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Abstract. Linear instantaneous independent component analysis (ICA)
is a well-known problem, for which efficient algorithms like FastICA and
JADE have been developed. Nevertheless, the development of new con-
trasts and optimization procedures is still needed, e.g. to improve the
separation performances in specific cases. For example, algorithms may
exploit prior information, such as the sparseness or the non-negativity
of the sources. In this paper, we show that support-width minimization-
based ICA algorithms may outperform other well-known ICA methods
when extracting bounded sources. The output supports are estimated
using symmetric differences of order statistics.

1 Introduction and Motivation

Most of ICA researchers and practitioners agree with the idea that it does not
exist a unique ICA algorithm outperforming all alternatives, and making the
other methods useless. Obviously, certain approaches, like e.g. FastICA [11] or
JADE [12] yield remarkable separation performances while simultaneously being
fast. Nevertheless, at least three arguments for developing new ICA contrasts
can be emphasized, even for the simplest (but also most widely used) linear,
instantaneous and noise-free mixture scheme [10]. First, to extend the field of
application of BSS techniques (specific procedures have been derived to deal with
e.g. structured gaussian sources). Second, some contrasts can be handled easier
than others; for example, the convexity property simplifies the optimization step.
Third, the contrast performances may vary with the source densities, so that the
separation performances depend on the cost function and on the application.

For example, we can cite BSS methods exploiting the non-negativity [9] or
sparseness [8] of the sources, as well as their temporal dependency [13], etc.
The minimum support approach has been independently suggested by Cruces &
Duran [14] and Vrins et al. [1], to extract bounded sources in a deflation way.
The theoretical framework has been well established; this approach has relation-
ship to zero Renyi’s entropy, and also with the Young and Brunn-Minkowski
inequalities. On the other hand, this approach benefits from the discriminacy
property, i.e. all the local optima of the theoretic criterion are relevant for ICA.
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This property gives confidence in the solution obtained when the optimum is
reached using gradient techniques. This is not the case for example when sepa-
rating multimodal sources by minimizing the entropy or the mutual information
[4]. It is interesting to note that the boundness prior on the sources have been
used by Theis and Gruber to establish separability results in postnonlinear mix-
ture schemes [7]. In addition, this approach can also be used to separate signals
being correlated in some specific way, such as landscape images [3]. Finally, a
related symmetric method with geometrical interpretation can be found in the
nice paper of Pham [5].

However, the performances of the minimum-support ICA method on bounded
source signals have not been detailed and compared to other methods. Similarly,
the support estimation problem, which is a crucial issue though, is not discussed
in this context. In this paper, we compare the performances of FastICA and max-
imum absolute kurtosis maximized using [6] (AKMICA) to minimum support al-
gorithms called XSICA, OSICA and AVOSICA. In the three last algorithms, the
support measure criterion are estimated in different ways, and is minimized using
the optimization technique for non-differentiable criteria presented in [6]. We also
analyze the performances of JADE, though it is a rather different method (highly
limited by the number of sources, symmetric, algebraic and thus non-iterative).

We show that in the instantaneous noise-free and noisy cases, AVOSICA ben-
efits from interesting signal interference ratio (SIR) performances results in com-
parison to other ICA algorithms, without added complexity.

2 The XSICA, OSICA and AVOSICA Algorithms

The recent minimum support approach to ICA requires support estimation; in
[1,3] the statistical range is used, i.e. the output supports are estimated by
the difference of the output extreme values. When this criterion is minimized
using [6], we call this algorithm XSICA (extreme statistics ICA). Nevertheless,
extreme values can be unreliable in the noisy case, so that alternative ways
to estimate bounded support widths have to be derived. This can be easily
done by using order statistics differences. The i-th order statistic of an observed
sequence XN = {x1, ..., xN} is noted x(j) and is the j-th largest observed sample,
i.e. {x(1) ≤ · · · ≤ x(N)} [17]. The latter sequence is no other than an ordered
version of the set XN . If we note by Rm(X) (1 ≤ m < �N/2�, m ∈ Z) the quasi-
range defined by x(N−m+1) − x(m), both the quantities Rm(X) and 〈Rm(X)〉 �
1/m

∑m
i=1 Rm(X) can be seen as support width estimators, where m is a tuning

parameter. Combining those criteria with the optimization procedure [6], the
OSICA (order statistics ICA) and AVOSICA (average order statistics ICA) are
obtained. Note that XSICA, OSICA and AVOSICA are equivalent when setting
m = 1. In 〈Rm(X)〉, m equals twice the number of sample points used in the
support estimation. The estimation of the support convex hull width by 〈Rm(X)〉
is analyzed in [2]; it is shown to be preferred to Rm(X), but the performances
of those practical criterion in terms of SIR are not discussed. In addition, no
specific information about how to choose the tuning parameter m in 〈Rm(X)〉
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is given. A small value of m cancels the regularization induced by the average,
so that the criterion could be highly sensitive to noise; on the other hand, an
excessive value of m may lead the algorithm to totally fail. Furthermore, even
if only a small error is observed for large N and small m when estimating the
support of a given random variable (r.v.), the shape of the function that links
the variance of the estimator to m depends of the (unknown) pdf of the r.v.; the
variance can either increases or decreases with m [2].

In the remaining of this paper, a meaningful procedure for choosing a satisfac-
tory value for m given N is derived in Section 3. The performances of AVOSICA
are then pointed out, in comparison to XSICA, OSICA, AKMICA, JADE and
FastICA using the gauss non-linearity, for robustness purpose [10] (the tanh
non-linearity gives similar results).

3 Towards a Meaningful Choice of m with Fixed N

In this section, we derive a procedure to set a default value for the tuning pa-
rameter m, for fixed N . We propose to find the maximum value m0 of m given
N , ensuring that the positive error µ[Ω(X)] − 〈Rm(X)〉 is lower than an error
threshold E with a high probability, whatever is the density of X. In other words,
we try to find m0 such that for all m ≤ m0:

Pr [µ[Ω(X)] − 〈Rm(X)〉 ≤ E ] ≥ L(m0) , (1)

where L(m0) is a threshold ideally close to, but lower than one.
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Fig. 1. Densities and (cumulative) distributions of the 5 sources
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The main problem of this approach is that if E is a constant, we are not able to
find an expression for L(m0) that is i) useful, and ii) distribution-free, in the sense
that it does not depends on fX . For instance, the probability in (1) can be written
as 1−F〈Rm(X)〉(µ[Ω(X)]−E) where F〈Rm(X)〉 is the (cumulative) distribution of
〈Rm(X)〉, which depends on fX through the order statistic densities fX(i) . The
point is thus to include the density dependency into the error term E . Let us
approximate the support measure by using quantile differences, and define the
error term as

E(X) � µ[Ω(X)] − (ξq − ξp) , (2)

where ξq and ξp (0 ≤ p < q ≤ 1) are the q-th and p-th quantiles of FX ,
respectively. Note that E(X) is positive and tends to 0 for increasing q and
decreasing p, whatever is the density of X, but at a various rate. For example,
with q = .95 and p = 1 − q we have E(T ) = 31.6% and E(V ) = 5% (see Fig. 1).

Observe that any lower bound of Pr [Rm(X) ≥ µ[Ω(X)] − E ] can be used in
the right hand side of eq. 1:

Pr [〈Rm(X)〉 ≥ µ[Ω(X)] − E ] = Pr
[
〈Rm(X)〉 ≥ µ[Ω(X)] − E|Rm(X) ≥ µ[Ω(X)] − E

]

×Pr [Rm(X) ≥ µ[Ω(X)] − E ]

+ Pr
[
〈Rm(X)〉 ≥ µ[Ω(X)] − E|Rm(X) < µ[Ω(X)] − E

]

×Pr [Rm(X) < µ[Ω(X)] − E ]

≥ Pr [Rm(X) ≥ µ[Ω(X)] − E ] , (3)

where the inequality result from the fact that 〈Rm(X)〉 ≥ Rm(X) with proba-
bility one.

On the other hand, using the confidence interval for quantiles derived in [16],
noting that Pr

[
Rm(X) ≥ Rm0(X)|m ≤ m0

]
= 1 and setting p = 1 − q in (2),

the following inequality holds for for all m ≤ m0:

Pr[Rm(X) ≥ ξq − ξ1−q] ≥
N∑

i=m0

(
N
i

)

qN−i(1 − q)i −
N∑

i=N−m0+1

(
N
i

)

qi(1 − q)N−i

︸ ︷︷ ︸
�L(q,m0,N)

and consequently, using inequality (3) and E(X) given by (2):

Pr
[
µ[Ω(X)] − 〈Rm(X)〉 ≤ E(X)

]
= Pr [〈Rm(X)〉 ≥ ξq − ξ1−q]

≥ L+(q,m0, N) , (4)

with L+(q,m0, N) � max(0,L(q,m0, N)). The latter inequality can be under-
stood as follows: if q is chosen close enough to one, 〈Rm(X)〉 nearly covers the
true support, with a probability higher than L+(q,m0, N). Note that q has to
be chosen close enough to one, so that E(X) is small; otherwise the bound L+ in
(4) is no more related to support estimation quality. The terms close enough to
one depends of the cdf FX . In practice however, if no information on the source
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Fig. 2. Left: L(q, m, N), useful only for couples (m, N) below the dashed line; Right:
selected iso-L+ curves for q = 0.95. The curve m� given by eq. (5) vs N has been also
plotted.

densities is available, q can be a priori taken equal to e.g. 0.95. The value of m
is thus fixed once the quantile number q and the probability threshold are fixed:
we take m0 as default value for m so that for a given quantile number q and
p = 1 − q, the probability lower bound L+(q,m0, N) is higher than or equal to
a positive threshold lower than 1.

The single parameter m has thus been replaced by two parameters, but the
proposed approach has two advantages, though. First, the new parameters have
a concrete interpretation; q is related to the support estimation, and the bound
L+ tells us the confidence that we can have in the support estimation. Second,
in practice, q and L+ can be fixed, so that a direct relation between m and N
is found, which can be used to set a default value for m.

Figure 2(a) shows L(q,m,N) versus m and N . The valid values of m for a
given N are m ≤ �N/2�. The bound is useful only for couples (m,N) below the
dashed line illustrating L(q,m,N) = 0. In Figure 2(b) we plot the maximum
value m0 of m so that the quantity L+(q,m0, N) equals various fixed values
(indicated on the related curve) with respect to N . Null values for m0 indicate
that it does not exist m0 such that L+(q,m,N) ≥ 0.95 for fixed N , q = .95
and all m ≤ m0. In other words, each couple (m,N) located under these curves
ensure that inequality (4) holds. Observe that for sufficiently large N , small m
and for a given q, L+(q,m,N) tends to one.

It must be stressed that some attention must be paid when evaluating L+ for
large N ; numerical problems may arise when dividing two factorial expressions of
large numbers. Therefore, we suggest to use the logarithms when computing the

binomial coefficients, i.e.
(

N
i

)

= exp
[∑N

j=1 log j −
∑N−i

j=1 log j −
∑i

j=1 log j
]
.

If one desires to speed up the method, the following empirical law can be used
for selecting a default value for m; we can take

m�(N) = max
(
1,�

(
[(N − 18

6.5

)0.65

− 4.5
]
)

)
, (5)

where α denotes the nearest integer to α (see Fig. 2(b)).
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4 Performances Comparison

In this section, we compare the extraction performances of 5 ICA algorithms:
FastICA, JADE, AKMICA and three minimum-support approaches, OSICA
(support estimated by Rm(X)), XSICA (support estimated by R1(X)) and
AVOSICA (support estimated by 〈Rm(X)〉). The default value for the param-
eter m was chosen equal to m�, given by (5). The algorithms have been tested
on the extraction of 5 bounded and white sources from 5 mixtures. The pdf and
cdf of the five sources (matched to (0,1)) are illustrated in Fig. 1. The mixing
matrix is built from 25 random coefficients uniformly distributed in (0, 1).

Figure 3 compares the histograms of the SIR for each extracted source in
the noise-free case for N = 2000 and m = m�(N). Remind that after hav-
ing processed the permutation indetermination, the SIR criterion of the i-th
source si reduces to SIR(si) =

∑
j �=i |ci(j)|/|ci(i)|. We can observe in Figure 3

that AVOSICA and XSICA give the most interesting results, in comparison to
OSICA, AKMICA, JADE and FastICA (gauss), especially for the separation of
sources with linear and triangular pdf. It must be stressed that even if AVOSICA
and OSICA perform quite satisfactory for small values of N , the performances
are improved for large N .

Table 1 summarizes the global SIR performance of ICA algorithms for vari-
ous noise levels. Since we deal with SIR, the performance results are analyzed
from the mixing matrix recovery point of view; the source denoising task is not

AXOKJ F

0
0.5

1
1.5

0

20

40

SIR (U)

AXOKJ F

0

0.5
1

1.5

0

20

40

SIR (L)

AXOKJ F

0

0.5

1

0

20

40

SIR (T)

AXOKJ F

0
0.2

0.4
0.6

0.8

0

20

40

SIR (V)

AXOKJ F

0

0.5

1

0

50

SIR (MU)

AXOKJ F

0
0.2

0.4
0.6

0

20

40

Global SIR

Fig. 3. 12-bins histograms of SIR for each extracted source, for 50 trials, N = 2000,
and m = m�(N) = 37. The analyzed algorithms are AVOSICA (‘A’), XSICA (‘X’),
OSICA (‘O’), AKMICA (‘K’), JADE (‘J’) and FastICA (‘F’). The global SIR is the
averaged SIR computed from the individual source SIRs for a given trial.
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Table 1. 100-trials empirical means and variances of global SIR performances of several
ICA algorithms (global SIR is the averaged SIR computed from the individual source
SIRs for a given trial); m = m�(N). Gaussian noise with standard deviation σn has
been added to the whitened mixtures (so that for a given σn, the mixture SNRs equal
−10 log σ2

n; they do not vary between trials, and do not depend of the mixing weights).

σ2
n N AVOSICA AKMICA JADE FastICA XSICA OSICA

0 500 .106 (.005) .135 (.006) .127 (.006) .194 (.023) .139 (.025) .208 (.03)
2000 .05 (.004) .065 (.0012) .06(.0007) .097 (.004) .082 (.02) .087 (.003)

0.01 500 .102 (.003) .13 (.005) .12 (.004) .187 (.02) .127 (.02) .189 (.021)
2000 .047 (.0006) .066 (.001) .059 (.0008) .105 (.005) .08 (.02) .085 (.0024)

0.05 500 .105 (.0027) .13 (.0039) .122 (.0032) .184 (.015) .144 (.012) .176 (.013)
2000 .051 (.0012) .067 (.0012) .06 (.0006) .112 (.007) .1 (.0225) .09 (.006)

considered here. The global SIR, for a given trial, is obtained by computing the
mean of the extracted sources SIR. The good results of AVOSICA can be ob-
served, despite the fact that the value of m has not been chosen to optimize the
results, i.e. we always have taken m = m�(N). It must be stressed that the value
of the parameter m is not critical when chosen around m�(N).

JADE is a very good alternative when the dimensionality of the source space
is low. The computational time of FastICA is its main advantage, contrarily to
AKMICA.

5 Conclusion

In addition to existing results regarding the theoretical framework of minimum-
support ICA and their specific advantages when separating sources correlated
in a specific way, we have shown that these methods also yield competitive re-
sults in comparison to other ICA algorithms for extracting bounded sources in
the noise-free and noisy cases. This is shown in the particular situation where
the support measure is estimated using averaged quasi-ranges. We have fur-
ther derived a rule to choose a default value for the tuning parameter m, for
given sample size N . This choice is related to the confidence of support esti-
mation quality. Numerical results illustrate that the proposed default value of
m yield interesting SIR performances, that are comparable for m close to the
suggested value.
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