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Abstract

Nonlinear time-series prediction offers potential performance increases compared to linear models. Nevertheless, the enhance
complexity and computation time often prohibits an efficient use of nonlinear tools. In this paper, we present a simple nonlinear
procedure for time-series forecasting, based on the use of vector quantization techniques; the values to predict are considere
as missing data, and the vector quantization methods are shown to be compatible with such missing data. This method offers a
alternative to more complex prediction tools, while maintaining reasonable complexity and computation time.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction the linear models, i.e. those estimating the unknown
value as a linear combination of other variables. The
Time-series prediction encompasses a wide variety latter are not necessarily restricted to past values of the
of application domains, in engineering (electrical load series and exogenous variables: they may also include
estimation), environmental (river flood forecasting), fi- estimations of the past predictions, or errors on them for
nance (risk prediction, and other domains. The prob- example. This class of models, including AR, ARMA,
lem consists in estimating an unknown time-dependent ARX, ARMAX, Box-Jenkins, etc. has the advantage of
variable given its past history, and possibly exogenous being quite simple to use, well recognized, and does not
context variables. suffer too much from the choice of structural param-
To predict time series, a large variety of approaches eters. Unfortunately, there are a number of real-world
are available. The most widely used ones are certainly situations where a simple linear model on the data does
not apply. The prediction results obtained by a linear
method may thus reveal poor or simply useless results.
: EOffefngding agUfhgf- @ond o Nonlinear prediction models may overcome this
Iendasn;?el@slautﬁiﬁair.]beaiiéLezr(;e{gz;]rf]ra:s;i:@auto.ucl.ac.be limitation, by dl’Oppr_]g the "”e"?‘r .mOdeI hyp.OtheSIS
(D. Francois), wertz@auto.ucl.ac.be (V. Wertz), on the data. Nonlinear prediction tools include
verleysen@dice.ucl.ac.be (M. Verleysen). artificial neural networks (Multi-Layer Perceptrons,

0167-739X/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
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Radial-Basis Function Networks, Self-Organizing combination of some previous values of the time series:
Maps, etc.), fuzzy logic models, and many others.

Despite their more general character, and therefore i =ao+aryi—1+axyi2+ -+ apyi—n. 1)
their extended potential, nonlinear tools suffer from . -
other drawbacks: they usually rely on complex opti- The regressor is the vecFor contammg the past values
mization procedures, they request the difficult setting (—1: - - » Yr-n) Of the series. The sizeof the regres-

rm fix riori.
of many user-controlled structural parameters (usually S0 Otr:JeSrt Iti)r?earerig d%lsoalso USe exoaenous variables:
controlling complexity), etc. In most situations, the 9 :

level of performances reached with nonlinear models thqQUt?r:etE;isesxi drggdeslslxtg ?;?%?S::;ir::éiz
depends on the experience of the user. Moreover, as( )- ' X

the extensive use of cross-validation or other resam- to the regressor:
pling techniques for model selection may strongly %
influence the performances, this level also depends
on computational resources and afforded computation +baus—1+ bour—2+ - - buptts—np (2)
time!

In this paper, a forecasting method based on non-
linear tools with limited complexity is presented, as
a compromise between the two approaches. The lim- @).

ited complexity allows adjusting the structural param- A Other I|ngar mo?jells thg:]cl\in *?e u:ed are the dlm;ar
eters when applicable, by sweeping the range of possi- utoregressive models with Moving Average and ex-

ble values with extended cross-validation. The method °9€10US vgrlables (ARMAX mode]s). In these.models,
is based on vector quantization (VQ) techniques, for the prediction error generated during the previous pre-

which efficient learning procedures are known. It is diction is added to the regressor:
shown that VQ algorithms can easily accommodate ~ _
missing data; this groperty is used byyconsidering the ' — %0 T AVt a2yi—z ke nYio
values to predict as missing data in a generalization step +bius—1+ bour—2+ -+ buptts—ni
of the method, while learning is performed on past val-
ues of the series, i.e. nonmissing data. Smoothing of the
results is optionally performed by using Radial-Basis ith
Function Networks (RBFNS).

In the following, it is first described how nonlin-  r; = y; — ¥. 4)
ear tools in general, and RBFN in particular, may be o ) ] ]
used in the context of time-series prediction. Vector fthe prediction obtained by linear models is not accu-
quantization is then introduced, together with its use ate enough, nonlinear models can be used. The linear
on problems with missing data. The prediction method models presented above can be extended to _nonllnear
is then detailed, with optional improvements imple- ©ONes- For example, the Nqnl|nearAutoregreSS|ve mod-
menting different compromises between possible per- €IS (NAR models) are defined as
formances and complexity. These compromises are il- .
lustrated on two time-series prediction examples. Fi- ** — FOr-1 32,5 yien, 0), ®)

nally, the computational load of the methods is studied \yheref is a nonlinear function and the parameters

=ag+ai1yi—1+azyr—2+---+apyi—n

with u; atime series of exogenous data. Of course, more
than one exogenous time series could be added to Eq.

+c1r—1+ cor—2+ -+ Cncli—ne 3

in terms of number of operations. of this function. An example of nonlinear model is the
Radial-Basis Function Networks, schematically repre-
sented irFig. 1
2. Linear and nonlinear models The output of the RBFN is given by
The simplest models that may be used for time- M
series prediction are the Autoregressive (AR) ones. In ¥ = Z 2i®i(x, Ci, 07), (6)

these models, the predictignis computed as a linear i=1
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Fig. 1. RBFN withn inputs and one output.

where

2
Qbi(x’ Ci, Ui) = e_(”x_CiH/\/ZJi) . (7)

In Egs.(6) and (7), x represents the vector of inputs
X1, - .., Xy, andy the output of the model. In our NAR
model (Eq.(5)), the inputsx; are the previous value
of the series (the regressar[1, ..., yr—»]). The pa-
rameters of the model are the cent&s(usually re-
sulting from vector quantization of the input data),
the standard deviations, and the multiplying coef-
ficientsa;. Learning of RBFN parameters may be per-
formed through various learning algorithms (see for
example[1,9-12); what is important to mention here
is that an RBFN usually requires the adjustment of at
least two structural parameters: the number of Gaus-

sian kernels and at least one parameter—overlapping

factor—needed for the adjustment of the standard de-
viations o; (see for examplgl]). In our time-series

Fig. 2. Example of RBFN. Dots: learning data; solid lines: the two
Gaussian functions in the model used to fit the data.

prediction context, the vector inputsare replaced by
the regressors. An example of RBFN result on a one-
dimensional problem is shown Fig. 2

Model selection is an important part in the process
of learning with a nonlinear model. Inthe case of RBFN
for example, there is no rule to select a priori an optimal
numberV of Gaussian functions; the number of Gaus-
sian functions is a structural parameter as discussed
above. In order to choose optimal values for structural
parameters, validation procedures are used: the learn-
ing setis used to determine the parameters of the model,
such as they coefficients for the linear models &,
oij anda; for an RBFN, while the validation set is used
to determine the structural parameters such as the size
of the regressor or the number of Gaussian functions
in an RBFN.

In the learning phase the parameters are determined
as the result of the minimization of the prediction error
on the learning set LS. The Normalized Mean Square
Error on the learning set can be defineds4

ERY
NMSE, = ZleLs()’z )’1)2’
2rerslyr — ¥)

wherey is the average value gf. During learning, the
structural parameters are fixed.

There are two important differences between linear
and nonlinear models with respect to learning:

(8)

1. The parameters of AR and ARX models are de-
termined directly and exactly (for example with
a pseudo-inverse). On the contrary parameters of
nonlinear models are determined iteratively (for
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example with a gradient descent method). The con- V;;(1 < j < D). The principle of vector quantization
sequence is that the parameters obtained for nonlin-is to replace this database by another one, containing
ear models are often not optimal because the itera- fewer vectorsCy of the same dimensio®(1 < k <
tive methods usually lead to local minima. M, M < N).The numbeM of vectorsCy is a structural

2. The computational load for determining the param- parameter of the method. The new vectGxs called
eters of nonlinear models is huge compared to the centroids, are deemed to have a distribution similar to
computational load in the linear case. the distribution of the initiaV;. Once the centroids are

o fixed through some algorithm, each veckgris then
In the validation phase, the structural parameters are quantized by its “nearest-neighbor” centreit:

determined as the result of the minimization of the pre-

diction error on a validation set (usually, the minimiza- C*(V;) = arg mir(||V; — Cx||?). (10)
tion is simply performed by sweeping the structural C

parameters over the discrete range of possible values).Tne \oronoi region associated to centr@idis the set
The Normalized Mean Square Error on the validation ¢\ ectors associated @ by Eq.(10). In other words,

set VS can be defined as it is the region of the space nearestGpthan to any

> (e — )2 other centroid.
NMSEy = == 2 9) Determining the “best” set of centroids, i.e. the set
2revsbr = ’) that minimizes on average (on all data contained in

whereys the average value gf. Using a validation set the original database), the quantization error defined

independent from the learning set reduces the risk of PY the distance in E¢(10), is a nonlinear optimiza- -
choosing structural parameters leading to overfitting. 0N problem. Many algorithms have been proposed in
the literature to determine the centroids: batch algo-

rithms, as Lloyd’s on¢8], or on-line adaptive ones, as
the competitive learning methd#].
As an example, competitive learning works as fol-
- lows. At each iteration, a dafg is drawn randomly
3.1. Definition from the initial database. The nearest cent@ids de-
termined (according to E§10)) and moved (adapted)
in the direction of datd/;:

3. Vector quantization

Vector quantizatioj3] is a way to summarize the
information contained in alarge database. Vector quan-
tization is the basic tool used in the prediction method new(yy — c*old(yy o (V; — C*O9(Vy)), (11)
described in the next section; it is also used as part of

RBFN learning1]. wherew is a time-decreasing adaptation factor. The
Let us define a database through the example of same operation is repeated several times (epochs) over
Table 1 each vector of the whole database.

Elements (observations, or data, or vectors) of this  Of course, all VQ algorithms find a set of centroids
database are thus liné3(1 < i < N), with elements that correspond to a local minimum of the quantization

Table 1
Database definition
Variable 1 Variable 2 ... Variablej . VariableD

First data 11 17 .. Vyj .. 87
Second data 12 34 . Vy .. 7

Third data 82 -32 S Vs .. 92

Fourth data 34 65 . Vg .. 42

ith data Vi1 V2 .. Vi .. Vip

Nth data -2 34 . VNj . VD
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Table 2
Database with missing data
Variable 1 Variable 2 . Variablej ... VariableD
First data 11 17 .. Vyj .. 87
Second data ? 34 . ? ... 7
Third data 82 ? .. V3 .. 92
Fourth data 34 65 . \Z . ?
ith data Vi1 Vio .. Vij .. Vip
Nth data -2 ? - VNJ‘ - VND

error criterion, and not a global one. Many initializa- formation fromV; is certainly more appropriate than
tion methods and many adaptation rules have been pro-replacing a missing value by the average of the corre-
posed in the literature (see for examfe6]), aiming sponding variable from all other observations (average
at finding a good compromise between the “quality” of onacolumn ofthe database), asitis often the case when
the local minimum and the computational complexity dealing with incomplete data. VQ may be viewed as a
(number of operations). simple but efficient way to use the information con-
tained in the known coordinates of vectt
3.2. Missing data

An easy-to-understand but not so well known and 4. Prediction with VQ and missing data
used property of VQ is that databases with missing data
can be quantized easily. Let us imagine that the initial 4.1. Quantization without weighting
database is now as representedable 2

In Table 2 each '?’ corresponds to a value that was Time-series prediction may be viewed as a regres-
not measured, or not stored, for any reason; the ‘?’s sion problem when expressed by &), repeated here
are the missing values. The VQ process defined by for convenience:
Egs.(10) and (11) remains valid, if the computation

of Euclidean distance in EGL0)is replaced by a dis- V¢ = / (=1 Y=2. - y1=n. 0). (13)
tance computed only on the known variables and not |n this equationy; is the estimation of the unknown
on the missing ones (of course, it is assumed that the ya|ue of the time series at tintewhile Viels « vy Vien

centroids have no missing values). Similarly, the adap- are the knowm past values of the series which form the

tation of centroids by Eq11)is performed only using  regressor is the set of parameters of the estimétor

the corresponding existing coordinates of dgteand  the estimator can be linear or nonlinear in the general

not on the missing ones. case. The problem is now expressed as a regression
Using VQ with missing data has proved to be effi- problem withninputs and one outputinstead of a time-

cient to find estimations of missing values in databases series problem.

[4]. A missing value is replaced by the corresponding  The past knowledge on the series is concatenated

variable of the centroid nearest to the observation. This with the output to form ar(+ 1)-dimensional vector of

technique may be viewed as estimating a missing value the following form:

with a function of the available variables in the same

observation: Y=y Y1 Y2 - Yin]- (14)

V= (C* (Vi) ;s (12) The vectors; may be thought of as the vectdrsfrom

the database presented in the previous section. VQ can
whereC" is the nearest centroid froM according to thus be applied to those vectors resulting from the con-
Eq. (10) where the distance computation is restricted catenation. Next, the VQ model may be used onincom-
to the known coordinates a&f;. Using the known in- plete vectors, where the missing value is precisely the
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1.6 ‘ . ‘ - mal NMSE is found to be 0.30. For the sake of com-
parison, a linear model using the same regressor gives
NMSE =0.36 (using the same learning and validation
12 ‘ sets).
I If we now use the previous time series but without

ﬂ any added noiseFg. 5, we observe the surprising

0.8 . . .
result that the optimal number of centroids is equal to
0.6 I the number of data in the learning sktd. 6).
0.4} | This result is not so surprising when considered the
fact that data generated by Ef5) are noiseless. With
02 100 200 300 200 500 so many centroids, the VQ method becomes equivalent

‘ to lazy learnindg2], a method which consists in looking

Fig. 3. Mackey-Glass series, with additive noise (see text for param- in the Ieaming data the one closest from the regressor.

eters). Lazy learning has proved to be efficient in noiseless
problems.

yt one. Therefore, modéin Eq.(13)consists in the ap-

proximation of the missing value by the corresponding 4.2. Quantization with weighting of the output

coordinate of the nearest centroid, as given by(E@).

This method is illustrated in this paper on a well- The method illustrated in the previous section has
known time-series benchmark, the Mackey—Glass se- an obvious limitation: if the size of the regressor is
ries[5]. The series has been generated accordingto  large, the relative weight given to tlyepredictions in

ay(t — 5) the quantization of vectorg; (Eq. (14)) decreases (it

& = By(r) + 5 (15) counts for one coordinate, with regardsitwoordinates
dr 1+ y(t—9) for the regressor).
with 8= —1, «=0.2 ands=17. The series is sampled A straightforward extension of the method is then

with a sampling period of 6. A part of the series is il- to give a different weight to the quantization of the
lustrated irFig. 3 Ten thousand points have been gen- Predictions by building th&; vectors as follows:
erated; the first 5000 ones are used for learning (VQ), Y, = [k
the 5000 last ones for validation. Each regressor con- ! Vi
tains the four last values of the series, as recommended Increasingk means that the VQ is biased to give
in the literature[13]. Gaussian noise with 0.25 vari- more importance to the prediction. The structural pa-
ance has been added. The results are givdfign4. rameterk may be determined in the same way as the
The optimal number of centroids is 20, and the opti- numberM of centroids in the VQ: by optimization on

Vil Yi—2 -+ Yi—n]. (16)

1 T T

0.9 T

0.8 T

0.7 =

0.6 S

NMSE

0.5F .

02 I I
0 50 100 150

Number of centroids

Fig. 4. NMSE on the validation set for the Mackey—Glass with additive noise series prediction with VQ.
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Fig. 5. Mackey—Glass series, without noise (see text for parameters).

a validation set. Nevertheless, as the optimization is
realized in practice by scanning the range of parame-
ters, a double optimization can be time-consuming. It
is therefore suggested to optimize the two parameters
consecutively, possibly in an iterative way. This way of
optimizing the parameters does not guarantee to find a
global minimum for both of them, but is a reasonable
compromise between the quality of the optimization
and the computational load.

On the noisy Mackey—Glass series, starting with
M =20 (the result found in the previous section for
k=1), an optimization ork givesk=0.5. This value
is then used for another optimization bh which re-
sults inM =60 (sed-ig. 7), leading to a decreased 0.27
NMSE. Further optimizations do notimprove the result
anymore.

xIOV‘

4.3. Quantization with weighting of the inputs by a
linear model

The VQ proces$12) implements a particular non-
linear model as defined by E{.3). Nevertheless, com-
pared to other nonlinear models, such as Multi-Layer
Perceptrons (MLPs), Eq12) has the drawback that
all inputs (all coordinates of; vectors(14) buty;) are
weighted equally. This is of course not optimal. A fur-
ther step is thus to weight also the inputs, building the
Y; vectors as follows:

Yy =[ky: kiyi-1 koyi—2 kn—1yi—n]. (A7)

However, the optimization of al§ parameters is heavy.
A full search is often not practicable, while a gra-
dient descent (computed by finite differences on the

NMSE

1 1 1 1

0.5
500 1000 1500 2000 2500

3000 3500 4000 4500 5000

Number of centroids

Fig. 6. NMSE on the validation set for the

Mackey—-Glass series prediction with VQ.
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NMSE
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Number of centroids

Fig. 7. NMSE on the validation set for the Mackey—Glass with additive noise series prediction with weightke VG,

validation set results) may be very slow. For this rea- choice such ak; =1. The coefficients given by linear
son, we suggest the use of the weights of a linear model, model (18) appear to be efficient regarding this com-
as explained below. promise.

When building a linear model: A linear model with a four-dimensional regressor
on our previous example, the noisy Mackey—Glass se-
ries, gives roughly identicad; coefficients. As a con-
thea; coefficients may be considered as the importance sequence, the use of these coefficients does not im-
(weighting) that variable,_; has onthe output. Inother ~ prove the previously presented results. To illustrate the
words, itis the first partial derivative of the output with  Weighting of the VQ by the coefficients of a linear
respect to a specific input. Thecoefficients canthere- ~ model, we thus use another well-known time-series
fore be considered as a first-order approximation of the prediction benchmark, the SantaFe A series. Noise
ki coefficients needed if17). Of course, they; result- with variance =80 has been added to the original se-
ing from a linear hypothesis will not be optimum in ries. A part of this series is illustrated fig. 8 As
the sense defined in the previous section. Neverthelessfor the previous example, 5000 points have been used
again, we are looking for a good compromise between for learning and 5000 for validation. The regressor
an impracticable full search and an inefficient a priori size is 6.Fig. 9 shows the NMSE resulting from the

i =ao+aryi—1+azy;2+ -+ ap-1y;1—n, (18)

‘50 1 1 L 1
4400 4600 4800 5000 5200 5400 5600
t

Fig. 8. SantaFe A series.
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0.6 T T T T T T T T T

NMSE

L L L I I I 1
0 50 100 150 200 250 300 350 400 450 500

Number of centroids

Fig. 9. NMSE on the validation set obtained on the prediction of the noisy SantaFe A series with a VQ model; dashed: without weighting of the
inputs; solid: with weighting of the inputs by the coefficient of a linear model.

weighting with the coefficients of a linear model; the to smooth the output for example by placing Gaussian
improvement is slight (NMSE equal to 0.46 instead kernels on each centroid. In that way, we merely con-
of 0.48), but does not demand large computation. Fur- struct an RBF Network.

thermore, the NMSE obtained by weighting the inputs ~ The principle of weighting the inputs, presented in
leads to a flatter curve, and so finding an optimal num- the context of VQ, may be applied to RBHN] too.

ber of centroids is not so crucial. Th&veighting of the Weighting the output in an RBFN model has no sense,
outputy; has been obtained with the method described as appropriate output weights are computed through

in Section4.2 the optimization of;, which is a standard procedure in
RBFN learning. However, RBFN suffer from the same

4.4. Radial-Basis Function Networks with drawback as VQ what concerns the a priori identical

weighted inputs weighting given to all inputs. In conventional RBFN

context, this is illustrated by the use of a scalastan-
With VQ, the possible values for the prediction form dard deviation, instead of a variance/covariance matrix.
a finite set (the set of outputs in the centroids); the out- ~ Fig. 10 shows the results of an RBFN model
put may thus be viewed as quantized. We might want trained on the noisy SantaFe A series; inputs have

049 1
048
0471

046

NMSE

045t
044
043

0421 =

0.41 v ;
0 50 100 150

Number of centroids

Fig. 10. NMSE on the validation set obtained for the prediction of the noisy SantaFe A series with an RBFN model; dashed: without weighting
of the inputs; solid: with weighting of the inputs by the coefficients of a linear model.



A. Lendasse et al. / Future Generation Computer Systems 21 (2005) 10561067 1065

Table 3
Complexity and number of operations of each method
Method NMSE Complexity Number of operations proportional to

Structural Iterative fitting

parameters A )

Number of parameters Objective function

Linear 0.7 0 - - Nxn
VQ 0.48 1 Mxn Simple N x M x #domMx n x E
VQ +weight out 0.46 2 Mxn Simple N x M x #domMx n x E x K
VQ +weight in 0.45 2 Mxn Simple N x M x #domMx n x E x K
RBFN 0.43 2 Mxn Simple Nx M x #domMxnx Ex S
RBFN +weight in 0.42 2 Mxn Simple Nx M x #domMxnx Ex S

been weighted according to the coefficients of a linear e Sisthe size of the set of tested values for the standard
model. The training of the RBFN model has been re-  deviation in the Gaussian kernels.

alized according t¢1]. The NMSE is 0.42. The same
remarks about weighting for the VQ technique apply
here.

The structural parameters are the number of cen-
troids or Gaussian kernels (all methods), the parameter
weighting the output in VQ-based methods, and the
width factor in RBFN-based ones; their impact on the
number of operations is respectivelggmM K andS.

In comparison, other nonlinear models such as
RBFN with other learning methods and Multi-Layer
Perceptrons, have at least two structural parameters,
leading to a number of operations at least equivalent to
the largest one ifable 3 In addition however, their
objective function is much more complex (for example
back-propagation for MLP); the number of operations
should be multiplied by the relative complexity of the
objective function.

5. Discussion

In this section, we summarize the results obtained
with the methods presented above, and compare their
inherent complexities.

We will first recall that in our problem, only learn-
ing is time-consuming. Once the chosen model is built,
using it with a fresh piece of data is very fast and does
not demand heavy computations. We assume that com-

plexity of an optimization algorithm only depends on We can see iifable 3that VQ techniques give much

the inherent complexity of the objective function and bett ¢ than | dels. at twhich
on the number of parameters to estimate. Noniterative . eter periormances than finear modets, ata cost whic

tasks are negligible compared to iterative tasks; in addi- IS T‘Ot much hlghgr, and in any case much lower than if
tion, optimizing a structural parameter demands doing using a fully nonlinear model.
the entire job several times to find its optimum. In our
problems, the optimal regressor size is supposed to be
known and fixed.

Table 3shows the complexity and number of oper-
ations for all methods presented in this paper applied
on the SantaFe data. In this table:

6. Conclusion

The paper introduces a new time-series prediction
method based on vector quantization. The idea is to
gather past values into regressors and concatenate them
e domMis the domain of tested values for the number with the desired output that is the value of the series

of centroids (VQ and RBFN). one step ahead. Vector quantization is then applied on
e Mis the average value iomM those vectors, resulting in the determination of a set of
e #domMis the number of elements domM centroids which can be seen as patterns to identify in
e nis the size of the regressors. the time series. When prediction of a new value has to
e Nis the number of data in the learning set. be made, the missing coordinate of the appropriate cen-
e Eisthe numberofepochsinthe VQ learning process. troid is used. Adequately weighting the elements of the
e Kiis the size of the set of tested values for vectors and using Gaussian kernels as improvements
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