|k−1)(yk − ŷk|k−1)

T ]−1

= Px̂k|kỹk|k−1
P−1

ỹk|k−1
, (25)

where the optimal prediction x̂k|k−1 corresponds to the expectation of a nonlinear func-
tion f of the random function variables xk−1 and vk−1, and the optimal prediction ŷk|k−1

corresponds to the expectation of a nonlinear function h of the random function variables
xk and nk taken over the prior distribution of the state at time k. The gain Kk is a
function of the expected covariance matrix of the state prediction error and the observa-
tion prediction error, and the expected auto-correlation matrix of the innovations. As a
consequence, even for nonlinear, non-Gaussian systems, the Kalman filter framework is
still the minimum variance optimal Gaussian approximate linear estimator.

4.3 Linear Kalman Filter (LKF)

The assumption of the Kalman filter is that the posterior density is Gaussian at every
time step. If p(xk|y1:k−1) is Gaussian, also p(xk|y1:k−1) will be Gaussian if :

• vk and nk are Gaussian,

• xk = f(xk−1,uk−1,vk;w) is a linear function of xk−1, uk−1 and vk ,

• yk = h(xk,nk;w) is a linear function of xk and nk .

4.3.1 State space representation

We have the system :

xk+1 = Akxk + Bkuk + Gkvk (26)
yk = Ckxk + nk , (27)

where :

• xk ∈ Rn, yk ∈ Rq, uk ∈ Rm, vk ∈ Rp, nk ∈ Rq,

• Ak [n, n], Bk [n,m], Gk [n, p], Ck [q, n], these matrix may be time-variant but are
known,

• {uk} is a deterministic sequence,

• {vk}, {nk} process and measurement noise sequences; with vk ∼ N(0,Qk), nk ∼
N(0,Rk),

• x0 ∼ N(x0,P0) .



4.3.2 Algorithm

Initialization

x̂0 = E{x0} = x0

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

R = E[(v − v)(v − v)T ]

Q = E[(n− n)(n− n)T ]

for k = 1, 2, · · · N
Prediction step
Compute the predicted state mean and covariance (time update)

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1 (28)
Pk|k−1 = Ak−1Pk−1|k−1A

T
k−1 + Gk−1Qk−1G

T
k−1 (29)

Correction step
Update estimates with latest observation (measurement update)

Σk|k−1 = CkPk|k−1C
T
k + Rk (30)

Kk = Pk|k−1C
T
k Σ−1

k|k−1 (31)
ek = yk −Ckx̂k|k−1 (32)

x̂k|k = x̂k|k−1 + Kkek (33)
Pk|k = Pk|k−1 −KkCkPk|k−1 (34)

When the above assumptions hold, the Kalman filter is the optimal solution to the prob-
lem. For this reason, the Kalman filter is the minimum variance estimator. (Anderson,
and More, 1979)

4.4 Extended Kalman Filter (EKF)

When the strict assumptions of the Kalman filter do not hold, approximate filters must be
used. The Extended Kalman filter (EKF) assumes that the posterior density p(xk|y1:k) is
approximated by a Gaussian distribution. However, the system and/or the measurement
equation are no longer linear and must be linearized by computing the Jacobian matrix.
After linearisation, the equations for the Linear Kalman filter can be used.

4.4.1 State space representation

We have the system :

xk+1 = fk(xk,uk,vk;w) (35)
yk = hk(xk,nk;w) . (36)

4.4.2 Algorithm

Initialization

x̂0 = E{x0} = x0

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

R = E[(v − v)(v − v)T ]

Q = E[(n− n)(n− n)T ]



for k = 1, 2, · · · N
Prediction step
Compute the process model Jacobians :

Fk = ∇xf(x,v,uk)|x=x̂k−1
(37)

Gk = ∇vf(x̂k−1,v,uk)|v=v̂ (38)

Compute the predicted state mean and covariance (time update)

x̂k|k−1 = f(x̂k|k−1,v,uk) (39)
Pk|k−1 = FkPk−1|k−1F

T
k + GkRGT

k (40)

Correction step
Compute the observation model Jacobians :

Hk = ∇h(x,n)|x=x̂k|k−1
(41)

Dk = ∇h(xk|k−1,n)|n=n (42)

Update estimates with latest observation (measurement update)

Σk|k−1 = HkPk|k−1H
T
k + DkRDT

k (43)
Kk = Pk|k−1H

T
k Σ−1

k|k−1 (44)
ek = yk − h(x̂k|k−1,n) (45)

x̂k|k = x̂k|k−1 + Kkek (46)
Pk|k = Pk|k−1 −KkHkPk|k−1 (47)

Clearly these approximations will only valid if all the higher order derivatives of the
nonlinear functions are effectively zero over the uncertainly region of x, as summarized
by the support of its prior distribution. In many cases, the EKF calculated mean will be
biased and the posterior covariance will be under estimated.

4.5 Unscented Kalman Filter (UKF)

The Unscented Kalman filter is an approach first introduced by (Julier, 1997) for Kalman
filtering in the case of nonlinear equations, based onto the intuition : "With a fixed num-
ber of parameters it should be easier to approximate a Gaussian distribution than it is to
approximate an arbitrary function" .

They also approximate the posterior density p(xk|y1:k) with a Gaussian, but compared
to EKF, which use Jacobians, UKF approximates the distribution of the state variable
by using an unscented transformation (Julier, 1997).

Let the propagation of a L dimensional random variable x through an arbitrary func-
tion y = g(x). Assume x has mean x and covariance Px. To calculate the first two
moments of y we form a set of 2L + 1 sigma-points, Si = {wi,Xi} deterministically calcu-
lated using the mean and square-root decomposition of the covariance matrix of the prior
random variable x, such as :

X0 = x, (48)

Xi = x + ζ(
√

Px)i, i = 1, · · · , L , (49)
Xi = x− ζ(

√
Px))i, i = L + 1, · · · , 2L , (50)



where ζ is a scaling factor that determines the spread of the sigma-points around x and
(Px)i indicates the column i of the matrix square-root of the covariance matrix Px.
Each sigma-point is than propagated through the nonlinear function,

Yi = g(X i), i = 0, · · · , 2L (51)

to give the mean y, covariance Py, and cross-covariance Pxy, using a weighted sample
mean and covariance of the posterior sigma-points,

y ≈
2L∑
i=0

wm
i Y i (52)

Py ≈
2L∑
i=0

2L∑
j=0

wc
ij Y i YT

j (53)

Pxy ≈
2L∑
i=0

2L∑
j=0

wc
ij X i YT

j (54)

where wm
i and wc

ij are scalar weights.

The method presented in this section is based on : (Wan and van der Merwe, 2000),
and (Wan and van der Merwe, 2001)

4.5.1 State space representation

We have the system :

xk+1 = fk(xk,vk) (55)
yk = hk(xk,nk) . (56)

4.5.2 Implementing the Unscented Kalman filter

The state random variable is redefined as the concatenation of the original state and the
process and observation noise random variables :

xa
k =




xx
k

xv
k

xn
k


 =




xk

vk

nk


 (57)

The effective dimension of this augmented state RV is now L = Lx +Lv +Ln. In a similar
manner the augmented state covariance matrix is built up from the individual covariances
matrices of x, v and n :

Pa =




Px 0 0
0 Rv 0
0 0 Rn


 (58)



4.5.3 Algorithm

Initialization
The algorithm is initialized with the initial weights for the sigma-points, and with an
initial state and state covariance.

wm
0 =

λ

L + λ
(59a)

wc
0 =

λ

L + λ
+ (1− α2 + β) (59b)

wm
i = wc

i =
1

2(L + λ)
for i = 1, · · · , 2L, (59c)

x0 = E[x0]

Px0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

xa
0 = E[

(
x0 0 0

)
]T

Pa
0 = E[(xa

0 − x̂a
0)(x

a
0 − x̂a

0)
T ]

Calculate sigma-points

X a
k−1 =

(
x̂a

k−1 x̂a
k−1 + γ

√
Pa

k−1 x̂a
k−1 − γ

√
Pa

k−1

)
(60)

Prediction step
The equations for the prediction of the state value and covariance are :

X x
k|k−1 = f(X x

k−1,X v
k−1,uk−1) (61)

xk|k−1 =
2L∑
i=0

wm
i X x

i,k|k−1 (62)

Pxk|k−1
=

2L∑
i=0

wc
i (X x

i,k|k−1 − x̂k|k−1)(X x
i,k|k−1 − x̂k|k−1)

T (63)

Innovation
By using the state prediction, the innovation and the prediction error ek are :

Yk|k−1 = h(X x
k|k−1,X n

k−1) (64)

yk|k−1 =
2L∑
i=0

wm
i Yi,k|k−1 (65)

ek = yk − ŷk|k−1 (66)

Measurement Update step
Finally, by computing the predicted covariance, we get the Kalman gain :

Pỹk
=

2L∑
i=0

wc
i (Yi,k|k−1 − ŷk|k−1)(Yi,k|k−1 − ŷk|k−1)

T (67)

Pxkyk
=

2L∑
i=0

wc
i (X x

i,k|k−1 − x̂k|k−1)(Yi,k|k−1 − ŷk|k−1)
T (68)

Kk = Pxkyk
P−1

ỹk
(69)



As before, we can now update the system state and covariance :

x̂k|k = x̂k|k−1 + Kkek (70)
Pxk|k = Pxk|k−1

−KkPỹk
KT

k (71)

Parameters
xa =

(
xT vT nT

)T , X a =
(

(X x)T (X v)T (X n)T
)T ,

γ =
√

L + λ, λ = α2(L + κ)− L, 0 ≤ α ≤ 1, β ≥ 0, κ ≥ 0.

5 Non-Gaussian Bayesian Estimation
The Kalman filter (KF), Extended Kalman filter (EKF) and Unscented Kalman filter
(UKF), still assume a Gaussian posterior which can fail in certain nonlinear non-Gaussian
problems with multi-modal and/or heavy tailed posterior distributions. Particle filters
(PF) are used to recursively update the posterior distribution using Sequential Importance
Sampling (SSI) and Resampling. These methods approximate the posterior by a set of
weighted samples without making any explicit assumptions about its form and can thus
be used in general nonlinear, non-Gaussian systems.

Particle filtering is a Monte Carlo (MC) simulation method for recursive estimation. It
makes no assumption on the noise processes nor the functional form of the system, but it
requires as input specification of the prior distribution of the state, transition distribution
and the likelihood. Essentially, this means particle filtering is Bayesian in nature, hence
does not involve a likelihood function.

5.1 Particles Filters

We have the system :

xk+1 = fk
(
xk,uk,vk

)
(72)

yk = hk

(
xk,uk,nk

)
. (73)

The Particle filter algorithm consists of the four steps "Initialisation", "Prediction", Up-
dating" and "Resampling".

During the initialisation, we sample N times from the initial distribution η0. By
saying that we sample x(i) from a distribution µ, for i = 1, · · · , N we mean that we
simulate N independent random samples, named particles, according to µ. Hence, the
N random variables {x(i)} for i = 1, · · · , N are independent and identical distributed
(i.i.d.) according to η0. Afterwards, the values of the particles are predicted for the next
time step according to the dynamics of the state Markov process. During the "Updating"
step, each predicted particle is weighted by the likelihood function gk(yk−hk(.)), which is
determined by the observation process. The "Resampling" step can be view as a special
case of a "Selection" step. The particles are selected in accordance with the weighting
function gk. This step gives birth to some particles at the expense of light particles which
die.



5.2 Sampling Importance Resampling

The particle filter theory presented in this section is inspired by (Doucet, de Freitas, and
Gordon, 2001; van der Merwe, 2004; Del Moral, 2004).

The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo (MC) method
that forms the basis for most sequential Monte Carlo filters developed over the past
decades. It is a technique for implementing a recursive Bayesian filter by Monte Carlo
simulations. The key idea is to represent the required posterior density function by set
of random samples with associated weights and to compute estimates based on these
samples and weights. As the number of samples become very large, this Monte Carlo
characterization becomes an equivalent representation to the usual functional description
of the posterior pdf, and the SIS filter approaches the optimal Bayesian estimate.

The working mechanism of particle filters is following : The state space is partitioned
as many parts, in which the particles are filled according to some probability measure.
The higher probability, the denser the particles are concentrated. The particle system
evolves along the time according to the state equation. Since the pdf can be approxi-
mated by the point-mass histogram, by random sampling of the state space, we get a
number of particles representing the evolving pdf. However, since the posterior density
model is unknown or hard to sample, we would rather choose another distribution for the
sake of efficient sampling.

To avoid intractable integration in the Bayesian statistics, the posterior distribution
or density is empirically represented by a weighted sum of Ns samples drawn from the
posterior distribution. Let {xi

0:k, w
i
k} for i = 1, · · · , Ns a Random Measure that charac-

terises the posterior pdf p(x0:k|y1:k), where {xi
0:k} for i = 1, · · · , Ns is a set of support

points with associated weights {wi
k} for i = 1, · · · , Ns} and x0:k = {xj, j = 0, · · · , k} is

the set of all states up to time k. The weights are normalised such that
∑

i w
i
k = 1. Then,

the posterior density at k can be approximated as

p(x0:k|y1:k) ≈
Ns∑
i=1

wi δ(x0:k − xi
0:k) ≡ p̂(x0:k|y1:k), (74)

where {xi
0:k} are assumed to be i.i.d. drawn from p(x0:k|y1:k). When Ns is sufficiently

large, p̂(x0:k|y1:k) approximates the true posterior p(x0:k|y1:k). By this approximation, we
can estimate the mean of a nonlinear function

E[f(x0:k)] =

∫
f(x0:k) p̂(x0:k|y1:k) dx0:k (75a)

=
1

Ns

Ns∑
i=1

∫
f(x0:k) δ(x0:k − x

(i)
0:k) dx0:k (75b)

=
1

Ns

Ns∑
i=1

f(x
(i)
0:k) ≡ f̂Ns(x) . (75c)

Since it is usually impossible to sample from the true posterior, it is common to sample
from an easy-to-implement distribution, the so called proposal distribution denoted by



π(x0:k|y1:k), hence

E[f(x0:k)] =

∫
f(x0:k)

p(x0:k|y1:k)

π(x0:k|y1:k)
π(x0:k|y1:k) dx0:k (76a)

=

∫
f(x0:k)

p(y1:k|x0:k) p(x0:k)

p(y1:k) π(x0:k|y1:k

π(x0:k|y1:k) dx0:k (76b)

=

∫
f(x0:k)

wk(x0:k)

p(y1:k)
π(x0:k|y1:k) dx0:k , (76c)

where the variables wk(x0:k) are known as the unnormalized importance weights, and are
given by

wk(x0:k) =
p(y1:k|x0:k) p(x0:k)

π(x0:k|y1:k)
. (77)

We can get rid of the generally unknown or hard to calculate normalizing density p(y1:k)
in Equation 76 as follow:

E[f(x0:k)] =
1

p(y1:k)

∫
f(x0:k) wk(x0:k) π(x0:k|y1:k) dx0:k (78a)

=

∫
f(x0:k) wk(x0:k) π(x0:k|y1:k) dx0:k∫

wk(x0:k) π(x0:k|y1:k) dx0:k

(78b)

=
Eπ [f(x0:k) wk(x0:k)]

Eπ[wk(x0:k)]
, (78c)

where the notation Eπ[.] emphases that the expectations are taken over the proposal dis-
tribution π(x0:k|y1:k). By drawing the i.i.d. samples {x(i)

0:k} from the proposal distribution
π(x0:k|y1:k), we can approximate the expectations of interest by the following estimate:

E[f(x0:k)] ≈ Ẽ[f(x0:k)] =
1

Ns

∑Ns

i=1 f
(
x

(i)
0:k

)
wk

(
x

(i)
0:k

)

1
Ns

∑Ns

i=1 wk

(
x

(i)
0:k

) (79a)

=
Ns∑
i=1

w̃
(i)
k f

(
x

(i)
0:k

)
, (79b)

where the normalized importance weights w̃
(i)
k are given by:

w̃
(i)
k =

wk

(
x

(i)
0:k

)
∑Ns

i=1 wk

(
x

(i)
0:k

) . (80)

Suppose the proposal distribution has the following form :

π(x0:k|y1:k) = π(x0:k−1|y1:k−1) π(xk|x0:k−1,y1:k) (81a)

= π(x0)
k∏

j=1

π(xj|x0:j−1,y1:j) . (81b)

With this representation of the proposal distribution, we can realize an estimate of the
posterior distribution at time k without modifying the previously simulated x

(i)
0:k−1, then

one can obtain samples x
(i)
0:k ∼ π(x0:k|y1:k) by augmenting each of the existing samples



x
(i)
0:k−1 ∼ π(x0:k−1|y1:k−1) with the new state x

(i)
k ∼ π(xk|x0:k−1,y1:k). To derive the weight

update equation, π(x0:k|y1:k) is first expressed in terms of π(x0:k−1|y1:k−1), π(xk|yk), and
π(xk|xk−1).

Under the assumptions that the states correspond to a first order Markov process and
that the observations are conditionally independent given the states, we get :

p(x0:k) = p(x0)
k∏

j=1

p(xj|xj−1) (82)

p(y1:k|x0:k) =
k∏

j=1

p(yj|xj) , (83)

and the posterior distribution can be factorized as :

p(x0:k|y1:k) =
p(yk|x0:k,y1:k−1) p(x0:k|y1:k−1)

p(yk|y1:k−1)
(84a)

=
p(yk|x0:k,y1:k−1) p(xk|x0:k−1,y1:k−1)

p(yk|y1:k−1)
p(x0:k−1|y1:k−1) (84b)

=
p(yk|xk) p(xk|xk−1)

p(yk|y1:k−1)
p(x0:k−1|y1:k−1) (84c)

∝ p(yk|xk) p(xk|xk−1) p(x0:k−1|y1:k−1) . (84d)

Thus a recursive estimate for the importance weights can be factorized as follow :

w
(i)
k =

p(x
(i)
0:k|y1:k)

π(x
(i)
0:k|y1:k)

(85a)

=
p(y1:k|x(i)

0:k) p(x
(i)
0:k)

π(x
(i)
0:k−1|y1:k−1) π(x

(i)
k |x(i)

0:k−1,y1:k)
(85b)

= w
(i)
k−1

p(y1:k|x(i)
0:k) p(x

(i)
0:k)

p(y1:k−1|x(i)
0:k−1) p(x

(i)
0:k−1) π(x

(i)
k |x(i)

0:k−1,y1:k)
(85c)

= w
(i)
k−1

∏k
j=1 p(yj|x(i)

j ) p(x
(i)
0 )

∏k
j=1 p(x

(i)
j |x(i)

j−1)∏k−1
j=1 p(yj|x(i)

j ) p(x
(i)
0 )

∏k−1
j=1 p(x

(i)
j |x(i)

j−1) π(x
(i)
k x

(i)
0:k−1,y1:k)

(85d)

= w
(i)
k−1

p(yk|x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,y1:k)
. (85e)

Furthermore, if π(xk|x0:k−1,y1:k) = π(xk|x0:k−1,yk), then the importance density becomes
only dependent on xk−1 and yk. This is particularly useful in the common case when only
a filtered estimate of p(xk|y1:k) is required at each time step. In such case, only x

(i)
k need to

be stored, and so one can discard the path, {x(i)
0:k−1}, and the history of the observations,

{y1:k−1}. The modified weight is then :

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,yk)
, (86)

and the posterior filtered density p(xk|y1:k) can be approximated as :

p(xk|y1:k) ≈
Ns∑
i=1

w
(i)
k δ(xk − x

(i)
k ) , (87)



where the weights are defined in Equation 86. It can be shown that as Ns → ∞ the
approximation Equation 87 approach the true posterior density p(xk|y1:k) (Doucet, 1997).
These point-mass estimates can approximate any general distribution arbitrarily well,
limited only by the number of particles used and how well the importance sampling
conditions are met. In contrast, the posterior distribution calculated by the EKF is
a minimum-variance Gaussian approximation of the true posterior distribution, which
cannot capture complex structure such as multimodalities, skewness, or other higher-
order moments.

5.3 Degeneracy Problem

A common problem with the SIS particle filters is the degeneracy phenomenon, where
after a few iterations, all but one particle will have negligible weight. It has been shown
(Doucet, 1998) that the variance of the importance weights can only increase over time,
and thus it is impossible to avoid the degeneracy phenomenon. This degeneracy implies
that a large computational effort is devoted to updating particles whose contribution to
the approximation to p(xk|y1:k) is almost zero. We could use a very large number of
particles Ns to reduce these effects, but it is often impractical, and so we rely on two
other methods : a good choice of Importance Density and the use of Resampling.

5.4 Choice of Proposal Distribution

It has been shown (Doucet, 1997) that the optimal proposal distribution

π(x
(i)
k |x(i)

0:k−1,y1:k)
.
= p(x

(i)
k |x(i)

k−1,yk) , (88)

minimizes the variance of the proposal weights conditional on x
(i)
0:k−1 and y1:k. Nonetheless,

the distribution

π(x
(i)
k |x(i)

0:k−1,y1:k)
.
= p(x

(i)
k |x(i)

k−1) , (89)

(the transition prior) is the most popular choice of proposal distribution. This proposal
distribution is usually easier to implement, but it is not incorporating the most recent
observations. Substitution of Equations 81, 82, and 83 into Equation 86 yields

w
(i)
k = w

(i)
k−1

p(yk|x(i)
k ) p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1,yk)
(90a)

= w
(i)
k−1

p(yk|x(i)
k ) p(x

(i)
k |x(i)

k−1)

p(x
(i)
k |x(i)

k−1)
(90b)

= w
(i)
k−1 p(yk|x(i)

k ) p(x
(i)
k |x(i)

k−1) . (90c)

Thus, if we chose the transition prior as our proposal distribution to sample from, the
importance weights are easily updated by simply evaluating the observation likelihood
density p(yk|x(i)

k ) for the sampled particle set and multiply with the previous weights.

5.5 Resampling

The basic idea of resampling is to eliminate particles which have small weights and to
concentrate on particles with very large weights. The resampling step involves generating



a new set {x(i)∗
k } for i = 1, · · · , Ns by resampling with replacement Ns times from an

approximate discrete representation of p(xk|y1:k) given by

p(xk|y1:k) ≈
Ns∑
i=1

wi
k δ(xk − xi

k) , (91)

so that Pr(x
(i)∗
k = xj

k) = wj
k. The resulting sample is in fact an i.i.d. sample from the

discrete density Equation 91, and so the weights are now reset to wi
k = 1/Ns. After

the selection/resampling step at time k, we obtain Ns particles distributed marginally
approximately according to the posterior distribution. Since the selection step favors the
creation of multiple copies of the "fittest" particles, many particles may end up without
children, whereas other might end up having a large number of children. Therefore, an
additional procedure is required to introduce sample variety after the selection step with-
out affecting the validity of the approximation they infer. This is achieved by performing
a single Markov Chain Monte Carlo (MCMC) step on each particle.

5.6 Better Proposal Distributions

The success of the particle filter algorithm depends on the validity of the assumptions :

Monte Carlo (MC) assumption : The Dirac point-mass approximation provides
an adequate representation of the posterior distribution.

Importance sampling assumption : It is possible to obtain samples from the poste-
rior by sampling from a suitable proposal distribution and applying importance sampling
corrections.

If any of these conditions are not met, the PF algorithm can perform poorly. In the
resampling stage, any particular sample with a high importance weight will be duplicated
many times, and the cloud of samples may collapse to a single sample. Thus, the number
of samples used to describe the posterior density function will become too small and inad-
equate. We can get around this difficulty by implementing a Markov Chain Monte Carlo
step after the selection step. But, this method is only successful if the point-mass poste-
rior approximation is already a close approximation of the true posterior. One of the main
causes of sample depletion is the failure to move particles to areas of high observation
likelihood. This failure stems directly from the most common choice of importance distri-
bution, the transition prior which do not incorporate the latest observation. To improve
the performance of particle filters, we could design better proposal distribution that not
only allow for easy sampling and evaluation of the importance weights, but also address
the sample depletion problem. This can be done by choosing a proposal distribution that
is conditioned on yk.

We accomplishes this by approximating this density by a tractable single Gaussian
distribution as generated by a Gaussian approximate recursive Bayesian estimation frame-
work such as the Kalman filter:

π(xk|x0:k−1,y1:k)
.
= p(xk|xk−1,yk) (92a)
= qN (xk|y1:k) , (92b)



where qN (.) denotes a Gaussian proposal distribution.

A tractable way of generating Gaussian approximate proposal distribution within the
particle filter framework, is to use an adaptive bank of parallel running Unscented Kalman
Filters (UKF) to generate and propagate a Gaussian proposal distribution for each par-
ticle,

qN (xk|y1:k) = N (
xk; x

(i)
k , P (i)

xk

)
i = 1, · · · , Ns (93)

each contributing its own estimate as a component in a very large adaptive mixture
approximation of the posterior distribution.

5.7 The Sigma-Point Particle Filter (SPPF)

The sigma-point particle filter algorithm was published first in (van der Merwe, de Freitas,
Doucet and Wan , 2001).

Initialization : k = 0

For i = 1, · · · , N , draw particle x
(i)
0 from the prior p(x0).

For k = 1,2, · · ·

1. Importance sampling step

For i = 1, · · · , N :

(a.) Update the Gaussian prior distribution for each particle with the
SPKF :

Calculate sigma-points for particle

xa,(i)
k−1 =

(
x(i)

k−1 vk−1 nk−1

)T

X a,(i)
k−1,(0,··· ,2L) =

(
xa,(i)

k−1 xa,(i)
k−1 + γ

√
P

a,(i)
k−1 xa,(i)

k−1 − γ
√

P
a,(i)
k−1

)

Prediction step
Propagate sigma-points into future (time update) :

X x,(i)
k|k−1,(0,··· ,2L) = f

(X x,(i)
k−1,(0,··· ,2L), X v,(i)

k−1,(0,··· ,2L), uk

)

x(i)
k|k−1 =

2L∑
j=0

w
(m)
j X x,(i)

k|k−1,j

P
(i)
k|k−1 =

2L∑
j=0

w
(c)
j

(X x,(i)
k|k−1,j − x(i)

k|k−1

)(X x,(i)
k|k−1,j − x(i)

k|k−1

)T



Innovation
By using the state prediction, the innovation and the prediction error ek are :

Y (i)
k|k−1,(0,··· ,2L) = h

(X x,(i)
k|k−1,(0,··· ,2L) , X n,(i)

k−1,(0,··· ,2L)

)

y(i)
k|k−1 =

2L∑
j=0

w
(m)
j Y(i)

k|k−1,j

e(i)
k = yk − y(i)

k|k−1

Measurement Update step
Incorporate new observation (measurement update)

Pykyk
=

2L∑
i=0

w
(c)
j

(Y(i)
k|k−1,j − y(i)

k|k−1

)(Y(i)
k|k−1,j − y(i)

k|k−1

)T

Pxkyk
=

2L∑
i=0

w
(c)
i

(X (i)
k|k−1,j − x(i)

k|k−1)
(Y(i)

k|k−1,j − y(i)
k|k−1

)T

Kk = Pxkyk
P−1
ykyk

As before, we can now update the system state and covariance :

x(i)
k|k = x(i)

k|k−1 + Kke
(i)
k

P
(i)
k|k = P

(i)
k|k−1 −KkPykyk

KT
k

(b.)Sample

x(i)
k|k ∼ qN

(
xk|k, y1:k

)
= N (

xk|k ; x(i)
k|k , P

(i)
k|k

)

For i = 1, · · · , N , evaluate the importance weights up to a normalizing constant :

w
(i)
k = w

(i)
k−1

p
(
yk|x(i)

k|k
)

p
(
x(i)

k|k|x(i)
k−1|k−1

)

qN
(
x(i)

k|k|y1:k

)

For i = 1, · · · , N normalize the importance weights :

w̃
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

2. Resampling
Multiply/suppress samples x(i)

k with high/low importance weights w̃
(i)
k , to obtain N ran-

dom samples approximately distributed according to p(xk|y1:k)



For i = 1, · · · , N , set w
(i)
k = w̃

(i)
k = N−1

3. Markov Chain Monte Carlo
Do a single MCMC move step to add further variety to the particle set without chang-
ing their distribution. Apply a Markov transition kernel with invariant distribution
p(x

(i)
0:k|y1:k) to obtain

(
x

(i)
0:k,P

(i)
0:k

)
.

4. Output
The output is a set of samples that can be used to approximate the posterior distribution
as :

p(xk|y1:k) =
1

N

N∑
i=1

δ(xk − x(i)
k )

from these samples, any estimated of the system state can be estimated, such as the
MMSE estimate,

x̂k = E[xk|y1:k] ≈
1

N

N∑
i=1

x(i)
k

6 State, Parameters and Dual Estimations
Kalman filters and Particle filters can be used to realize some estimations : state es-
timation, parameter estimation (machine learning), and dual estimation (expectation-
maximization (EM) algorithm).

6.1 State estimation

The basis framework involves estimation of the state of a non-linear discrete state space
model,

xk+1 = fk(xk,uk,vk;w) (94)
yk = hk(xk,nk;w) , (95)

where xk represents the unobserved state of the system, nk is a known exogenous input,
and yk is the observed measurement signal. The process noise vk drives the system, and
the observation noise is given by nk. The system dynamic model f and h are assumed
known and parameterized by a set of known parameters w. In state estimation, the filter
is an approximate method of choice to achieve a recursive maximum-likelihood estimation
of the state xk.

6.2 Parameter estimation

Parameter estimation refers to a system identification or machine learning, which involves
determining a nonlinear mapping

yk = g(xk;w) , (96)



where xk is the input, yk the output, and the nonlinear map g(.) is parameterized by the
vector of hyper-parameters w which are to be estimated in some optimal way. A training
set is provided with sample pairs {xk,dk}. The error is defined as :

ek = dk − g(xk;w) , (97)

and we have to estimate w in order to minimize the expectation of some error function.
A filter may be used to estimate the parameters with a new state-space model :

wk+1 = wk + rk (98)
dk = g(xk,wk) + ek , (99)

where wk corresponds to a stationary process, and rk an "artificial" process noise. The
output dk corresponds to a nonlinear observation on wk.

6.3 Dual estimation

A special case arises when the input xk is unobserved, and requires coupling both state
estimation and parameter estimation :

xk+1 = fk(xk,uk,vk;wk) (100)
yk = hk(xk,nk;wk) , (101)

where both, the system state xk and the set of model parameters wk for the dynamic
system must be simultaneously estimated only from the observed noisy signal yk.

In the dual filtering approach, two separate state-space representations are used for
the state and the parameters. Both filters are run simultaneously, in an iterative fashion,
for state estimation and parameter estimation. At every time step, the current estimate
of the parameters ŵk is used in the state filter as fixed, and likewise the current estimate
of the state x̂k is used in the parameter filter.

In the joint filtering approach, the unknown system state and the parameters are
concatenated into a single higher-dimensional joint state vector, x̃k :

x̃k =
(

xT
k wT

k

)T
, (102)

and the state space model is

x̃k+1 = f̃k(x̃k,uk, ṽk) (103)
yk = h̃k(x̃k,nk) , (104)

which can be expanded to
(

xk+1

wk+1

)
=

(
fk(xk,uk,vk;wk)

wk

)
+

(
0
rk

)
(105)

yk = hk(xk,nk;wk) , (106)

where ṽk =
(

vT
k rT

k

)T
. A single filter is now run on the joint state space to produce

simultaneous estimates of the states xk and the parameters wk.



7 Experimental Results

7.1 Data

We conduct our analysis using very high-frequency time series on IBM stock, for the
period : January, 03, 1995 to May, 26, 1999. We use the period : January, 04, 1995 to
December, 31, 1998 for training en validation of the models, and the period : January,
04, 1999 to May, 26, 1999 for testing.

7.2 Methodology

We build two Dynamical State-Space Models (DSSM), with nonlinear Radial Basis Func-
tion (RBF) (Benoudjit and Verleysen, 2003) fk in the state and hk in the measurement
equations.

xk+1 = fk(xk,ukvk;w) (107)
yk = hk(xk,nk;w) , (108)

where xk represents the hidden random state space variable, uk a deterministic input, yk

the measurement, vk the process noise, nk the measurement noise, and w the parameters
of the system.

The first model (Pricing model) gives the forecasting of the trend prices for the next
hours. Based on this forecasting, the trader can decide to buy or to sell, or nothing.
The second model (Trading model) estimates the first stopping time to close the position,
depending of a threshold defined by the trader.

The pricing and trading models use very high-frequency time series of tick by tick
data, without resampling, but as these observations are sparse, irregularly spaced, and
occur at different time points for each subject, we smooth the rough data by projecting
them onto a functional basis, and we use the coefficients of this projection for modelling
purposes (Dablemont et al., 2007).

We realize the training phase, to estimate the parameters of the models, by dual
estimation, but in order to reduce the CPU time, afterwards we realize the validation
phase by state estimation with parameters fixed. In the simulation phase, we use a joint
estimation for the parameters and the states, in order to take into account changes of
the system dynamic. In a real-time application, it should be possible to re-estimate,
every hour, the trend and the stopping time, so as to optimize the profits or to stop-lose
immediately.

7.3 Simulation

Every day, at 11.00 AM, we realize the trading. We decide to buy or to sell ONE share
or nothing, depending of the trend forecasting, then we close the position according to
the predicted stopping time. We have chosen a threshold of 1 US $.

The resulting behavior of the trading process is presented as a function of time in Fig-
ure 1. The return figure includes the losses due to transaction costs (the bid-ask spreads).



We assume an investor with credit limit but no capital.

We also could make the simulation at more than one time-point of the day. With
many buyings or sellings of the asset we could optimize the opportunities of profit but
due to the CPU time, this was not possible on a standard PC.

The algorithms are written in Matlab, but in order to use this model in a real-time
application, we should increase the performance and curb the CPU time, using a C++
executing file on a multi-processors unit.

At first sight, the stable profitability of trading models and the quality of the pricing
models could be a good opportunity for trading actions on a very short horizon.
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Figure 1: Returns of trading models as function of time.

8 Conclusion
We have presented a functional method for the trading of very hight-frequency time se-
ries by functional analysis, neural networks, and Bayesian estimation, with Particle and
Kalman filters.



This trading model gives, at time t, a signal of buying or selling an asset, and de-
pending on the trader’s decision, when the price of this asset crosses for the first time a
threshold defined by the trader, in order to close his position with a yielding profit, and
also it can send a stop-loss order.

It can be applied when the observations are sparse, irregularly spaced and arrive at
different time points for each day, as with tick by tick asset prices.

We have realized a simulation of trading on five months to test the algorithms.

These algorithms are written in Matlab, but they last a very long CPU times for the
forecasting, requires for the recursive up-dating of the Particles. In case of a real-time
application it should be useful to put these algorithms in a form suitable for parallelization
in C++.
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