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Abstract. The minimum support ICA algorithms currently use the ex-
treme statistics difference (also called the statistical range) for support
width estimation. In this paper, we extend this method by analyzing
the use of (possibly averaged) differences between the N − m + 1-th and
m-th order statistics, where N is the sample size and m is a positive
integer lower than N/2. Numerical results illustrate the expectation and
variance of the estimators for various densities and sample sizes; the-
oretical results are provided for uniform densities. The estimators are
analyzed from the specific viewpoint of ICA, i.e. considering that the
support widths and the pdf shapes vary with demixing matrix updates.

1 Introduction

Recently, new contrasts for ICA have been developed for the separation of
bounded sources, based on the fact that the output support width varies with
the mixing coefficients; the independent components are recovered one by one,
by finding directions in which the outputs have a minimum support convex hull
measure [1, 3]. Such approach benefits from some advantages: on one hand the
contrast is extremely simple and free of spurious maxima [1]; and on the other
hand, its optimization can be easily handled, leading to interesting results in
terms of speed and residual crosstalk.

The support estimation of a pdf fX has been extensively studied in statistics
and econometrics. Nevertheless, most methods require resampling techniques or
tricky tuning parameters, and are thus not really appropriated to ICA algo-
rithms. For instance, if the support Ω(X) of the output is (a, b), existing ICA
methods currently use the range approximation to estimate the (Lebesgue) mea-
sure of the support µ[Ω(X)] : b − a � R(X) � maxi,j [xi − xj ], 1 ≤ i, j ≤ N
where the xj can either be considered as iid realizations of the common random
variable (r.v.) X, or as a samples of a stationary stochastic process constituted
of a sequence of N independent r.v. Xj , all sharing the same pdf fX .

An extended form of this estimator will be considered here, using order statis-
tics differences. The study is motivated by the idea that the extreme statistics
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are not necessarily reliable. Let x(1) ≤ · · · ≤ x(N) be a rearranged version of the
observed sample set XN = {x1, ..., xN}; each of the x(j) can be seen as a real-
ization of a r.v. X(j). Obviously, the X(j) are not independent and do not share
the same pdf. Both x(j) and X(j) are called the j-th order statistic of XN . This
appellation is not related to the (higher) order statistics, frequently used in the
ICA community. The order statistics, as defined in this paper, have already been
used in the BSS context in [4] (see also [10], [9] and references therein). These
ordered variates can be used to define the range R1(X) = X(N) − X(1), or the
(symmetric) quasi-ranges (QR): Rm(X) = X(N−m+1) − X(m), with m < �N/2�.
Such QR could be also used to estimate the quantity b − a. However, even if
Rm(X) is a generalization of R(X) = R1(X), both estimators only involve two
sample points. In order to include more points in the estimation, we also compare
Rm(X) to 〈Rm(X)〉 � 1/m

∑m
i=1 Ri(X).

The QR-based support estimation is analyzed in Section 2, for various pdf and
sample sizes. Specific phenomena are discussed in Section 3, keeping in mind that
the pdf of X vary with time in ICA applications, due to the iterative updates
of the demixing matrix. Note that the performance analysis of ICA algorithms
using the above estimators is discussed in a separated paper [2].

2 Density, Bias and Variances of the QR

A large attention has been paid to order statistics and QRs in the statistic
literature. For instance, the pdf fRm(X) of Rm(X) for Ω(X) = (a, b) has been
established in [8]. If FX denotes the cdf of X, the computation of fX(j) yields

fRm(X)(r) =
N !

((m − 1)!)2(N − 2m)!

∫ ∞

−∞
Fm−1

X (x) [FX(x + r) − FX(x)]N−2m

×fX(x)fX(x + r) [1 − FX(x + r)]m−1
dx .

It can be seen that the density fRm(X) is a function of fX = F ′
X , as well as of

N and m. Although, the above theoretical expression is of few use in practice; for
most parent densities fX , no analytical expression can be found for simple func-
tions of Rm(X), such as expectation and moments. Dealing with f〈Rm(X)〉(r) is
even worst, since f〈Rm(X)〉 depends on the joint density of R1(X), · · · , Rm(X).
A more reasonable way to compute the expectation and variances of Rm(X) and
〈Rm(X)〉 is to prefer numerical simulations to theoretical developments that are
valid for a single density only; this is done in Section 2.1. However, for compar-
ison purposes, the exact expressions of E[Rm(X)], VAR[Rm(X)], E[〈Rm(X)〉]
and VAR[〈Rm(X)〉] aer given in Section 2.2 in the case where fX is the uni-
form pdf.

2.1 Empirical Expectation and Variance of QRs

Let us note U , L, T and V white r.v. having uniform, linear, triangular and ‘V’-
shape densities, respectively. We note the empirical expectations and variances
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Fig. 1. Empirical expectations and variances of Rm(X) (left) and 〈Rm(X)〉 (right) for
N = 500 (1000 trials). The theoretical curves for the uniform case are labelled ‘ ∗ ’.

of estimators taken over t trials as Et[·] and VARt[·]. The evolution of these
quantities with respect to m is shown in Fig. 1. Three particular effects have to
be emphasized.

• Effect of m and fX : the estimation error increases with m for fixed N at
a rate depending on fX , and m has thus to be chosen small enough in
comparison to N (the true support measures of the white r.v. are µ[Ω(T )] =
2
√

6 > µ[Ω(L)] = 3/2
√

8 > µ[Ω(U)] = 2
√

3 > µ[Ω(V )] = 2
√

2). The
support of V and U can be estimated with a low variance, even for a small m,
contrarily to T and L. For instance, the variance of the estimators decreases
with m for linear and triangular r.v., while this behavior cannot be observed
for U or V ; the variance of the estimators increases when unreliable points
(i.e. corresponding to a low value of the pdf) are taken into account. The
shape of VARt[Rm(U)] and VARt[〈Rm(U)〉] are more surprising, but they
have been confirmed by the analytical equations given in Section 2.2.

• Effect of N : it can be reasonably understood, though not visible on Fig. 1,
that Rm(X) and 〈Rm(X)〉 are asymptotically unbiaised estimators of b − a
if b and a are not isolated points, that is if the support Ω(X) includes
some neighborhoods of b and a. Similarly, limN→∞ VAR[Rm(X)] = 0 (for
m fixed); We conjecture that the latter limit holds for 〈Rm(X)〉, with fixed
m. Note that the convergence rate depends of fX . These properties can be
easily confirmed when X is uniform (see next section).

• Rm(X) vs 〈Rm(X)〉: the error of Rm(X) increases at a higher rate than the
one of 〈Rm(X)〉 for increasing m and fixed N ; this is a consequence of the
regularization due to the average in 〈Rm(X)〉: Pr [〈Rm(X)〉 ≥ Rm(X)] = 1.

The above simulation results indicate that 〈Rm(X)〉 should be preferred to
Rm(X) for support estimation; for a small m compared to N , both the error
and the variance are improved. The choice of m is difficult, though : it must be
small enough to ensure a small error, but not too small if one desires to estimate
the support of e.g. fT or fL or of noisy data; an optimal value of m depends of
the unknown density.
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2.2 Exact Expectation and Variance of QRs for Uniform Pdf

In this section, contrarily to the remaining of the paper, U denotes a normalized
uniform r.v. with support equal to (0, 1), in order to simplify the mathematical
developments, that are sketched in the Appendix.

Using the expression of fRm(X) given in Section 2, it can be shown that
E[Rm(U)] = (N − 2m+1)/(N +1) and VAR[Rm(U)] = 2m(N − 2m+1)/((N +
2)(N + 1)2). Simple manipulations directly show that Rm(U) is an asymptoti-
cally unbiaised estimator of the support measure, monotonously increasing with
limit b − a, when m is kept fixed.

The expectation of 〈Rm(U)〉 can directly be derived from E[Rm(U)]; if m is
fixed, 〈Rm(U)〉 is asymptotically unbiased. On the contrary if we set m = �N/k�,
k ∈ Z, the asymptotic bias equals 1/k. Such bias can be cancelled if m(N) in-
creases at a lower rate that N ; this is e.g. the case if m(N) = �

√
N/k�. Regarding

the variance of 〈Rm(U)〉, we have

VAR[〈Rm(U)〉] =
−3m3 + 2m2(N − 2) + 3mN + (N + 1)

3m(N + 2)(N + 1)2
.

Using ad-hoc scaling coefficients, the related quantities can be obtained for
white r.v. (no more confined in (0, 1)). The theoretical curves (labelled using
‘ ∗ ’) are superimposed to the associated empirical ones if Fig. 1.

3 Estimating the Mixture Support

The above discussion gives general results regarding the estimation of the sup-
port convex hull measure of a one-dimensional r.v. Let us now focus on the
support estimation of a single output (deflation scheme) of the 2-dimensional
ICA application; the support varies with the associated row of transfer matrix.
For the ease of understanding, we constrain the sources to share the same pdf.
The instantaneous noise-free ICA mixture scheme, under whiteness constraint,
leads to the following expression for an output:

ZX(φ + ϕ) = cos(φ + ϕ)S1 + sin(φ + ϕ)S2 , (1)

where the Si are the sources, and φ and ϕ are resp. the mixing-whitening and
demixing angles. The subscript X means that the sources follow the pdf fX . We
define θ = φ + ϕ as the input-output transfer angle.

The minimum support ICA approach updates the angle ϕ to minimize the
objective function µ[Ω(ZX(θ))]. Since it has been shown that this cost function
is concave in a given quadrant, a gradient-based method leads to θ = kπ/2,
with k ∈ Z. In practice however, µ[Ω(ZX(θ))] has to be estimated, for example
using the proposed form of estimators. The following subsections points out two
phenomena that have to be considered.
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3.1 The Mixing Effect

Fig. 2 shows the surface of the empirical expectation of the error ε, defined as

ε(X,N,m, θ) = µ[Ω(ZX(θ))] − 〈Rm(ZX(θ))〉 , (2)

when fX is a triangular or ‘V’-shape density, θ ranges from 0 to π/2, and N
from 2 to 500.

In addition to the bias dependency on fX , we can observe what we call the
‘mixing effect’: the error increases for θ going from 0 or π/2 to π/4. This phe-
nomenon can be explained as follows. The pdf of a sum of r.v. is obtained by
convoluting the pdfs of the summed r.v. Therefore, the tails of resulting pdfs
will be less sharp than the source pdfs. For instance, the pdf of a sum of two
normalized uniform r.v. is triangular. The mixing effect phenomenon can now be
understood, since for fixed N and m, the support measure of a pdf with sharp
tails is better estimated than of a pdf with smoothly decreasing tails. The main
consequence of this phenomenon is that the empirical contrast is more ‘flat’ than
the true one with respect to the transfer angle.
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Fig. 2. Empirical error E100 [ε(X, N, m, θ)] for various source pdf fX , with N ranging
from 2 to 200, and mN/5 � max(1, �N/5�)

3.2 The Large-m Given N Effect

The mixing effect emphasizes that the support estimation quality depends of
θ: the support of ZX(π/4) is always more under-estimated than the one of
ZX(kπ/2) by using QR or averaged QR estimators. This results from the fact
that the output density depends of the transfer angle. In section 2.1, the effect
of m on the expectation and variance of the estimators is shown to depend of
the density fX . In the ICA application it thus depends of θ: the bias increases
with m, at a rate depending of fZX(θ), i.e. of θ. This is a tricky point, since
even if µ[Ω(ZX(π/4))] > µ[Ω(ZX(kπ/2))], this inequality evaluated using the
support measure approximations can be violated. In this scenario, occurring for
m greater than a threshold value m†, the contrast optimum will be obtained for
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Fig. 3. Evolution of error means for various pdf fX , N ranging from 2 to 200 and
m1 = max(1, �N/5�),m2 is given by eq. (3). E100 [E1(X)] = E100 [〈E1(X)〉] (first col.);
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The width of the curves reflects twice the empirical variance of E(X) and 〈E(X)〉.

θ = π/4 rather than θ ∈ {0, π/2}, i.e. the algorithm will totally fail. For exam-
ple, when dealing with 〈Rm(ZU (θ))〉 and two 500-sampled sources, m† � 100.
If Rm(ZU (θ)) is considered, m† � 40. Indeed, the pdf of ZU (π/4) is triangular,
and we see on Fig. 1 that the estimation of the support of a white triangular
r.v. is lower than the estimated support of a white uniform r.v. for these values
of N and m > m†. These values of m† obviously decrease with decreasing N .

Fig. 3 illustrates the quantities Em(X) � Rm(ZX(π/4)) − Rm(ZX(0)) and
〈Em(X)〉 � 〈Rm(ZX(π/4))〉 − 〈Rm(ZX(0))〉: negative values of Em(X) and
〈Em(X)〉 obtained for m > m† clearly indicate that the optima of the empirical
contrast, i.e. the corresponding estimators will lead to wrong source separation so-
lutions. The last column shows the result obtained by using (3); the vertical dashed
lines indicated that m has been incremented. This comment suggests to pay atten-
tion to the choice of m: it must be small enough by comparison to N to ensure a
small error and m < m†, but greater than one for regularization purposes. There-
fore, if α denotes the nearest integer to α, we suggest to take m according to the rule

max
(
1,�

(
[(N − 18

6.5

)0.65

− 4.5
]
)

)
. (3)

Though the above rule of the thumb will not be detailed here, we mention that rule
(3) results from a distribution-free procedure for choosing m and valid for all θ and
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all source pdfs; the method is detailed in [2]. A positive point is that the critical
valuem† does not seem to be sensitive to the number of sources, probably due to the
compensationof twoeffects: even if the tails offZX(θ) tend todecrease exponentially
when many sources are mixed since fZX(θ) tend to be Gaussian-shape (inducing a
large under-estimation of the support), large-value sample points can be observed
due to the summed r.v. (so that the estimated mixture support should be larger
than the estimated source support).

4 Conclusion and Future Work

In this paper, we have investigated the use of the quasi-rangesRm(X) and averaged
symmetric quasi-ranges 〈Rm(X)〉 for support width minimization approaches to
ICA. Note that the computation of the true QR requires the knowledge of the or-
der statistics of X, that are unknown here; in this paper, the i-th order statistic X(i)
was approximated by the i-th largest observed value x(i) of X. This work is moti-
vated by the fact that extreme statistics can be unreliable. It is shown that m has
to be chosen small in comparison to N , but greater than one to make the variance
of the estimators decrease for several kinds of pdf. The main advantage of the av-
eraged QR is that it takes 2m points into account. From both the expectation and
variance points of view, the averaged QR has better performances than the simple
QR. We have shown that an excessive value m with given N could lead the related
ICA algorithms to totally fail; from this point of view too, the averaged QR has
to be preferred to the QR. Future work should focus on a study involving specific
noise, as well as a comparison with existing endpoint estimators.
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Appendix. Details of Some Results for Uniform Densities

• Expectation and Variance of Rm(U)

It is known e.g. from [5] that the pdf of the i-th order statistic a uniform
r.v. is fU(i)(u) = N !

(i−1)!(N−i)! [FU (u)]i−1[1 − FU (u)]N−ifU (u). By using ba-
sic properties of expectation and Ω(U) = (0, 1), we have E[U(i+1) − U(i)] =

1
N+1

N !
i!(N−i−1)!

∫ 1
0 xi(1 − x)N−i−1dx, where the integral equals i!(N−i−1)!

N ! [6]. It

comes that
∑N−m

i=m E[U(i+1) − U(i)] = N−2m+1
N+1 . Similar development as above

on the i-th order statistic of a uniform variable on (0, 1) leads to VAR[U(i)] =
i(N−i+1)

(N+2)(N+1)2 = VAR[U(N−i+1)].
Since CORR[Ui, Uj ] (1 ≤ i < j ≤ N) is know from [7], we obtain

COV[U(i+p), U(i)] =
i(N + 1 − i − p)
(N + 2)(N + 1)2

. (4)

We find VAR[U(i+p) − U(i)] = VAR[U(i+p)] + VAR[Ui] − 2COV[U(i+p), U(i)],
which equals p(N+1−p)

(N+2)(N+1)2 . The results enounced in Section 2.2 comes when setting
i = m and p = N − 2m + 1.

• Expectation and Variance of 〈Rm(U)〉

We obviously have E[〈Rm(X)〉] = 1
m

∑m
p=1

N−2p+1
N+1 = N−m

N+1 .
The computation of VAR[〈Rm(U)〉] is more tricky. Observe first that:

m2VAR[〈Rm(U)〉] =
m∑

p=1

VAR[Rp(U)] + 2
∑

1≤i<j≤m

COV [Ri(U), Rj(U)] . (5)

Using eq. (4), we find: COVi<j [Ri(U), Rj(U)] = 2i N+1−2j
(N+2)(N+1)2 .

We have, using basic properties:

m∑

p=1

VAR[〈Rp(U)〉] =
(N + 1)m(m + 1) − 2/3m(m + 1)(2m + 1)

(m + 2)(m + 1)2
, (6)

and
∑

1≤i<j≤m

COV [Ri(U), Rj(U)]] =
m(m − 1)

6(N + 2)(N + 1)2
{
−3m2 + m(2N − 3) + 2N

}
.

which leads to the results presented in Section 2.2.
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