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Abstract 
 

This paper presents a scheme for unsupervised 
classification with Gaussian mixture models by means of 
statistical learning analysis. A Bayesian Ying-Yang 
harmony learning system acts as a statistical tool for the 
particular derivation and development of automatic joint 
parameter learning and model selection. The proposed 
classification mechanism roughly decides on the number 
of real classes, by earning activation for the winners and 
assigning penalty for the rivals, so that the most 
competitive center wins for possible prediction and the 
extra ones are driven far away when starting the 
algorithm from a too large number of classes without any 
prior knowledge. Simulation experiments prove the 
feasibility of the approach and show good performance 
for unsupervised classification and natural estimation on 
the number of classes. 
 
1. Introduction 
 

Statistics tools are always crucial for the analysis and 
development of knowledge discovery and data mining. 
Statistical learning theory is a machine learning principle 
with the ambition to explore the inherent distribution, 
dependence structure, and generalization ability in the 
learning model as well as possible [1, 2]. Vapnik first put 
forward statistical learning theory as a sound statistical 
basis for the assessment of the predictive model [1], and 
aroused Support Vector Machine as a popular practical 
method. Lei Xu also proposed a general statistical 
learning framework, Bayesian Ying-Yang (BYY) 
harmony learning theory, for simultaneous parameter 
learning and model selection [2].  

Unsupervised classification attempts to partition and 
assign natural groups via a similarity measure based on 
features and properties [3-5]. As it starts from little prior 
knowledge about the data, without supervision as in a 
classification model and manual labels, potential 
difficulties exist: among the possible problems, one can 
anticipate that information from various sources could be 
mixed in a single class, and conversely that single 

information could be split among classes.  The best choice 
for the number of classes is not always clear, so it is often 
an ad hoc decision to choose it; the problem becomes 
even more difficult in mixture distribution cases. 
Therefore we need to take some knowledge into 
consideration to select models and label classes during 
unsupervised classification.  

In this paper we present an unsupervised classification 
mechanism for Gaussian mixture models, using statistical 
learning analysis on a Bayesian Ying-Yang harmony 
learning system. The proposed method includes automatic 
parameter learning and model selection in parallel. Both 
of the two key elements in unsupervised classification, 
i.e., the classification formation and the structure 
selection, are almost achieved at the same time in a single 
framework. Starting from a number of classes larger than 
the number of original mixtures, the unsupervised 
classification procedure proposed in this paper welcomes 
the real winners and banishes their rivals far away, so that 
the natural (effective) number of classes can be 
synchronously learned in most cases. Simulation 
experiments show good performance for unsupervised 
classification, including the determination of the number 
of classes. 
 
2. Bayesian Ying-Yang harmony learning 
 

Let X  be the observation world and Y  be the class 
representation domain; a Bayesian Ying-Yang system 
consists of two Bayesian perspectives of joint probability 
distribution decomposition from complementary paths [2]: 

( , ) ( ) ( ), ( , ) ( ) ( ) p x y p y x p x q x y q x y q y= =  (1) 

In this equation, both ( , )p x y  and ( , )q x y  define the 
joint probability distribution of x  and y , respectively 
coming from two paths called the Yang and the Ying 
paths; using q  instead of p  for the path is only a 
question of notation aimed to identify without ambiguity.  

As ( , )p x y  and ( , )q x y  are first defined and 
estimated from two different perspectives, initially the 
two distributions are not necessarily equal. The 

Fifth International Conference on Fuzzy Systems and Knowledge Discovery

978-0-7695-3305-6/08 $25.00 © 2008 IEEE

DOI 10.1109/FSKD.2008.333

14

Authorized licensed use limited to: Michel Verleysen. Downloaded on February 25, 2009 at 09:03 from IEEE Xplore.  Restrictions apply.



fundamental BYY harmony learning principle is to make 
the Ying and Yang machine be in best harmony in a 
twofold sense, i.e. to conform to the matching nature as 
well as the least complexity nature between the two paths 
p  and q , so as to accomplish equality and simplicity of 

( , )p x y  and ( , )q x y  at the end of learning. 
Mathematically, harmony learning is a continuous 
optimization task for parameter learning and a discrete 
optimization for model selection, both aiming to 
maximize the same cost function )( qpH  between p  

and q . Here )( qpH  is defined as [2]: 

1

( ) ( , ) ln ( , ) ln

( , )

q

N
q t tt

H p q p x y q x y dxdy z

z q x y
=

= −

=

∫
∑

 (2) 

where qz  is a sum of the joint probabilities ( , )t tq x y  

evaluated on all pairs tx  and ty  given an input dataset 

{ } 1

N
t t

x
=

. 
In this paper, we specify a specific Bayesian 

probability distribution architecture for unsupervised 
classification framework in the frame of BYY harmony 
learning; we then derive and explore the iterative learning 
procedure on Gaussian Mixture model. 

 
3. Unsupervised classification mechanism for 
Gaussian mixture model 
 

Within the statistical learning context detailed in 
Section 2, we first choose and settle a probability 
distribution model that might be proper for the 
unsupervised classification framework, and then derive 
and develop the relevant learning algorithm from the 
general probability learning process of BYY harmony 
learning system. First of all, suppose ( )p x , ( )q y  and 

( )q x y  all take parametric form, while ( )p y x  is 
structure-free [2]. The task of machine learning is to 
decide the probability distribution form of ( )p y x  and 
to obtain in parallel all parameters in the probability 
distribution functions. The following selection and 
derivation of statistical learning analysis offers us a way 
to achieve the unsupervised classification mechanism for 
Gaussian Mixture model. 
 
3.1. Gaussian mixture model 
 

In statistics, a probability mixture model denotes the 
convex combination of multiple probability distributions. 
Assuming that each class adheres to a unimodal 
distribution, Gaussian mixture model tries to make each 
center capture and describe the truth of a single class 

around a single mode, and the membership of each 
observation is defined through unobserved latent 
variables. Here we also adopt the Gaussian mixture model 
for the Bayesian probability architecture as a start, and 
attempt to find centers of multiple natural classes. In order 
to simplify the derivation, suppose ( )q x y  follows one 
Gaussian distribution stated below, 

2( ) ( , ),  y y y yq x y G x c Iσ= Σ Σ =       (3) 

Hereafter, for classification problems, we define y  as the 
class label, 1,2, ,y k= , with k  denoting the number 

of classes, and the covariance matrix yΣ  makes all 
classes isotropic. 
 
3.2. Bayesian probability architecture 
 

We then choose the probability distribution forms for  
( )p x  and ( )q y , in order to set up a Bayesian 

probability architecture for unsupervised classification 
based on a Gaussian mixture model. As we have no a 
priori information about the relations and connections 
among inputs, ( )p x  is derived from an empirical 

density,  
1

1( ) ( )N
tt

p x x x
N

δ
=

= −∑ . For an 

unsupervised classification problem, ( )q y  takes a 
parametric form as, 

1 1
( ) ( ), 1   k kq y yα δ α

= =
= − =∑ ∑     (4) 

Here ( )q y  is drawn from the Kronecker function 

distribution, and α  are the mixture proportions for 
Gaussian Mixture model.  

 
3.3. General learning procedure 

 
From the above framework of probability distributions, 

the general BYY harmony learning process for a 
structure-free ( )p y x  is then expressed as [2]: 

( ) ( ( )),
( ) arg min ( , ),

( , ) ln[ ( ) ( )] ln
y

q

p y x y y x
y x d x y

d x y q x y q y z

δ= −
=

= − +

    (5) 

where ( , )d x y  could be thought as one probability 
measure for the joint probability distribution ( , )q x y . 
 
3.4. Membership hypothesis 
 

In practice, the most common case for unsupervised 
classification is that the number of classes is unknown 
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beforehand. However, many unsupervised classification 
algorithms, in particular K-means, strongly depend on the 
number of classes that has to be fixed in advance [4].  

In order to perform classification and to choose the 
adequate number of classes in parallel, a basic idea for 
membership is introduced [6]. After each input 
presentation, not only the winner is modified to adapt to 
the input, but also its rival will receive a small penalty. 
Specifically, the following typical membership case is 
considered in the unsupervised classification framework, 

     
arg min ( , ( ))

arg min ( , ( ))
t

t y t t
t

r y y t t

y d x y x
Y

y d x y x≠

=⎧⎪= ⎨ =⎪⎩
            (6) 

where ty  refers to the class label of the winner, while ry  
is the class label of its rival, representing the class with 
the second minimum measure ( , )d x y  between the input 
except the winner. When starting from a number of 
classes that is larger than the natural number of groups in 
the data, the goal is to automatically adjust the effective 
number of classes during classification.  
 
3.5. Iterative algorithm derivation 
 

On the basis of the above assumptions and definitions 
made on the probability distributions for the Bayesian 
architecture, we can detail the adaptive update algorithm 
for unsupervised classification. First set the initial state as 

( ) 0qz t = , 1y kα = ; ( )qz t  can be cumulatively 
computed like this:  

 2( ) ( 1) ( , )q q y t y yy
z t z t G x c Iα σ= − +∑          (7) 

A set of update factors in the iterative steps is obtained 
by computing all derivatives of )( qpH  with respect to 

the corresponding variables yc , yσ , yα  and so on. 
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Here τ  is introduced as a counter, ( , )old
t yD x c  is the 

similarity measure between the input tx  and the previous 

class mean old
yc . ,t yγ  is a rate for machine learning 

specific to the input tx  and the class label y , and 0γ  is a 

given constant. In virtue of the measure ( , )d x y , ,t yγ  

from the winner ty stands for the learning rate, while its 

counterpart ,t yγ from the rival ry refers as the penalty rate.  

After taking iterative steps, the unsupervised 
classification framework roughly decides on the number 
of classes. The new input is assigned to the nearest class 
with a winning label based on the minimum measure 

( , )d x y  in the competitive condition that denotes the 
similarity and correlation between data and classes. 
 
3.6. Simplification 
 

Knowledge discovery and data mining always refer to 
large scale dataset. In practice, a large scale dataset 
inevitably leads to the huge computation load. Though the 
above statistical learning idea is not too heavy on the 
computational point of view, it might still be necessary to 
simplify the computations as much as possible. The 
Cityblock distance is first adopted instead of the direct 
computation of Euclidean metric for an easy realization in 
the large scale dataset with only additions, subtractions, 
and arithmetic comparisons.  

Secondly for any random input, one easy way to 
realize the above iterative steps is to replace ,t yγ  by, 

,
,

,

             
          

t t y t
t y

r t y r

y y

y y

γ η
γ

γ η
=⎧⎪= ⎨− =⎪⎩

          (10) 

where tγ  and rγ  are both constant rates that are positive 
and lower than 1, one for learning, and the other one for 
penalty, with r tγ γ≤ ; ,t yη  is made up of the variant part 

of ,t yγ  with regard to the input tx  and the class label 

y , and can be simply implemented as follows: 

,
,

, ,

2

( )

                 
     

t t

t y t t
t y

t y y y t r

d d y y

d d d y y
η

=⎧⎪= ⎨ + =⎪⎩
       (11) 

Here td  takes the sum form, , , ,t r t rt t y t y y yd d d d= + + , 

where , tt yd , , rt yd  and ,t ry yd  all refer to the similarity 

measures with regard to the relevant variables: 

, { ( , ) }t y t y td D x c y Y= ∈  and , ( , )
t r t ry y y yd D c c= . 

Every input will in turn be used to update the mean of 
the class as follows: 
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,, ( )   new old old
y y y y t y t yc c c c x cγ= + Δ Δ = −   (12) 

The steps are repeated until one of the two following 
conditions is fulfilled: either each extra mixture 
proportion yα  is pushed towards zero (and consequently 

each extra mean yc  is pushed far away from the data), or 
if the classification results remains roughly fixed for all 
inputs.  
 
4. Simulation experiment 
 

Simulation experiments were carried out to verify the 
performance of the proposed unsupervised classification 
framework. The experimental dataset consists of a set of 
samples drawn from a mixture of no more than five 
Gaussian distributions with different locations, mixture 
proportions and degrees of overlap among classes inside 
the [-1, 1] domain in a 2-dimensional space. Some 
examples of datasets are shown in Figure 1.  

Given a hypothetical number of classes larger than the 
original number of mixtures, both K-means and the 
proposed mechanism were respectively employed for 
unsupervised classification.  

 

 
(a) 

 
(b) 

 
Figure 1. Dataset examples 

5. Result analysis 
 

Starting from a too large number of classes (set to 
eight here), the classification performances as well as the 
paths of centers in both K-means and the proposed 
algorithm for the above example databases are shown as 
Figure 2.  Figure 2 (a1) and (b1) are the results of the K-
means algorithm, and (a2) and (b2) are the results of the 
classification mechanism proposed in this paper; (a1) and 
(a2) refer to dataset (a), and (b1) and (b2) to dataset (b). 
The unsupervised classification framework proposed in 
this paper earned activation for the winners and assigned 
penalty for their rivals, so that the winners concentrate 
more around the natural centers of the classes and their 
rivals are driven far away from the datasets. Samples from 
unknown classes are then assigned to the most 
competitive classes, whose centers are representatives of 
the datasets. The effective number of classes could be 
easily observed, while the extra ones can be identified and 
removed after or even during learning. On the contrary, 
the K-means algorithm maintains the originally given 
number of classes, some of them turning out to be 
meaningless at the end if the correct number was not 
guessed before learning. 

 

 
(a1) 

 
(a2) 
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(b1) 

 
(b2) 

 
Figure 2.  Paths of class centers during learning.  
The final position is identified by a dot.  Figures (a1) and 
(b1) show the results of the K-means algorithm; (a2) and 
(b2) show the results of the classification mechanism 
proposed in this paper. (a1) and (a2) correspond to 
dataset (a), and (b1) and (b2) to dataset (b) in Figure 1. 

 
6. Conclusions 
 

In this paper, an unsupervised classification 
mechanism for Gaussian mixture models is presented 
based on a general statistical learning tool, the Bayesian 
Ying-Yang harmony learning system.  The model is 
specified by probability distribution hypotheses, and the 
learning mechanism is derived from an objective function.  
The main feature of the model is that it performs 
parameter learning and model selection in parallel: the 
proposed classification mechanism roughly decides on the 
number of real classes, prompts the winner by activation 
and obstructs its rival by penalty, so that the most 
competitive center wins for possible prediction and the 
extra ones are driven far away from the distribution.  The 
only prerequisite is to start with a number of classes that 

exceeds the natural number of classes in the data. 
Simulation experiments achieve good performance for the 
unsupervised classification of two sample datasets, and 
show how the number of effective classes is automatically 
extracted during learning. 
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