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Abstract
Flexible and reliable probability density estimation is

fundamental in unsupervised learning and classification.
Finite Gaussian mixture models are commonly used to serve
this purpose. However, they fail to estimate unknown pro-
bability density functions when used for nonparametric pro-
bability density estimation, as severe numerical difficulties
may occur when the number of components increases. In
this paper, we propose fully nonparametric density esti-
mation by penalizing the covariance matrices of the mix-
ture components according to the regularized Mahalanobis
distance. As a consequence, the singularities in the log-
likelihood function are avoided and the quality of the esti-
mation models is significantly improved.

1. Introduction
Probability density function (PDF) estimation is of major

concern in areas such as machine learning, pattern recogni-
tion, neural networks, signal processing, computer vision
and feature extraction. On the one hand, it offers a flexible
way to investigate the properties of a given data set and pro-
vides a solid basis for efficient data mining tools. On the
other hand, it is crucial in unsupervised learning tasks and
Bayesian inference and classification.

While performing density estimation, three main alterna-
tives may be considered. The first one, known as parametric
density estimation, assumes the data is drawn from a spe-
cific density model. The model parameters are then fitted to
the data. Unfortunately, in many cases an a priori choice of
the PDF model is not suited since it might provide a false
representation of the true PDF.

An alternative is to build nonparametric PDF estimators,
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as for example the Parzen window estimator [7]. For a com-
prehensive overview of nonparametric density estimation
techniques, we refer to [4]. When using Parzen windowing,
the PDF is estimated by placing a well-defined kernel func-
tion on each data point with an optimized common kernel
width h. In practice, Gaussian kernels are often used. The
estimated PDF is computed by averaging the Gaussian den-
sities in each data point. By contrast to the previous method,
this technique does not assume any functional form of the
PDF and allows its shape to be entirely determined from the
data.

A third approach consists in using semi-parametric mod-
els. As nonparametric techniques, they do not assume an
a priori shape of the PDF to estimate. However, for this
model family, the complexity is fixed in advance, avoiding
a prohibitive increase of the number of parameters with the
size of the data set. Finite mixture models, and in particu-
lar finite Gaussian mixtures (FGM), are commonly used to
serve this purpose. A popular technique for approximating
the maximum likelihood estimate (MLE) of the underlying
PDF is the expectation-maximization (EM) algorithm, for-
malized by Dempster, et al. [3].

Finite mixture models are highly effective when an ap-
propriate guess of the number of components in the mix-
ture is pretty obvious. Unfortunately, when one wants to
perform fully nonparametric PDF estimation by increasing
the number of components arbitrarily, numerical difficulties
arise due to singularities in the likelihood function. In [1],
the convergence problems of the EM in conjunction with
FGM have been traced and linked to the concept of isola-
tion. Whereas isolated data points appear in sparse data sets
or when the data set includes outliers, they can also occur
in the the tails of the PDF.

In this paper, the regularized Mahalanobis distance is
proposed in order to avoid the singularities in the likelihood
function. The regularization term acts directly on the co-
variance matrices of the multivariate mixture components
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according to the prior belief that diagonal covariance ma-
trices is an assumption of regularity. As a result, one can
perform fully nonparametric PDF estimation by FGM with-
out facing numerical difficulties. Meanwhile, the quality of
the model estimates is improved compared to classical non-
parametric techniques, such as Parzen windowing.

The paper is organized as follows. In Section 2, FGMs
are recalled, as well as the computation of the MLE of the
model parameters by the EM algorithm. In Section 3, reg-
ularization of the covariance matrices of the mixture com-
ponents is introduced by modifying the M -step of the EM
algorithm. Finally, in Section 4, experimental results are
presented and discussed.

2. Finite Gaussian Mixture Models
Let us consider a d-dimensional continuous random vec-

tor X ∈ <d. Its PDF can be approximated by a Gaussian
mixture model [6], defined as a linear combination of M

Gaussian component densities:

p(x) =
M
∑

j=1

P (j)p(x|j), (1)

where the mixing proportions P (j) are non-negative and
must sum to one. The Gaussian components are character-
ized by their centers cj and their covariance matrices Σj :

p(x|j) = (2π)−
d
2 |Σj |

−1/2

· exp

[

−
1

2
(x − cj)

T
Σ−1

j (x − cj)

]

.
(2)

Consider an i.i.d. realization χ = {xn}
N
n=1 of X . Based

on the mixture model, we may define the log-likelihood
function:

L(θ) = log

N
∏

n=1

p(xn). (3)

In this equation θ summarizes the model parameters P (j),
cj and Σj . By means of the the EM algorithm, the MLE
of θ can be computed iteratively, avoiding the intricacy
of non-linear optimization schemes. Maximizing the log-
likelihood function is then equivalent to finding the most
probable PDF estimate provided the data set χ.

In order to compute the MLE of the log-likelihood func-
tion the EM operates in two stages. First, in the E-step, the
expected value of some “unobserved” data is computed, us-
ing the current parameter estimates and the observed data.
Here the “unobserved” data indicates which data sample
was generated by which component in the mixture. Subse-
quently, during the M -step, the expected values computed
in the E-step are used to compute the MLE and the model

parameters are updated. Each iteration step t can be sum-
marized as follows [6]:

E-step:

P (t)(j|xn) =
p(t)(xn|j)P

(t)(j)

p(t)(xn)
. (4)

M -step:

c
(t+1)
j =

∑N
n=1 P (t)(j|xn)xn

∑N
n=1 P (t)(j|xn)

, (5)

Σ
(t+1)
j =
∑

N

n=1
P (t)(j|xn)

(

xn−c
(t+1)

j

)(

xn−c
(t+1)
j

)T

∑

N

n=1
P (t)(j|xn)

,
(6)

P (t+1)(j) =
1

N

N
∑

n=1

P (t)(j|xn). (7)

In this equation set, P (t)(j|xn) corresponds to the posterior
probability that xn is generated by component j provided
that the data point xn is known.

3. Regularized Mahalanobis Distance
Finite mixture models can approximate any continuous

PDF, provided the model has a sufficient number of com-
ponents and provided the parameters of the model are cho-
sen correctly [2]. In addition, if sufficient data samples are
available and the singularities of the likelihood function can
be avoided, we may approximate the true PDF arbitrarily
well by increasing the number of components. In order to
recover from singular sample covariance matrices, the reg-
ularized Mahalanobis distance is proposed.

The Mahalanobis distance DM is defined as:

DM (xn, cj) = (xn − cj)
T

Σ−1
j (xn − cj) . (8)

From (2), one can easily see that the multivariate Gaussian
disribution uses DM to determine its shape. When the num-
ber of data samples contributing to the computation of the
covariance matrix of a component is small with respect to
the dimension d of the data samples, it may be singular.
Moreover, as discussed in [5], DM tends to produce hy-
perellipsoidal components, leading to unusually large and
elongated densities. By contrast, when one considers the
Euclidean distance DE , large data clusters tend to split un-
necessarily, as the component densities are hyperspherical.
The Euclidean distance is defined as:

DE(xn, cj) = (xn − cj)
T

(xn − cj) . (9)

Based on the hyperspherical character of DE and the hy-
perellipsiodal character of DM , one can construct a regular-
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ized Mahalonbis distance DME , which is a linear combina-
tion of both distances [5]:

DME(xn, cj) = (xn − cj)
T

[

(1 − λ) (Σj + εI)
−1

+ λI
]

· (xn − cj) ,

(10)
where ε and λ are learning parameters, and I is the d × d

identity matrix. Note that parameter λ is included in the in-
terval [0, 1]. It controls the tradeoff between hyperspherical
and hyperellipsoidal components. Therefore, when the co-
variance matrices cannot be estimated reliably, a large value
of λ should be used.

Parameter λ should be learnt properly, as it achieves the
tradeoff between DM and DE . By contrast, a careful esti-
mation of ε is not required. Indeed, its role is to stabilize the
learning process by converting a singular matrix to a non-
singular one. Therefore different values of ε do not make
much difference as long as they are significantly smaller
than the average variance of the data samples. This obser-
vation is illustrated in section .

Consider again the E- and M -step for computing the
model parameters of FGM (see (4) to (7)). Introducing the
regularized Mahalanobis distance consists in adapting, at
each iteration step t, the covariance matrix of each com-
ponent density according to (10). Therefore, the following
adaptation rule is inserted in the M -step:

(

Σ
(t+1)
j

)

ME
=

[

(1 − λ)
(

Σ
(t+1)
j + εI

)−1

+ λI

]−1

,

(11)
where Σ

(t+1)
j is still computed according to (6).

4. Experimental Results
In this section, we investigate the quality of the estimated

PDF with respect to the true PDF in a simple toy prob-
lem. Furthermore, it is shown that the regularized FGM
avoids singularities and improves the quality of the estima-
tion models.

Let’s consider the random variable X , which is a mixture
of two overlapping normal densities:

X ∼ N(m1, S1) + N(m2, S2). (12)

Assume we do not know this density. Next, consider an i.i.d.
realization χ = {xn}

N
n=1 of X and suppose it is corrupted

by an additive Gaussian noise n ∼ N(0, σ2
n).

A convenient quality measure when comparing PDFs is
the Kullback-Leibler divergence DKL. It is defined as fol-
lows:

DKL (p∗, p) =

∫

X

p∗(x) log
p∗(x)

p(x)
dx, (13)
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Figure 1: Mixture of two overlapping Gaussian distribu-
tions, corrupted by additive Gaussian noise (σn = 0.05)

Table 1: Quality of the PDF estimation models with respect
to the true PDF of X . The symbol † means that numerical
problems have occurred when computing the model param-
eters by EM. (Q = 25, tend = 150)

M λopt ε E [DKL] S [DKL]

Parzen 100 − − 0.165 0.020

FGM 3 − − 0.134 0.069

> 3 − − † †

Reg. FGM 3 0.2 10−5 0.117 0.036

5 0.3 10−5 0.088 0.029

7 0.3 10−5 0.109 0.035

10 0.4 10−5 0.107 0.048

15 0.4 10−5 0.115 0.038

where p∗(x) is the true PDF. When DKL is zero, both den-
sities are identical.

In the toy problem, the following numerical values are
used:

m1 = [4, 6], S1 =

[

0.52 0
0 1.52

]

,

m2 = [6, 6], S2 =

[

0.52 0
0 0.52

]

.

A realization of X is represented in Fig. 1. The standard
deviation of the additive Gaussian noise is σn = 0.05. The
data set contains 100 data samples.

In Table 1, one finds the model performance, that is
E [DKL] and S [DKL], of the Parzen window estimator,
the classical FGM and the regularized FGM, for a varying
model complexity M . In this experiment, it was found that
the optimal kernel width for Parzen windowing is h = 0.5.
Both for FGM and regularized FGM, a sufficient number of
iterations before stopping to ensure convergence of the EM
is tend = 150. We have considered 25 realizations of X .
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Figure 2: Expected Kullback-Leibler divergence with re-
spect to the learning parameter λ (ε = 10−5). Each curve
corresponds to a different model complexity. (Q = 25,
tend = 150)

In order to reliably estimate DKL, Q realizations of
X have been considered, therefore leading to Q estima-
tion models. As a consequence, one may compute the es-
timated expected value E [DKL] of the Kullback-Leibler
divergence, as well as its estimated standard deviation
S [DKL]. Using an expected value reduces the bias on the
performance estimation DKL, whereas its standard devia-
tion gives an indication of the reliability we may put in the
estimated models.

The quality of FGM containing 3 components is greater
than the optimal Parzen window estimator. Unfortunately,
when one wants to enhance the accuracy by increasing the
number of components in the mixture (see > 3 in Table 1),
numerical difficulties appear due to singularities in the log-
likelihood function. As discussed in [1], this leads to the
width of a component to tend to zero, and therefore the com-
ponent to collapse (denoted by † in Table 1).

By contrast, when using regularized FGM the numeri-
cal difficulties are avoided. As a result, fully nonparametric
PDF estimation is possible; furthermore, one can optimize
the model complexity by an exhaustive search on the num-
ber of components. In addition, the consistency of the esti-
mation model is enhanced.

In Fig. 2, the performance of regularized FGM is drawn
with respect to parameter λ, for different model complexi-
ties. Although they all perform similarly, the optimal choice
for the number of components M is 5.

Finally, note that in our experiments we have fixed ε in
advance. This learning parameter has little influence on the
quality of the models. Indeed, as illustrated in Fig. 3, the
iso-contours of DKL are independent from ε, provided it is
chosen sufficiently small. We have found that ε = 10−5

performs well for all the considered model complexities.
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Figure 3: Iso-contour plot of the expected Kullback-Leibler
divergence with respect to λ and ε. The PDF estimation
model has a complexity of 5 components. (Q = 25, tend =
150)

5. Conclusion
From a theoretical point of view, finite Gaussian mix-

ture models can be used to perform nonparametric PDF es-
timation, by increasing the number of components in the
mixture arbitrarily. In practice, however, one has to face
numerical difficulties, as a component may collapse. Nev-
ertheless, by introducing the regularized Mahalanobis dis-
tance in the classical FGM model and stating that diago-
nal covariance matrices is an assumption of regularization,
we have demonstrated that fully nonparametric FGM can
be performed. Furthermore, the regularized FGM shows a
greater model quality compared to the Parzen window esti-
mator, which is currently one of the most popular and prac-
tical nonparametric PDF estimation techniques.
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