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ABSTRACT

We derive a class of contrasts for blind source separation
(BSS) to separate bounded sources (or more generally, finite
sources), based on support width measures (SWM) of the
marginal output distributions. These contrasts are shown to
have no spurious local maxima, i.e. all the local maxima are
relevant from the source separation point of view; they all
correspond to non-mixing BSS solutions so that a gradient-
ascent method can be used.

1. INTRODUCTION

Linear blind source separation (BSS) consists in recovering
unobservable source signals s = [s1, . . . , sn] only knowing
linear mixtures of them x = [x1, . . . , xn], or their whitened
version z = Vx (V is the whitening matrix). The aim of
BSS is to linearly combine the z such that the output signals
y .= Uz are proportional to the original source signals s,
up to a permutation. The mixture and separation schemes
become:

x = As (1)

y = U Vx︸︷︷︸
z

= UVA︸ ︷︷ ︸
W

s (2)

Under the E{s} = 0 and E{ssT } = I assumptions, VA
is orthogonal. In dimension two (n = 2), an orthogonal
matrix is fully determined by a single angle, called here the
mixing angle φ. The product VA is then a pure rotation
(det(VA) = 1) or roto-inversion (rotation with inversion:
det(VA) = −1) matrix. One can freely assume that VA
is a pure rotation matrix; the only consequence of this as-
sumption is that the sign and permutation indeterminacies
are then linked to each other. There is no loss of infor-
mation to suppose det(VA) = 1. Hence, the mixing and
prewhitening steps can be expressed as follows:[

z1

z2

]
=

[
cos φ sinφ
− sin φ cos φ

] [
s1

s2

]
. (3)
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Furthermore, under the additional E{yyT } = I constraint,
U also reduces to an orthogonal (assumed pure rotation)
matrix, parametrized by a single unmixing angle ϕ. Hence,
for n = 2, eq. 2 becomes:

[
y1

y2

]
=

[
cos(φ + ϕ) sin(φ + ϕ)
− sin(φ + ϕ) cos(φ + ϕ)

] [
s1

s2

]
.(4)

Hence, the BSS problem reduces to finding the unknown
initial angle φ only knowing z and y by adjusting ϕ. Exam-
ples of scatter plots of s and z are illustrated in Fig. 1.
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(a) s1 vs s2
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(b) z1 vs z2

Fig. 1. Scatter plots (a) of the bimodal sources s and (b) of
the whitened signals z; φ = π/6.

Let us define θ
.= φ + ϕ. The angle φ is fixed, since

A and V are constant matrices, but θ is unknown, and may
vary through ϕ. Consequently, W(θ) is non-mixing if and
only if we have found blindly (φ is unknown) ϕ = ϕ� such
that ϕ� = kπ/2 − φ, k ∈ Z.

If the si are mutually independent and if at most one of
them has a Normal distribution, the well-known method of
independent component analysis (ICA) is able to estimate
the mixing angle φ. Several contrast functions C(θ) have
been derived to estimate the independence between vari-
ables [1]; their maxima correspond to satisfactory solutions
of the BSS problem. In order to avoid an exhaustive search,
most of non-algebraic ICA algorithms use a gradient ascent
on C with respect to the angle ϕ (see [2] for a survey on alge-
braic methods). In order to avoid possible spurious maxima,
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all the local maxima of C must then appear for θ = kπ/2. A
sufficient condition is to constraint the contrast to be convex
for θ in each quadrant Qp.

In [3], Pham showed that the opposite of the sum of the
log-marginal support widths of the output distributions is
a global contrast for source separation. In this paper, we
will derive a convex contrast, based on the support width
of a single output distribution to separate bounded sources.
Complementarily to Pham’s approach, this contrast has the-
oretically no mixing maxima, and allows one to derive a
deflation algorithm.

In the next section, the support width ||Ωyi
|| of the out-

put distribution pyi
is related to the support width of the

sources ||Ωsi
||. Next, it is shown that −||Ωyi

|| is a convex
contrast: each local maximum is an acceptable solution to
the BSS problem, and the global maximum corresponds to
the extraction of the source with minimum support width.
A simple example illustrates this property in Section 3. It
shows that using a well-defined support width measure, this
contrast can be extended to so-called finite source signals.

2. SUPPORT WIDTH OF MIXTURE DENSITIES

In this section, the support Ωy of y = αu + βv is related
to the mixed variable supports {Ωu,Ωv} and to the mixture
coefficients α, β.

2.1. Bounded sources

Definition 1 (Support width of a bounded variable) Let u
be a one-dimensional random variable, bounded on [lu,ru]
where lu = min(u) and ru = max(u). The support of u is
defined as Ωu

.= [lu, ru], where −∞ < lu < ru < +∞.
The support width of u is defined as ||Ωu|| .= |ru − lu|.
Theorem 1 Let us define w = αu where u is a random
variable and α a scale factor. The supports of u and w are
linked by:

||Ωw|| = |α|.||Ωu|| . (5)

Proof: Let Ωw = [lw, rw], then u ∈ [ lw
α , rw

α ] = Ωu
.=

[lu, ru]. Hence, ||Ωw|| = |α|.||Ωu||.
Theorem 2 Assume that u and v are independent random
variables. Then:

||Ωu+v|| = ||Ωu|| + ||Ωv|| . (6)

This result is an immediate consequence of the fact that the
distribution pu+v is the convolution product of pu and pv

[4].

Corollary 1 If y
.= αu + βv where u and v are two inde-

pendent random variables and α, β are real scale factors,
the following expression holds for ||Ωy||:

||Ωy|| = |α|.||Ωu|| + |β|.||Ωv|| . (7)

The proof results from Theorem 1 and Theorem 2.

2.2. Finite sources

Definition 2 (Finite source) Let u be a one-dimensional ran-
dom variable with unbounded support: Ωu =] −∞,+∞[.
The variable u is said to be finite if:∫ ru

lu

pu(τ)dτ � 1 with −∞ < lu < ru < +∞ . (8)

Unfortunately, this definition does not allow to give pre-
cise values of the pseudo-bounds lu and ru; the measure
of the support width cannot be properly defined using this
definition. Nevertheless, in the case of finite sources, other
definitions may be proposed, as explained in Section 4.

3. CONVEX CONTRAST: OUTPUT SWM

A well-known problem of gradient-based multimodal source
separation is the existence of spurious maxima for usual
BSS contrasts. This is e.g. the case when using the opposite
of the output marginal entropy −H(yi) [5, 6, 7].

In order to avoid the existence of spurious minima, it is
interesting to derive contrasts that are convex on each quad-
rant Qp. In Section 3.1, the convexity of the contrast func-
tion −||Ωyi

|| for θ ∈ Qp(θ) and bounded sources is proven
in all quadrants (p ∈ {1, 2, 3, 4}). An extension of the sup-
port width concept to finite sources is given in Section 3.2,
and applied on a simple example.

3.1. Bounded sources

The convexity on Qp property, which will be proven for
bounded sources, implies that the maximum value of−||Ωyi

||
is reached for θ ∈ {kπ/2}. Combining eq. 4 and Corollary
1, the contrast C2 can be rewritten as:

C2(θ) .= −||Ωy1 || = −| cos θ|.||Ωs1 || − | sin θ|.||Ωs2 || .
(9)

where the superscript of C denotes the number of sources.

Note that one could think that C2 is equivalent to C2 .=
−| cos ϕ|.||Ωz1 || − | sin ϕ|.||Ωz2 ||. In this case, one could
compute by an algebraic way the angle ϕ that maximizes it.
Unfortunately, since z1 and z2 are only uncorrelated and not
statistically independent, they do not respect the necessary

condition of Corollary 1 and C2
cannot be used as a contrast

for source separation (see Fig. 2). Hence, to evaluate C2,
we have to compute ||Ωy1 || by estimating the bounds of y1

and applying Definition 1.

Definition 3 A function C(ξ) is said to be convex on Qp if

C
(
λξ1 + (1 − λ)ξ2)

)
≤ λC(ξ1) + (1 − λ)C(ξ2) (10)

for all ξ1, ξ2 ∈ Qp, for 0 ≤ λ ≤ 1.
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Theorem 3 (Convexity of C2(θ)) The function C2(θ) is con-
vex on θ ∈ Qp.

Proof: A sufficient condition for ensuring that C2(θ) is con-

vex on θ ∈ Qp is to prove that ∂2C2(θ)
∂θ2 > 0 [8]. We focus on

the p = 1 case. It is obvious that this condition is respected,

since ∂2C2(θ)
∂θ2 = cos θ.||Ωs1 || + sin θ.||Ωs2 || > 0. It can be

shown easily that this result holds for other values of p.
As a consequence, the function C2(θ) is a convex con-

trast for BSS if the sources are zero-mean, white and inde-
pendent.

Corollary 2 If ϕ� is the unmixing angle maximizing locally
C2(θ), then θ� .= φ + ϕ� = kπ/2.

This result is an immediate consequence of the convex-
ity of C2(θ) in a given quadrant Qp. By Corollary 2, if we
derive a measure of C2(θ), it is possible to achieve BSS sim-
ply by maximizing C2(θ).

Note that the function C2(θ) has a minimum for θ =
arctan ||Ωs2 ||

||Ωs1 || ; its second derivative is always positive for

θ ∈ Qp(θ)\{kπ/2}, and does not exist for θ = kπ/2.

3.2. SWM for finite sources

Section 3.1 proves that, in the case of bounded sources, it is
possible to derive a convex contrast. The illustration of the
extension of this result to finite sources is given here. The
following example shows that maximizing an approxima-
tion ||Ω̂y1 || of ||Ωy1 || allows to recover blindly the unknown
mixing angle φ. According to numerical simulations, it ex-
ists a definition of bounds that allows one to preserve the
convexity property of the approximated contrasts.

Let Υ(x) = ε > 0 be a constant function on Ωy1 (with ε
small enough). Assume that xr > 0 and xl < 0 correspond
to two roots of the ∆(x) .= Υ(x) − py1(x) and for x ≥ xr

(resp. x ≤ xl) the function ∆(x) has no more roots (i.e.
∆(x) �= 0). Let us define xr and xl as the upper and lower
pseudo-bounds of the support of y1, respectively. Hence,
according to this definition of pseudo-bounds, we can derive
an under-estimation of the SWM of a finite signal:

Ĉ2(θ) = −||Ω̂y1 || .= −(xr − xl) . (11)

The contrasts C2, Ĉ2, −H(y1) and the function C2
are

plotted versus the unmixing angle ϕ in Fig. 2 for the mix-
tures of Fig. 1(b) (the distributions pyi

are estimated by the
Parzen estimator with Gaussian kernels). The mixing angle
has been taken equal to π/3 in this example.

4. EXTENSION TO MORE SOURCES

It has been shown in [3] that CΣ .= −∑n
i=1 log ||Ωyi

|| is
a global contrast to separate instantaneous and linear mix-
tures of n sources. In this section, we will show that Cn .=

0 pi/6 pi/3 pi/2 2*pi/3 5*pi/6 pi 7*pi/6 4*pi/3 3*pi/2 5*pi/3 11*pi/6 2*pi
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Fig. 2. Contrasts C2 (+), Ĉ2 (�), −H(y1) (-) and function

C2
(◦) vs ϕ. The only relevant maxima are located at ϕ =

π/6 + kπ/2|k ∈ Z (φ = π/3);

−||Ωyi
|| is a convex contrast (without mixing maxima). For

n > 2, using the associativity property of the convolution
product, the SWM-based contrast Cn can be rewritten as:

Cn(w) = −
n∑

i=1

|wi|.||Ωsi
||, s.t.

∑
i

w2
i = 1 ,(12)

where the wi are the elements of a row of W.
The two next propositions prove that i) the global maxi-

mum of −||Ωyi
|| is reached when only the jth entry of wi is

non-zero where j = argminj ||Ωsj
|| and ii) each maximum

of Cn is relevant for source separation.

Proposition 1 arg maxw Cn(w) = ei, where (ei)k = δk,i,
1 ≤ k ≤ n, δ is the Kronecker symbol, and i is such that

||Ωsi
|| = minj

{
||Ωsj

||
}

.

Proof: Consider the weight vector wp = [wp
1 , wp

2 , . . . , wp
n]

where at least two elements are non-zero; without loss of
generality, w1, w2 > 0, and wj ≥ 0 (3 ≤ j ≤ n). Let
us note for simplicity ai

.= ||Ωsi
|| > 0 and suppose that

a1 ≤ a2. Hence, it exists another weight vector wq such
that Cn(wq) > Cn(wp).

Let wq .= [
√

(wp
1)2 + (wp

2)2, 0, wp
3 , . . . , wp

n], then:

(wp
2)2a2

1 ≤ (wp
2)2a2

2

(wp
1)2a2

1 + (wp
2)2a2

1 < (wp
1)2a2

1 + (wp
2)2a2

2 + 2wp
1wp

2a1a2︸ ︷︷ ︸
>0

a1

√
(wp

1)2 + (wp
2)2 < wp

1a1 + wp
2a2

wq
1a1 + wq

2a2 < wp
1a1 + wp

2a2 (13)

Hence, as wp
j = wq

j for j ≥ 3, if wq
1a1 + wq

2a2 <
wp

1a1 + wp
2a2 then Cn(wq) > Cn(wp). Iterating this result,

we have that Cn(ei) ≥ Cn(w), for all w, with equality if
and only if w = ei and where i is such that ai = min{aj}.
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Proposition 2 If w �= ek, then Cn(w) cannot be a local
maximum.

Proof: Because of the lack of space, we will give only
the sketch of the proof. Consider the infinitesimal vector
∆Aw. If Cn(w + ∆Aw) > Cn(w), the proposition is
proven. Algebraic manipulations show that when Cn(w +
∆Aw) ≤ Cn(w), it exists another infinitesimal vector ∆Bw
such that in this case, we have Cn(w + ∆Bw) > Cn(w).
One can prove this result using ∆Awi = δw and ∆Awj

such that
∑

i(w + ∆Aw)2i = 1 with ∆Awr �=i,j = 0; δw
denotes an infinitesimal number. Similarly, we can choose
∆Bwi = −δw and

∑
i(w+∆Bw)2i = 1 with ∆Bwr �=i,j =

0. In summary, if w �= ek, it always exists a small vector
∆w for which Cn(w +∆w) > Cn(w) respecting

∑
i(w +

∆w)2i = 1. Note that there is no guarantee that all local
maxima are global ones: local maxima may exist (see e.g.
Fig. 2). Nevertheless, this does not matter, since i) we know
by Proposition 2 that a weight vector w �= ek cannot be a
maximum of Cn and ii) each w = ek (1 ≤ k ≤ n) corre-
sponds to the extraction of one source!
Fig. 3 shows projections of the manifold of Ĉ3 .= −||Ω̂y1 ||
on the w1, w2 plane for two triplets of source support widths.
The global maxima (darkest areas) correspond to the weight
vector w = ei where i = argminj ||Ωsi

||. Only the weight
corresponding to the source with minimum SWM is non
zero. This weight is equal to one because of the

∑3
i=1 w2

i =
1 constraint. All the maxima correspond to w = ek.

w1 w1

w
2

w
2

(a) : ||Ω
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||>||Ω
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||>||Ω
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||>||Ω
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||

Global maxima
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S2

||>||Ω
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|| (b) : ||Ω
S1

||>||Ω
S2

||>||Ω
S3

||

Global maxima

Fig. 3. Manifold of the contrast function Ĉ3 projected on
the 2D space w1, w2.

5. DISCUSSION AND CONCLUSION

This paper presents a contrast function to separate boun-
ded sources, based on a support width measure (SWM).
The contrast is shown to be convex, which means that non-
mixing maxima can be reached, in theory, by gradient-ascent
based algorithms.

For finite sources (with virtually unbounded support),
approximations can be used to define pseudo-bounds of the

support, using a constant function Υ(x). Simulations show
that the convexity property is preserved with these approxi-
mations.

For n = 2, ICA algorithms can be derived to maximize
the contrast function or its approximation by adding or sub-
tracting small variations ∆ϕ to the unmixing angle ϕ.

In future work, the SWM method will be related to other
algorithms exploiting the scatter plot boundaries, like geo-
metric ICA. The bound estimation of a distribution may be
difficult when few samples are available in these area of the
distribution, and should be deeper investigated. In particu-
lar, it should be interesting to study the influence of Υ(x) on
the convexity of Ĉn, and mixtures with additive noise. Other
functions Υ(x) can be seen as a non-Gaussianity measure,
and seem to be quite efficient in some cases (see e.g. [5],
where Υ(x) is the normalized Gaussian function and is used
for the extraction of multimodal sources). For the n > 2
case, it has been shown that Cn is also a convex contrast.
However, in this case the BSS problem is not equivalent to
recovering a single unmixing angle, and other ICA algo-
rithms have to be derived.
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