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Abstract

Radiotherapy treatment planning requires physicians to de- lineate the target
volumes and organs at risk on 3D images of the patient. This segmentation task
consumes a lot of time and can be partly auto- mated with atlases (reference
images segmented by experts). To segment any new image, the atlas is non-
rigidly registered and the organ contours are then transferred. In practice, this
approach suffers from the current limitations of non-rigid registration. We propose
an alternative approach to extract and encode the physician’s expertise. It relies
on a specific clas- sification method that incrementally extracts information from
groups of pixels in the images. The incremental nature of the process allows us to
extract features that depend on partial classification results but also convey richer
information. This paper is a first investigation of such an incremental scheme,
illustrated with experiments on artificial images.
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Abstract. Radiotherapy treatment planning requires physicians to de-
lineate the target volumes and organs at risk on 3D images of the patient.
This segmentation task consumes a lot of time and can be partly auto-
mated with atlases (reference images segmented by experts). To segment
any new image, the atlas is non-rigidly registered and the organ contours
are then transferred. In practice, this approach suffers from the current
limitations of non-rigid registration. We propose an alternative approach
to extract and encode the physician’s expertise. It relies on a specific clas-
sification method that incrementally extracts information from groups of
pixels in the images. The incremental nature of the process allows us to
extract features that depend on partial classification results but also
convey richer information. This paper is a first investigation of such an
incremental scheme, illustrated with experiments on artificial images.

1 Introduction

Cancer treatment with radiation beams amounts to a ballistic problem where
the dose to the tumor must be maximized while the dose at surrounding healthy
tissues must be minimized to avoid secondary effects. In order to achieve the
best tradeoff, 3D images of the patients must be segmented to identify the tu-
mor and the organs at risk. The physicians use an electronic pen or a mouse
to delineate these volumes on each slice. Although it consumes a lot of time,
delineation usually remains manual because it involves complex expertise. This
explains why usual image segmentation methods such as histogram thresholding
[11], pixel or patch clustering [12], gradient peak detection with active contours
[9], or watersheds [2,5] cannot solve the problem. Many of these methods are
unsupervised, even though some of them can take into account some a priori in-
formation, such as the expected region shape, size, and edge smoothness. On the
other hand, supervised segmentation remains difficult to apply, mainly because
the encoding of expertise and a priori information is far from being trivial. The
most successful approach is the use of atlases, which are (banks of) images that
are segmented beforehand by experts. Atlases can be deformed to match any
new image with a non-rigid registration algorithm [3]. Once the two images are
aligned, the contours or regions can be propagated from the atlas to the new im-
age. This approach suffers from the shortcomings of the registration algorithms
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it relies on. Many of these algorithms regularize the deformation vector field in a
simplistic or unrealistic way. This leads to segmentation results that are globally
correct but often inaccurate near the region boundaries; the required corrections
annihilate the expected gain of time.

From a theoretical point of view, the segmentation of several objects in an
image amounts to a supervised multiclass classification problem. In practice,
however, this alternative approach faces several obstacles, the most prominent
being that usual classification algorithms can only deal with features that are
class-independent and thus intrinsic to the image, such as pixel coordinates,
pixel luminance, or patch textures. These features convey limited information
about the objects depicted in the images. On the other hand, extrinsic features
that describe the relationships between two or more classes in the image have
a richer content but they are more difficult to take into account. For instance,
let us consider a feature such as the spatial distance to the region of class Y
in the image. When training a classifier, this feature can be trivially computed
since the labels of all regions are known in a pre-segmented image. In contrast,
in a test image, measuring this distance requires at least some pixels to be
already given label Y . A pragmatic solution to take benefit of extrinsic features
consists in stacking at least two classifiers. The first one involves only intrinsic
features. The resulting partial classification can then serve to compute a first
batch of extrinsic features, which are fed into a second classifier, and so on. This
incremental process has been investigated in [7], for example.

This paper suggests a generic approach, where the images are first over-
segmented with a watershed transform. Information extracted from the water-
sheds are used for the multiclass problem, which is first divided into several
binary classification problems (one class versus all others). Binary classifiers (k
nearest neighbors [6], support vector machine [8] and random forest [4]) tackle
these problems repeatedly in an iterative way. Two methods are proposed to
select the order in which the binary classifiers should be run. At the end of this
incremental process, a multiclass classifier is used with all computed features, to
improve the final results. The efficacy of the approach is demonstrated in a few
segmentation tasks involving artificial images.

This paper is organized as follows. Section 2 briefly describes the method used
for the unsupervised over-segmentation of the images. Section 3 introduces the
notations for intrinsic, extrinsic, and known features; it also details the two pro-
posed methods of feature ranking. Section 4 describes the incremental procedure
for feature computation and partial classification, as well as the final multiclass
classification. Section 5 reports and discusses the experimental results. Finally,
Section 6 draws the conclusions.

2 Unsupervised Over-segmentation

In order to obtain a first, unsupervised segmentation of the images, a water-
shed transform is used [2,5,1]. The principle is to consider the gradient magni-
tude image as a topographic relief where a flooding is simulated. The dam lines
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separating the catchment basins yield an over-segmentation of the image. This
preprocessing step limits the computational complexity by working with consis-
tent groups of similar pixels, called super-pixels, rather than with pixels them-
selves. To control the over-segmentation granularity, we use a reformulation of
the watershed transform as a graph-cut problem, such as described in [5] and
[10]. This watershed-cut method works with both 2D and 3D images and it
includes a graph filtering step that affects the number of super-pixels.

3 Intrinsic, Extrinsic, and Known Features

Let {X,y} denote a data set where X = [xij ]1≤i≤D,1≤j≤N contains the features
and y = [yj ]1≤j≤N gives the corresponding labels. Label yj takes its value in
{Y1, Y2, . . . , YC}, where C is the number of classes.

In the training phase, the rows of data set X can be distinguished between
intrinsic and extrinsic features. Let Fin, Fex denote the non-intersecting sets of
indices corresponding to intrinsic and extrinsic features. As extrinsic features
represent relationships between objects of different classes, we assume that N
is a multiple of C and that the data set consists of N/C groups of objects
where all classes are instantiated at least once. Within the framework of image
segmentation, this means that each image contains at least an object of each
kind. This assumption avoids undetermined or ambiguous relationships.

In the test phase, the unlabeled data set X′ contains missing values for all
extrinsic features. During the incremental classification process, blanks are filled

in as soon as class labels are attributed. Let F (t)
kn denote the set of indices corre-

sponding to known features at iteration t of the incremental procedure. We have

Fin = F (1)
kn ⊆ F (t)

kn ⊆ F (t+1)
kn .

As the evaluation of yet unknown extrinsic features requires a certain class
label to be attributed with reasonable certainty, it is more natural to use binary
classifiers that are specialized for the considered class. Therefore, an execution
sequence of the binary classifiers has to be determined. For this purpose, the
already known features must be ranked according to their usefulness for binary
classification. This paper proposes two methods to rank the features.

3.1 Feature Ranking by Nearest Neighbors

As a first method, we suggest a ranking that assesses the overlap of classes
for a given feature. Let NK

j (X) denote the set of indices corresponding to the

K nearest neighbors of the jth super-pixel x•j of data set X. Let Ck(y) =
{p s.t. yp = Yk} be the set of indices associated with class Yk. The usefulness of
a certain feature to classify data inside or outside class Yk can be measured as

sik =
1

K|Ck(y)|
∑

p∈Ck(y)

|{q s.t. q ∈ NK
p (eTi X) and yq = Yk}| ,

where |A| denotes the cardinality of set A and ei is a vector of zeros everywhere
except the ith element equal to 1. The value of sik can range from 0 to 1.
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The latter value indicates that class Yk does not overlap with other classes along
the axis of the ith feature. Each row of matrix S = [sik] can be computed quite
efficiently by sorting vector eTi X and sliding a (2K+1)-wide window. This leads
to a computational complexity of O(N ln(N)+NK ln(K)) for each feature. The
following steps need to be realized to obtain the binary classification order:

1. Fkn = Fin; O is an empty ‘first in first out’ list (FIFO).
2. Compute � = maxk sik with i ∈ Fkn; set s•� = 0.
3. Push � into O.
4. Insert the indices of the extrinsic features that involve a relationship with

the object of class Y� into F (t)
kn to obtain F (t+1)

kn .

5. If F (t+1)
kn = Fin ∪ Fex, then stop, otherwise go to step 2.

At the end, O contains the sequence of the binary classifiers.

3.2 Feature Ranking by Cross-Validation

The first method only takes into account the performance of a binary, kNN-
like classifier for each class in each feature dimension. The second method is
based on cross-validation: a cross-validation is performed at each step of the
incremental classification process to select the best binary classifier with respect
to the space of currently known features. By doing this, the classification error
rate is minimized at each step. The order can be determined with the following
steps:

1. Fkn = Fin. O is an empty FIFO list.
2. Only take into account known feature on the data set : [xij ]i∈F(t)

kn ,1≤j≤N
.

3. Split the data set into N groups.
4. For each group:

(a) Use the data from the N − 1 other groups as a training set and build a
model for each class that are not present in O.

(b) Measure the model performance on the validation set (data from the
selected group).

5. Compute � = maxk pk, where pk is the mean performance for the binary
classifier identifying the class Yk.

6. Push � into O.
7. Insert the indices of the extrinsic features that involve a relationship with

the object of class Y� into F (t)
kn to obtain F (t+1)

kn .

8. If F (t+1)
kn = Fin ∪ Fex, then stop, otherwise go to step 2.

Like in the first method, O contains the sequence of the binary classifiers.

4 Incremental Feature Computation and Classification

The incremental procedure works as follows. First, the centered and normalized
training set is stored; Fkn is initialized at Fin and the classification order O is
computed. Next, the incremental iterations begins:
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1. Pop the first element of O : � = pop(O).

2. Train the �th binary classifier on the reduced training set [xij ]i∈F(t)
kn ,1≤j≤N

.

3. Give class label Y� to the objects in the test set having the highest probability
to belong this class according to the classifier. At least one super-pixel has
to belong to the class Y�.

4. Compute all extrinsic features that involve a relationship with the object of

class Y� and insert their indices into F (t)
kn to obtain F (t+1)

kn .

5. If F (t+1)
kn = Fin ∪ Fex, then stop, otherwise start a new iteration.

Once a feature order is determined, the classifiers can be trained beforehand to
increase the computational efficiency. At the end of the procedure, all features
are known, but the classification might not be optimal. Some super-pixel might
not be classified, while others can be classified in several classes. A multiclass
classifier can address these issues. The multiclass classifier is trained on the whole
training set. The multiclass classifier is fed with all features to obtain the final
class label for each super-pixel. This last step gives the object their final class
label and slightly improves the results, as shown in the experiments.

5 Experiments and Results

As a proof of concept, the principle of incremental classification is illustrated
with a simple problem of image segmentation. The data consists of artificial
2D images of crowns and discs encompassing each others, like organs or tissue
layers. In each image, there are 8 labels, as shown in Fig. 1. Noise is added to get
realistic images. The position, orientation, size, and color of the depicted objects
vary in each image. The disc labeled 3 is the only white circle. The discs and
crowns with label 4, 6, and 8 are black, while those labeled 1, 2, 5, 7 are gray.

1

2

34 567

8

Fig. 1. Left: Image with the position of the 8 different labels. Right: Some images
picked in the data set, showing the variations in shape and position.
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The data set contains 50 images. Each of them is over-segmented with the
watershed-cut algorithm to obtain 20, 30, 40, 50, 75, 100, 125, 150 or 200 super-
pixels (see Fig. 2).

w = 20 w = 75 w = 200

Fig. 2. Exemple of different watershed segmentations. Left: image with 20 super-pixels.
Center: 75 super-pixels. Right: 200 super-pixels.

For the data set Xw (where w is the number of super-pixels), we have N =
50∗w. Six intrinsic features are extracted: the luminance, the mass center coordi-
nates, the height, the width, and a binary feature that indicate if the super-pixel
touches the border of the image. Three extrinsic features by class are also com-
puted: the signed distance (or offset) to the center of the class and a binary
feature that indicates if the super-pixel is adjacent to the class. At the end,
there are 24 extrinsic features. Altogether, there are 30 features.

This data set is randomly split into a training set with 45 images and a test set
with the remaining 5 images.. The known features in the test set are centered and
normalized by subtraction of the mean and division by the standard deviation
computed on the training set. To compute the binary classification order, the
whole training set is used for the ranking by nearest neighbors. For the cross-
validation method, the training set is split in 10 groups. Each group serves as a
validation set during the determination of the order while the rest is used as the
training set in the cross-validation process. In both cases, the whole training set
is used to build the binary and multiclass models. Our method is implemented
with three algorithms: k nearest neighbors (kNN ([6]), support vector machine
(SVM [8]) and random forest (RF [4]). For the kNN classifier, we set k = 3
(other values give similar results). The SVM uses a Gaussian kernel. The RF
grows 500 classification trees. The extrinsic features are inferred for each image
individually. During the classification step, if no super-pixel can be identified by
the binary classifier, we select the super-pixel that has the highest probability
to belong to the class we wish to identify. For the kNN classifier, we choose the
super-pixel that has the highest number of neighbors belonging to the considered
class. For the SVM, we take the super-pixel with the shortest distance to the
classification margin. For the RF, we use the super-pixel that has the highest
number of trees classifying it to the considered class. The whole classification
procedure is repeated with 20 different training sets.
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As the classes are unbalanced, the accuracy is measured with the BCR (bal-

anced classification rate). The BCR is defined as BCR = 1
l

∑l
i=1

TYi

|Yi| , where l

denotes the number of class, |Yi| is the number of pixels that should be labeled
Yi and TYi is the number of pixels well classified in class Yi. The BCR is analysed
at the end of the incremental procedure (solid line in Fig. 3) and just before the
final multiclass classification (dotted line in Fig. 3). The results are compared
with an incremental classification where the order is selected randomly (trian-
gles in Fig. 3) and with a baseline classification using only the intrinsic features
(gray line in Fig. 3).

.8

.85

.9

.95

1

BCR

20 50 75 100125150 200

Number of super-pixels
kNN classifiers

.8

.85

.9

.95

1

BCR

20 50 75 100125150 200

Number of super-pixels
SVM classifiers

20 50 75 100125150 200

Number of super-pixels
RF classifiers

Fig. 3. BCR with respect to the number of super-pixels, with kNN classifiers (upper
left), RF classifiers (upper right) and SVM classifiers (bottom). Circles ( and )
represent the measures with the order by cross-validation. Squares ( and ) represent
the measures with the order by nearest neighbors. Triangles ( and ) represent the
measures with a random order of extraction. is the measure while using only the
intrinsic features. Filled lines ( , and ) are used for the measure after the final
multiclass classification. Dashed lines ( , and )are used for the measure before the
final multiclass classification.
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Figure 3 shows that SVM classifiers perform rather poorly in our incremental
method. With SVMs, the multiclass classification decreases the BCR. Moreover,
SVMs combined with the nearest neighbors ranking never goes beyond the base-
line (classification with intrinsic features only). Eventually, the BCR also falls
down when the number of super-pixels increases. The lower BCR can be ex-
plained by the fact that during the classification step we have to identify at least
one super-pixel belonging to a class at each iteration. If we cannot find one we
select the super-pixel with the smallest distance to classification margin. This
measure does not identify a good candidate and the features extracted from the
classification are wrong. Those mistakes are propagated during the classification.

Although it is the simplest, the kNN classifier yields better results. The final
multiclass classification with the kNN improves the BCR. Indeed, at the end of
the incremental process with binary classifiers, some super-pixels may remain
unlabeled and the final classification addresses this issue. Nevertheless, this last
iteration cannot correct all past classification mistakes. As expected, the in-
cremental kNN classifiers pass the baseline and outperform the random feature
order. The standard deviation is smaller with the order based on cross-validation
(results not shown).

The results with the RF are as good as those with the kNN. The BCR is even
more robust when the number of super-pixels increased.

The classification results for the kNN with the different feature ranking meth-
ods are shown in Fig. 4.

A detailed analysis of the results, image per image, shows that very often
all classifiers make identical errors in the same image of the data set. Errors
typically happen in images that depicts the objects in unusual configurations,
like when they are the biggest, the smallest, the most shifted, the brightest,
etc. Results for those images are naturally poorer, since such configurations are
seldom instantiated in the data set.

We also compared the segmentation and labeling results of our incremental
classifier to those obtained with atlas registration. For this purpose, we used
MIRT (medical image registration toolbox1). For each of the 50 images in the
data sets, we picked the one that correlates best, among the 49 others. Next,
we non-rigidly registered the latter to match the former, using MIRT 2D. The
deformation field is parameterized with B-splines, image similarity is measured
with mutual information, and registration goes through 5 hierarchical levels with
lower-resolution images. These settings allow nonlinear gray-to-gray mappings
to be identified, as well as large deformations to be easily captured. Finally,
the deformation field was applied to labels associated with the mobile image,
in order to determine the labels on the fixed image. The relative simplicity of
the images, the choice of the best-correlating image, and the quite powerful set-
tings prevented any convergence failure. The average BCR reached 0.9672. Our
methodology based on incremental classification was thus capable of performing
better, with BCR values going up to 0.977 in Fig. 3.

1 https://sites.google.com/site/myronenko/research/mirt

https://sites.google.com/site/myronenko/research/mirt
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w = 50 w = 200

w = 50 w = 200

w = 50 w = 200

w = 50 w = 200

Image 1

Nearest neighbors

Cross-validation

Image 2

Nearest neighbors

Cross-validation

Fig. 4. Result of the final classification with kNN for 2 different images. In each case,
the top images are the resulting images with nearest neighbors and the bottom images
are the resulting images with cross-validation. The left images are segmented in 50
super-pixels and the right images are segmented in 200 super-pixels.
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6 Conclusion

This paper describes a procedure for incremental classification with two meth-
ods of sequential feature extraction. It can deal with problems where the value
of some features requires a partial classification to be already known. The pro-
cess of incremental classification aims at refining the partial classification in an
iterative way. The procedure is generic and can solve the sub-problems in each
iteration with various classification techniques (e.g. naives Bayes, kNN, SVM,
decision tree, random forest etc.). The final multi-class classifier can be changed
as well. Depending on the problem at hand, the procedure must be adapted
with appropriate definitions of features and relevance factors. Failure to do so
increases the risk of error propagation in the incremental process. Experiments
on artificial images show that the procedure is effective. Nevertheless, the results
must be reproduced on real images for a full validation of the method.

In the future, we will investigate the possibility of using a single classifier that
deals with all intrinsic and extrinsic features at all times, thanks to the use of
adaptive relevance factors.
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