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Vector quantization: a weighted version for time-series forecasting
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Abstract

Nonlinear time-series prediction offers potential performance increases compared to linear models. Nevertheless, the enhanced
complexity and computation time often prohibits an efficient use of nonlinear tools. In this paper, we present a simple nonlinear
procedure for time-series forecasting, based on the use of vector quantization techniques; the values to predict are considered
as missing data, and the vector quantization methods are shown to be compatible with such missing data. This method offers an
alternative to more complex prediction tools, while maintaining reasonable complexity and computation time.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Time-series prediction encompasses a wide variety
f application domains, in engineering (electrical load
stimation), environmental (river flood forecasting), fi-
ance (risk prediction, and other domains. The prob-

em consists in estimating an unknown time-dependent
ariable given its past history, and possibly exogenous
ontext variables.

To predict time series, a large variety of approaches
re available. The most widely used ones are certainly
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the linear models, i.e. those estimating the unkn
value as a linear combination of other variables.
latter are not necessarily restricted to past values o
series and exogenous variables: they may also in
estimations of the past predictions, or errors on them
example. This class of models, including AR, ARM
ARX, ARMAX, Box-Jenkins, etc. has the advantage
being quite simple to use, well recognized, and doe
suffer too much from the choice of structural para
eters. Unfortunately, there are a number of real-w
situations where a simple linear model on the data
not apply. The prediction results obtained by a lin
method may thus reveal poor or simply useless res

Nonlinear prediction models may overcome
limitation, by dropping the linear model hypothe
on the data. Nonlinear prediction tools inclu
artificial neural networks (Multi-Layer Perceptro
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Radial-Basis Function Networks, Self-Organizing
Maps, etc.), fuzzy logic models, and many others.
Despite their more general character, and therefore
their extended potential, nonlinear tools suffer from
other drawbacks: they usually rely on complex opti-
mization procedures, they request the difficult setting
of many user-controlled structural parameters (usually
controlling complexity), etc. In most situations, the
level of performances reached with nonlinear models
depends on the experience of the user. Moreover, as
the extensive use of cross-validation or other resam-
pling techniques for model selection may strongly
influence the performances, this level also depends
on computational resources and afforded computation
time!

In this paper, a forecasting method based on non-
linear tools with limited complexity is presented, as
a compromise between the two approaches. The lim-
ited complexity allows adjusting the structural param-
eters when applicable, by sweeping the range of possi-
ble values with extended cross-validation. The method
is based on vector quantization (VQ) techniques, for
which efficient learning procedures are known. It is
shown that VQ algorithms can easily accommodate
missing data; this property is used by considering the
values to predict as missing data in a generalization step
of the method, while learning is performed on past val-
ues of the series, i.e. nonmissing data. Smoothing of the
results is optionally performed by using Radial-Basis
Function Networks (RBFNs).
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combination of some previous values of the time series:

ŷt = a0 + a1yt−1 + a2yt−2 + · · · + anyt−n. (1)

The regressor is the vector containing the past values
(yt−1, . . . , yt−n) of the series. The sizen of the regres-
sor must be fixed a priori.

Other linear models also use exogenous variables:
the Autoregressive models with eXogenous variables
(ARX). In these models, some external data are added
to the regressor:

ŷt = a0 + a1yt−1 + a2yt−2 + · · · + anyt−n

+ b1ut−1 + b2ut−2 + · · · bnbut−nb (2)

with ut a time series of exogenous data. Of course, more
than one exogenous time series could be added to Eq.
(2).

Other linear models that can be used are the linear
Autoregressive models with Moving Average and eX-
ogenous variables (ARMAX models). In these models,
the prediction error generated during the previous pre-
diction is added to the regressor:

ŷt = a0 + a1yt−1 + a2yt−2 + · · · + anyt−n

+ b1ut−1 + b2ut−2 + · · · + bnbut−nb

+ c1rt−1 + c2rt−2 + · · · + cncrt−nc (3)

with
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In the following, it is first described how nonli
ar tools in general, and RBFN in particular, may
sed in the context of time-series prediction. Ve
uantization is then introduced, together with its
n problems with missing data. The prediction met

s then detailed, with optional improvements imp
enting different compromises between possible

ormances and complexity. These compromises a
ustrated on two time-series prediction examples
ally, the computational load of the methods is stu

n terms of number of operations.

. Linear and nonlinear models

The simplest models that may be used for ti
eries prediction are the Autoregressive (AR) one
hese models, the predictionyt is computed as a line
t = yt − ŷt . (4)

f the prediction obtained by linear models is not ac
ate enough, nonlinear models can be used. The l
odels presented above can be extended to non
nes. For example, the Nonlinear Autoregressive m
ls (NAR models) are defined as

ˆ t = f (yt−1, yt−2, . . . , yt−n, θ), (5)

heref is a nonlinear function andθ the parameter
f this function. An example of nonlinear model is
adial-Basis Function Networks, schematically re
ented inFig. 1.

The output of the RBFN is given by

ˆ =
M∑

i=1

λiΦi(x, Ci, σi), (6)
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Fig. 1. RBFN withn inputs and one output.

where

Φi(x, Ci, σi) = e−(‖x−Ci‖/
√

2σi)
2

. (7)

In Eqs.(6) and(7), x represents the vector of inputs
x1, . . . , xn, andŷ the output of the model. In our NAR
model (Eq.(5)), the inputsxi are the previous value
of the series (the regressor [yt−1, . . . , yt−n]). The pa-
rameters of the model are the centersCi (usually re-
sulting from vector quantization of the input data),
the standard deviationsσ i , and the multiplying coef-
ficientsλi . Learning of RBFN parameters may be per-
formed through various learning algorithms (see for
example[1,9–12]); what is important to mention here
is that an RBFN usually requires the adjustment of at
least two structural parameters: the number of Gaus-
sian kernels and at least one parameter—overlapping
factor—needed for the adjustment of the standard de-
viations σ i (see for example[1]). In our time-series

F two
G

prediction context, the vector inputsx are replaced by
the regressors. An example of RBFN result on a one-
dimensional problem is shown inFig. 2.

Model selection is an important part in the process
of learning with a nonlinear model. In the case of RBFN
for example, there is no rule to select a priori an optimal
numberM of Gaussian functions; the number of Gaus-
sian functions is a structural parameter as discussed
above. In order to choose optimal values for structural
parameters, validation procedures are used: the learn-
ing set is used to determine the parameters of the model,
such as theai coefficients for the linear models orCi ,
σ i andλi for an RBFN, while the validation set is used
to determine the structural parameters such as the size
of the regressor or the number of Gaussian functions
in an RBFN.

In the learning phase the parameters are determined
as the result of the minimization of the prediction error
on the learning set LS. The Normalized Mean Square
Error on the learning set can be defined as[14]

NMSEL =
∑

t ∈ LS(yt − ŷt)2∑
t ∈ LS(yt − ȳ)2

, (8)

whereȳ is the average value ofyt. During learning, the
structural parameters are fixed.

There are two important differences between linear
and nonlinear models with respect to learning:

1. The parameters of AR and ARX models are de-
ith
rs of
(for
ig. 2. Example of RBFN. Dots: learning data; solid lines: the
aussian functions in the model used to fit the data.
termined directly and exactly (for example w
a pseudo-inverse). On the contrary paramete
nonlinear models are determined iteratively
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example with a gradient descent method). The con-
sequence is that the parameters obtained for nonlin-
ear models are often not optimal because the itera-
tive methods usually lead to local minima.

2. The computational load for determining the param-
eters of nonlinear models is huge compared to the
computational load in the linear case.

In the validation phase, the structural parameters are
determined as the result of the minimization of the pre-
diction error on a validation set (usually, the minimiza-
tion is simply performed by sweeping the structural
parameters over the discrete range of possible values).
The Normalized Mean Square Error on the validation
set VS can be defined as

NMSEV =
∑

t ∈ VS(yt − ŷt)2∑
t ∈ VS(yt − ȳ)2

, (9)

whereȳ is the average value ofyt. Using a validation set
independent from the learning set reduces the risk of
choosing structural parameters leading to overfitting.

3. Vector quantization

3.1. Definition

Vector quantization[3] is a way to summarize the
information contained in a large database. Vector quan-
t hod
d rt of
R

le of
T

this
d s

Vij(1 ≤ j ≤ D). The principle of vector quantization
is to replace this database by another one, containing
fewer vectorsCk of the same dimensionD(1 ≤ k ≤
M, M < N). The numberM of vectorsCk is a structural
parameter of the method. The new vectorsCk, called
centroids, are deemed to have a distribution similar to
the distribution of the initialVi . Once the centroids are
fixed through some algorithm, each vectorVi is then
quantized by its “nearest-neighbor” centroidC* :

C∗(Vi) = arg min
Ck

(||Vi − Ck||2). (10)

The Voronoi region associated to centroidCk is the set
of vectors associated toCk by Eq.(10). In other words,
it is the region of the space nearest toCk than to any
other centroid.

Determining the “best” set of centroids, i.e. the set
that minimizes on average (on all data contained in
the original database), the quantization error defined
by the distance in Eq.(10), is a nonlinear optimiza-
tion problem. Many algorithms have been proposed in
the literature to determine the centroids: batch algo-
rithms, as Lloyd’s one[8], or on-line adaptive ones, as
the competitive learning method[6].

As an example, competitive learning works as fol-
lows. At each iteration, a dataVi is drawn randomly
from the initial database. The nearest centroidC* is de-
termined (according to Eq.(10)) and moved (adapted)
in the direction of dataVi :
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N .
ization is the basic tool used in the prediction met
escribed in the next section; it is also used as pa
BFN learning[1].
Let us define a database through the examp

able 1.
Elements (observations, or data, or vectors) of

atabase are thus linesVi(1 ≤ i ≤ N), with element

able 1
atabase definition

Variable 1 Variable 2

irst data 11 17
econd data 12 34
hird data 82 −32
ourth data 34 65
. . . . . . . .

th data Vi1 Vi2
. .

th data −2 34
∗ new(Vi) = C∗ old(Vi) + α(Vi − C∗ old(Vi)), (11)

hereα is a time-decreasing adaptation factor.
ame operation is repeated several times (epochs
ach vector of the whole database.

Of course, all VQ algorithms find a set of centro
hat correspond to a local minimum of the quantiza

. . Variablej . . . VariableD

. . V1j . . . 87

. . V2j . . . 7

. . V3j . . . 92

. . V4j . . . 42

. . . . . . . . . . .

. . Vij . . . ViD

. . . . . . . . . . .

. . VNj . . . VND
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Table 2
Database with missing data

Variable 1 Variable 2 . . . Variablej . . . VariableD

First data 11 17 . . . V1j . . . 87
Second data ? 34 . . . ? . . . 7
Third data 82 ? . . . V3j . . . 92
Fourth data 34 65 . . . V4j . . . ?
. . . . . . . . . . . . . . . . . . . . .

ith data Vi1 Vi2 . . . Vij . . . ViD

. . . . . . . . . . . . . . .

Nth data −2 ? . . . VNj . . . VND

error criterion, and not a global one. Many initializa-
tion methods and many adaptation rules have been pro-
posed in the literature (see for example[3,6]), aiming
at finding a good compromise between the “quality” of
the local minimum and the computational complexity
(number of operations).

3.2. Missing data

An easy-to-understand but not so well known and
used property of VQ is that databases with missing data
can be quantized easily. Let us imagine that the initial
database is now as represented inTable 2.

In Table 2, each ‘?’ corresponds to a value that was
not measured, or not stored, for any reason; the ‘?’s
are the missing values. The VQ process defined by
Eqs.(10) and (11) remains valid, if the computation
of Euclidean distance in Eq.(10) is replaced by a dis-
tance computed only on the known variables and not
on the missing ones (of course, it is assumed that the
centroids have no missing values). Similarly, the adap-
tation of centroids by Eq.(11) is performed only using
the corresponding existing coordinates of dataVi , and
not on the missing ones.

Using VQ with missing data has proved to be effi-
cient to find estimations of missing values in databases
[4]. A missing value is replaced by the corresponding
variable of the centroid nearest to the observation. This
technique may be viewed as estimating a missing value
with a function of the available variables in the same
o

V

w
E ted
t -

formation fromVi is certainly more appropriate than
replacing a missing value by the average of the corre-
sponding variable from all other observations (average
on a column of the database), as it is often the case when
dealing with incomplete data. VQ may be viewed as a
simple but efficient way to use the information con-
tained in the known coordinates of vectorVi .

4. Prediction with VQ and missing data

4.1. Quantization without weighting

Time-series prediction may be viewed as a regres-
sion problem when expressed by Eq.(5), repeated here
for convenience:

ŷt = f (yt−1, yt−2, . . . , yt−n, θ). (13)

In this equation, ˆyt is the estimation of the unknown
value of the time series at timet, while yt−1, . . . , yt−n

are the knownnpast values of the series which form the
regressor.θ is the set of parameters of the estimatorf;
the estimator can be linear or nonlinear in the general
case. The problem is now expressed as a regression
problem withn inputs and one output instead of a time-
series problem.

The past knowledge on the series is concatenated
with the output to form a (n+ 1)-dimensional vector of
the following form:

Y

T
t can
t con-
c om-
p the
bservation:

ˆ
ij = (C∗(Vi))j, (12)

hereC* is the nearest centroid fromVi according to
q. (10) where the distance computation is restric

o the known coordinates ofVi . Using the known in
t = [
yt yt−1 yt−2 · · · yt−n

]
. (14)

he vectorsYt may be thought of as the vectorsVi from
he database presented in the previous section. VQ
hus be applied to those vectors resulting from the
atenation. Next, the VQ model may be used on inc
lete vectors, where the missing value is precisely
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Fig. 3. Mackey–Glass series, with additive noise (see text for param-
eters).

yt one. Therefore, modelf in Eq.(13)consists in the ap-
proximation of the missing value by the corresponding
coordinate of the nearest centroid, as given by Eq.(10).

This method is illustrated in this paper on a well-
known time-series benchmark, the Mackey–Glass se-
ries[5]. The series has been generated according to

dy

dt
= βy(t) + αy(t − δ)

1 + y(t − δ)10
(15)

with β =−1, α = 0.2 andδ = 17. The series is sampled
with a sampling period of 6. A part of the series is il-
lustrated inFig. 3. Ten thousand points have been gen-
erated; the first 5000 ones are used for learning (VQ),
the 5000 last ones for validation. Each regressor con-
tains the four last values of the series, as recommended
in the literature[13]. Gaussian noise with 0.25 vari-
ance has been added. The results are given inFig. 4.
The optimal number of centroids is 20, and the opti-

mal NMSE is found to be 0.30. For the sake of com-
parison, a linear model using the same regressor gives
NMSE = 0.36 (using the same learning and validation
sets).

If we now use the previous time series but without
any added noise (Fig. 5), we observe the surprising
result that the optimal number of centroids is equal to
the number of data in the learning set (Fig. 6).

This result is not so surprising when considered the
fact that data generated by Eq.(15)are noiseless. With
so many centroids, the VQ method becomes equivalent
to lazy learning[2], a method which consists in looking
in the learning data the one closest from the regressor.
Lazy learning has proved to be efficient in noiseless
problems.

4.2. Quantization with weighting of the output

The method illustrated in the previous section has
an obvious limitation: if the size of the regressor is
large, the relative weight given to theyt predictions in
the quantization of vectorsYt (Eq. (14)) decreases (it
counts for one coordinate, with regards toncoordinates
for the regressor).

A straightforward extension of the method is then
to give a different weight to the quantization of theyt

predictions by building theYt vectors as follows:

Yt = [ kyt yt−1 yt−2 · · · yt−n ]. (16)

ive
m pa-
r the
n n

ckey–G
Fig. 4. NMSE on the validation set for the Ma
Increasingk means that the VQ is biased to g
ore importance to the prediction. The structural

ameterk may be determined in the same way as
umberM of centroids in the VQ: by optimization o

lass with additive noise series prediction with VQ.
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Fig. 5. Mackey–Glass series, without noise (see text for parameters).

a validation set. Nevertheless, as the optimization is
realized in practice by scanning the range of parame-
ters, a double optimization can be time-consuming. It
is therefore suggested to optimize the two parameters
consecutively, possibly in an iterative way. This way of
optimizing the parameters does not guarantee to find a
global minimum for both of them, but is a reasonable
compromise between the quality of the optimization
and the computational load.

On the noisy Mackey–Glass series, starting with
M = 20 (the result found in the previous section for
k= 1), an optimization onk gives k= 0.5. This value
is then used for another optimization onM, which re-
sults inM = 60 (seeFig. 7), leading to a decreased 0.27
NMSE. Further optimizations do not improve the result
anymore.

4.3. Quantization with weighting of the inputs by a
linear model

The VQ process(12) implements a particular non-
linear model as defined by Eq.(13). Nevertheless, com-
pared to other nonlinear models, such as Multi-Layer
Perceptrons (MLPs), Eq.(12) has the drawback that
all inputs (all coordinates ofYt vectors(14)but yt) are
weighted equally. This is of course not optimal. A fur-
ther step is thus to weight also the inputs, building the
Yt vectors as follows:

Yt = [ kyt k1yt−1 k2yt−2 · · · kn−1yt−n ]. (17)

However, the optimization of allki parameters is heavy.
A full search is often not practicable, while a gra-
dient descent (computed by finite differences on the

or the M
Fig. 6. NMSE on the validation set f
 ackey–Glass series prediction with VQ.
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Fig. 7. NMSE on the validation set for the Mackey–Glass with additive noise series prediction with weighted VQ,k= 0.5.

validation set results) may be very slow. For this rea-
son, we suggest the use of the weights of a linear model,
as explained below.

When building a linear model:

ŷt = a0 + a1yt−1 + a2yt−2 + · · · + an−1yt−n, (18)

theai coefficients may be considered as the importance
(weighting) that variableyt−i has on the output. In other
words, it is the first partial derivative of the output with
respect to a specific input. Theai coefficients can there-
fore be considered as a first-order approximation of the
ki coefficients needed in(17). Of course, theai result-
ing from a linear hypothesis will not be optimum in
the sense defined in the previous section. Nevertheless,
again, we are looking for a good compromise between
an impracticable full search and an inefficient a priori

choice such aski = 1. The coefficients given by linear
model(18) appear to be efficient regarding this com-
promise.

A linear model with a four-dimensional regressor
on our previous example, the noisy Mackey–Glass se-
ries, gives roughly identicalai coefficients. As a con-
sequence, the use of these coefficients does not im-
prove the previously presented results. To illustrate the
weighting of the VQ by the coefficients of a linear
model, we thus use another well-known time-series
prediction benchmark, the SantaFe A series. Noise
with variance = 80 has been added to the original se-
ries. A part of this series is illustrated inFig. 8. As
for the previous example, 5000 points have been used
for learning and 5000 for validation. The regressor
size is 6.Fig. 9 shows the NMSE resulting from the

antaFe
Fig. 8. S
 A series.
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Fig. 9. NMSE on the validation set obtained on the prediction of the noisy SantaFe A series with a VQ model; dashed: without weighting of the
inputs; solid: with weighting of the inputs by the coefficient of a linear model.

weighting with the coefficients of a linear model; the
improvement is slight (NMSE equal to 0.46 instead
of 0.48), but does not demand large computation. Fur-
thermore, the NMSE obtained by weighting the inputs
leads to a flatter curve, and so finding an optimal num-
ber of centroids is not so crucial. Thekweighting of the
outputyt has been obtained with the method described
in Section4.2.

4.4. Radial-Basis Function Networks with
weighted inputs

With VQ, the possible values for the prediction form
a finite set (the set of outputs in the centroids); the out-
put may thus be viewed as quantized. We might want

to smooth the output for example by placing Gaussian
kernels on each centroid. In that way, we merely con-
struct an RBF Network.

The principle of weighting the inputs, presented in
the context of VQ, may be applied to RBFN[7] too.
Weighting the output in an RBFN model has no sense,
as appropriate output weights are computed through
the optimization ofλi , which is a standard procedure in
RBFN learning. However, RBFN suffer from the same
drawback as VQ what concerns the a priori identical
weighting given to all inputs. In conventional RBFN
context, this is illustrated by the use of a scalarσ i stan-
dard deviation, instead of a variance/covariance matrix.

Fig. 10 shows the results of an RBFN model
trained on the noisy SantaFe A series; inputs have

F of the weighting
o nts of a
ig. 10. NMSE on the validation set obtained for the prediction
f the inputs; solid: with weighting of the inputs by the coefficie
noisy SantaFe A series with an RBFN model; dashed: without
linear model.
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Table 3
Complexity and number of operations of each method

Method NMSE Complexity Number of operations proportional to

Structural
parameters

Iterative fitting

Number of parameters Objective function

Linear 0.7 0 – – N× n
VQ 0.48 1 M × n Simple N× M × #domM× n× E
VQ + weight out 0.46 2 M × n Simple N× M × #domM× n× E× K
VQ + weight in 0.45 2 M × n Simple N× M × #domM× n× E× K
RBFN 0.43 2 M × n Simple N× M × #domM× n× E× S
RBFN + weight in 0.42 2 M × n Simple N× M × #domM× n× E× S

been weighted according to the coefficients of a linear
model. The training of the RBFN model has been re-
alized according to[1]. The NMSE is 0.42. The same
remarks about weighting for the VQ technique apply
here.

5. Discussion

In this section, we summarize the results obtained
with the methods presented above, and compare their
inherent complexities.

We will first recall that in our problem, only learn-
ing is time-consuming. Once the chosen model is built,
using it with a fresh piece of data is very fast and does
not demand heavy computations. We assume that com-
plexity of an optimization algorithm only depends on
the inherent complexity of the objective function and
on the number of parameters to estimate. Noniterative
tasks are negligible compared to iterative tasks; in addi-
tion, optimizing a structural parameter demands doing
the entire job several times to find its optimum. In our
problems, the optimal regressor size is supposed to be
known and fixed.

Table 3shows the complexity and number of oper-
ations for all methods presented in this paper applied
on the SantaFe data. In this table:

• domMis the domain of tested values for the number
of centroids (VQ and RBFN).

•
•
•
•
• ess.
•

• Sis the size of the set of tested values for the standard
deviation in the Gaussian kernels.

The structural parameters are the number of cen-
troids or Gaussian kernels (all methods), the parameter
weighting the output in VQ-based methods, and the
width factor in RBFN-based ones; their impact on the
number of operations is respectively #domM, K andS.

In comparison, other nonlinear models such as
RBFN with other learning methods and Multi-Layer
Perceptrons, have at least two structural parameters,
leading to a number of operations at least equivalent to
the largest one inTable 3. In addition however, their
objective function is much more complex (for example
back-propagation for MLP); the number of operations
should be multiplied by the relative complexity of the
objective function.

We can see inTable 3that VQ techniques give much
better performances than linear models, at a cost which
is not much higher, and in any case much lower than if
using a fully nonlinear model.

6. Conclusion

The paper introduces a new time-series prediction
method based on vector quantization. The idea is to
gather past values into regressors and concatenate them
with the desired output that is the value of the series
one step ahead. Vector quantization is then applied on
t et of
c fy in
t s to
b cen-
t f the
v ents
M is the average value indomM.
#domMis the number of elements indomM.
n is the size of the regressors.
N is the number of data in the learning set.
E is the number of epochs in the VQ learning proc
K is the size of the set of tested values fork.
hose vectors, resulting in the determination of a s
entroids which can be seen as patterns to identi
he time series. When prediction of a new value ha
e made, the missing coordinate of the appropriate

roid is used. Adequately weighting the elements o
ectors and using Gaussian kernels as improvem
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of the method have shown to give improved results.
The method is illustrated here on time-series prediction
problems, but can be extended to any regression task.

The method presented in this paper implements a
compromise between the complexity of learning and
the performances of the method. Other nonlinear tools
with complex, time-consuming learning algorithms
might still result in better performances. However,
complex learning combined with an appropriate
choice of structural parameters through extensive
cross-validation may become too costly in a wide
variety of applications; at the other extreme, linear
models often lead to poor performances. The method
presented in this paper may therefore help practi-
tioners to benefit from the performances of nonlinear
models while maintaining reasonable complexity and
computation times.
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catholique de Louvain (Belgium) in 1987
and 1992, respectively. He was an invited
professor at the Swiss EPFL (Ecole Poly-
technique F́ed́erale de Lausanne, Switzer-
land) in 1992, at the Université d’Evry Val
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