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Abstract

Principal components and canonical correla-
tions are at the root of many exploratory
data mining techniques and provide stan-
dard pre-processing tools in machine learn-
ing. Lately, probabilistic reformulations of
these methods have been proposed (Roweis,
1998; Tipping & Bishop, 1999b; Bach & Jor-
dan, 2005). They are based on a Gaussian
density model and are therefore, like their
non-probabilistic counterpart, very sensitive
to atypical observations. In this paper, we in-
troduce robust probabilistic principal compo-
nent analysis and robust probabilistic canon-
ical correlation analysis. Both are based on a
Student-t density model. The resulting prob-
abilistic reformulations are more suitable in
practice as they handle outliers in a natural
way. We compute maximum likelihood esti-
mates of the parameters by means of the EM
algorithm.

1. Introduction

Principal component analysis (PCA) is a standard sta-
tistical tool for dimensionality reduction (Hotelling,
1933; Jolliffe, 1986). It looks for a linear transforma-
tion which projects high-dimensional data into a low-
dimensional subspace while preserving the data vari-
ance (i.e., it minimizes the mean squared reconstruc-
tion error). Therefore, PCA is used as a pre-processing
step in many applications such as data compression,
data visualization, image analysis, etc.

A related technique is canonical correlation analysis
(CCA) (Hotelling, 1936). In general, CCA is used to
analyze the (linear) relationship between two sets of
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variables. It looks for a pair of linear transformations
which projects the two data sets into a common low-
dimensional subspace while maximizing pairwise cor-
relations.

Recently, PCA and CCA were reformulated as proba-
bilistic latent variable models (Roweis, 1998; Tipping
& Bishop, 1999b; Bach & Jordan, 2005). Defining a
proper density model has a number of significant ad-
vantages. First, the associated likelihood measure al-
lows us to compare probabilistic PCA (PPCA) and
probabilistic CCA (PCCA) with other probabilistic
techniques. Second, it is straightforward to extend
PPCA and PCCA in order to handle missing data or
to construct mixtures of PPCA (Tipping & Bishop,
1999a) or PCCA (Verbeek et al., 2004). This is impor-
tant as it enables us to model non-linear relationships
by aligning a collection of such local models. Another
attractive feature is that they allow computing few
principal/canonical axes in an efficient way (Roweis,
1998). Finally, although direct maximization of the
data likelihood under these probabilistic models (or
their extensions) is not always possible, local maxima
of the likelihood function can in general be found by
means of the EM algorithm (Dempster et al., 1977).

Nevertheless, (P)PCA and (P)CCA have severe limita-
tions in practice. Both are based on a Gaussian density
model. Therefore, atypical observations lead possibly
to severe biases in the parameter estimates when us-
ing a maximum likelihood approach. In this paper, we
propose to handle atypical observations in a princi-
pled and automatic way by using a Student-t density
model. The Student-t distribution is a heavy tailed
generalization of the Gaussian distribution. Replacing
Gaussian distributions with Student-t distributions for
increasing the robustness was already done by Peel and
McLachlan (2000) and more recently by Archambeau
(2005) in the context of finite mixture models.

Unlike previous robust approaches to linear projection,
we use a probabilistic formalism, which has significant
advantages: (i) the extension to the Bayesian frame-
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work is possible (ii) constructing mixtures of robust
PCA/CCA is straightforward and (iii) missing data
can be dealt with quite easily. Besides, the proposed
techniques are very practical for tackling real life prob-
lems, as they only require choosing the dimension of
the projection space. In contrast, previous attempts
need in general to optimise several additional param-
eters (e.g., Xu and Yuille (1995)’s robust PCA needs
three). These are often difficult to adjust in practice.

This paper is organized as follows. In Section 2, we
describe how the Student-t distribution can be inter-
preted as a latent variable model. Next, PPCA and
PCCA are recalled. In Section 3, we introduce the
robust probabilistic models and show how their pa-
rameters can be learnt by means of the EM algorithm.
Finally, in Section 5 the models are validated experi-
mentally.

2. Latent Variable View of the

Student-t Distribution

Let y be a D-dimensional feature vector. The multi-
variate Student-t distribution is given by

S(y|µ,Λ, ν) =
Γ(D+ν

2 )
Γ( ν

2 )(νπ)
D

2

|Λ|
1
2 (1)

×
[
1 + 1

ν
(y − µ)

T
Λ (y − µ)

]
−

D+ν

2

,

where µ and Λ are respectively the mean and the pre-
cision (i.e., inverse covariance matrix), and Γ(·) de-
notes the gamma function. Parameter ν > 0 is the
degrees of freedom. It regulates the thickness of the
distribution tails and therefore its robustness to atyp-
ical observations. When ν tends to infinity, the Gaus-
sian distribution is recovered.

As noted by Liu and Rubin (1995), the Student-t dis-
tribution can be interpreted as the following latent
variable model:

S(y|µ,Λ, ν) =

∫ +∞

0

N (y|µ, uΛ)G(u|ν2 ,
ν
2 )du, (2)

where u > 0 is a latent scale variable. The associated
graphical model is shown in Figure 1. The Gaussian
and the Gamma distribution are respectively given by

N (y|µ,Λ) = (2π)−
D

2 |Λ|
1
2 (3)

× exp
{
− 1

2 (y − µ)TΛ(y − µ)
}
,

G(u|α, β) = βα

Γ(α)u
α−1 exp(−βu). (4)

From (2) we see that the Student-t distribution can be
viewed as an infinite mixture of Gaussian distributions
with the same mean and where the prior distribution

Figure 1. Graphical models of (a) the Student-t distribu-
tion, (b) robust probabilistic PCA and (c) robust proba-
bilistic CCA. The shaded nodes are observed, arrows rep-
resent conditional dependencies between random variables
and plates denote repetitions.

on u is a Gamma distribution with parameters depend-
ing only on ν.

3. Linear Probabilistic Projections

Principal component analysis (PCA) and canonical
correlation analysis (CCA) are both exploratory lin-
ear data projection techniques. PCA seeks for a linear
projection W ∈ IRD×d, which maps a set of observa-
tions {yn}

N
n=1 to a set of lower dimensional latent vec-

tors {xn}Nn=1 such that the variance in the projection
space is maximized (Hotelling, 1933). By contrast,
CCA investigates the relationship between two sets of
variables (Hotelling, 1936) and determines how many
dimensions are needed to account for that relationship.
It seeks for a pair of linear projections W1 ∈ IRD1×d

and W2 ∈ IRD2×d, which map two sets of observations
{y1n}

N
n=1 and {y2n}

N
n=1 to a set of lower dimensional

latent vectors {xn}Nn=1 such that, in the projection
space, one component within each set is maximally
correlated with a single component of the other set.

3.1. Probabilistic PCA

In general, PCA assumes that each d-dimensional la-
tent vector xn is a linear projection of aD-dimensional
feature vector yn, with D ≥ d. The latent variable
model is defined as follows:

yn = Wxn + µ + ǫn, (5)

where µ is the data offset and {ǫn}Nn=1 are the projec-
tion errors. In PPCA, these error terms are assumed
to be drawn from an isotropic Gaussian distribution
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with inverse variance equal to τ and the uncertainty
on the latent vectors is modeled by a unit isotropic
Gaussian distribution. Tipping and Bishop (1999b)
showed that maximizing the resulting incomplete data
log-likelihood leads to PCA (up to a rotation). In
other words, the columns of the maximum likelihood
(ML) solution for the projection matrix W span the
same subspace as the d principal eigenvectors of the
sample covariance matrix Σ̄:

ŴML = Ud(Υd − τ
−1Id)

1
2 R, (6)

where Id ∈ IRd×d is the d-dimensional unit matrix,
Ud ∈ IRD×d is the matrix of the d principal eigenvec-
tors of the sample covariance matrix Σ̄ = 1

N

∑
n(yn−

µ̄)(yn − µ̄)T, Υ ∈ IRd×d is the diagonal matrix of
the corresponding eigenvalues and R ∈ IRd×d is an
arbitrary rotation matrix. Note that the true princi-

pal axes can be recovered by post-multiplying ŴML

by RT, which is the matrix of the eigenvectors of

ŴT
MLŴML.

3.2. Probabilistic CCA

More recently, Bach and Jordan (2005) cast CCA as
a probabilistic model in similar manner. The latent
variable model for PCCA is defined as follows:

{
y1n = W1xn + µ1 + ǫ1n,

y2n = W2xn + µ2 + ǫ2n.
(7)

Note that min{D1,D2} ≥ d. Again a unit isotropic
Gaussian distribution is assumed for the d-dimensional
latent vectors, but the error terms {ǫ1n}Nn=1 and
{ǫ2n}

N
n=1 are now considered to be drawn from two

multivariate Gaussian distributions. Their inverse
covariance matrices are respectively denoted by Ψ1

and Ψ2. Maximizing the incomplete joint data log-
likelihood leads then to CCA as the ML estimates of
the projection matrices span the same subspace as the
canonical directions. The ML estimates of the projec-
tion matrix parameters are given by

Ŵ1 = Σ̄11U1dQ1, (8)

Ŵ2 = Σ̄22U2dQ2, (9)

where Σ̄11 and Σ̄22 are the sample covariance ma-
trices, and the columns of the associated matrices
U1d ∈ IRD1×d and U2d ∈ IRD2×d are the d first
canonical directions. The matrices Q1 ∈ IRd×d and
Q2 ∈ IRd×d are arbitrary matrices such that Q1Q

T
2 =

Υd, where Υd ∈ IRd×d is the diagonal matrix of the
corresponding canonical correlations. As discussed in
Appendix A, the true canonical directions (and cor-
relations) can be recovered by a post-processing step,
which removes the rotational ambiguity.

4. Robust Probabilistic Projections

Linear probabilistic projections, such as PPCA and
PCCA (as well as their non-probabilistic counterpart)
suffer from a common problem: since they use Gaus-
sian density models they are very sensitive to atypical
observations such as outliers. Outliers occur quite of-
ten in practice. For example in computer vision appli-
cations, they appear due to pixels that are corrupted
by noise, occlusions or alignment errors (de la Torre &
Black, 2001). Therefore, we propose to use Student-t
density models instead of Gaussian ones. As discussed
in Section 2, the robustness of the Student-t distribu-
tion can be tuned by means of its degrees of freedom.

4.1. Robust Probabilistic PCA

Instead of choosing a Gaussian noise model, we as-
sume that the noise is drawn from an infinite mixture
of Gaussian distributions, i.e., from a Student-t distri-
bution. We also assume that outliers in the feature
space will be outliers in the latent space. Therefore,
we choose the prior distribution on the latent vectors
to be a unit variance Student-t distribution. As a re-
sult, the effect of the outliers will be lowered in the
feature as well as the latent space. This leads to the
following probabilistic model:

p(xn) = S(xn|0, Id, ν), (10)

p(yn|xn) = S(yn|Wxn + µ, τID, ν), (11)

where µ is the data offset and Id ∈ IRd×d is the
d-dimensional unit matrix. Unfortunately, unlike in
PPCA, direct maximization of the incomplete data
log-likelihood

∑
n log p(yn) with respect to the param-

eters is intractable.

However, we can define an alternative robust proba-
bilistic model for PPCA using (2):

p(un) = G(un|
ν
2 ,

ν
2 ), (12)

p(xn|un) = N (xn|0, unId), (13)

p(yn|xn, un) = N (yn|Wxn + µ, unτID). (14)

Its graphical representation is shown in Figure 1. Note
that integrating out un from (13) and (14) leads re-
spectively to (10) and (11). In order to find ML esti-
mates of the parameters, we follow an EM approach by
maximizing the expected complete data log-likelihood
(Neal & Hinton, 1998).

The complete log-likelihood is given by

logL(µ,W, τ, ν) =
∑

n log p(yn,xn, un). (15)

The E-step consists then in updating the posterior dis-
tribution of the latent variables. First, note that the
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Gamma distribution is conjugate to the exponential
family. This leads to the following posterior distribu-
tion for the latent scale variables:

p(un|yn) ∝ p(yn|un)p(un), (16)

= G(un|
D+ν

2 ,
(yn−µ)TA(yn−µ)+ν

2 ),

where A−1 ≡WWT + τ−1ID. Second, the posterior
distribution of the latent vectors is given by

p(xn|yn, un) ∝ p(yn|xn, un)p(xn|, un) (17)

= N (xn|τB
−1WT(yn − µ), unB),

where B ≡ τWTW + Id. The expectations needed to
update the parameters in the M-step are then given
by

ūn = D+ν
(yn−µ)TA(yn−µ)+ν

, (18)

log ũn = ψ
(

D+ν
2

)
− log

(
(yn−µ)TA(yn−µ)+ν

2

)
, (19)

x̄n = τB−1WT(yn − µ), (20)

S̄n = B−1 + ūnx̄nx̄T
n , (21)

where ūn ≡ E{un}, log ũn ≡ E{log un}, x̄n ≡ E{xn}
and S̄n ≡ E{unxnxT

n}. In (19), ψ(·) denotes the
digamma function.

Next, the M-step is found by maximizing the expecta-
tion of (15) with respect to the latent variables, result-
ing in the following update rules for the parameters:

µ ←
P

n
ūn(yn−Wx̄n)P

n
ūn

, (22)

W←
(∑

n ūn(yn − µ)x̄T
n

) (∑
n S̄n

)
−1
, (23)

τ−1 ← 1
N

∑
n

{
ūn‖yn − µ‖2 − 2ūn(yn − µ)TWx̄n

+ tr{S̄nWTW}
}
. (24)

Observe how the contribution of each data point is
weighted according to the associated latent scale vari-
able. At each iteration, a maximum likelihood esti-
mate of ν is found by solving the following expression
by line search:

1 + log
(

ν
2

)
− ψ

(
ν
2

)
+ 1

N

∑
n{log ũn − ūn} = 0. (25)

4.2. Robust Probabilistic CCA

A similar approach can be used to construct robust
PCCA. Consider the following probabilistic model:

p(xn) = S(xn|0, Id, ν), (26)

p(y1n|xn) = S(y1n|W1xn + µ1,Ψ1, ν), (27)

p(y2n|xn) = S(y2n|W2xn + µ2,Ψ2, ν). (28)

Again, making the latent scale variable explicit leads
to the following (compact) reformulation:

p(un) = G(un|
ν
2 ,

ν
2 ), (29)

p(xn|un) = N (xn|0, unId), (30)

p(yn|xn, un) = N (yn|Wxn + µ, unΨ), (31)

where yn ≡ (yn1,yn2)
T, µ ≡ (µ1,µ2)

T, W ≡
(WT

1 ,W
T
2 )T and Ψ ≡ diag{Ψ1,Ψ2}. The correspond-

ing graphical model is shown in Figure 1. Next, we use
the EM algorithm to find ML estimates of the param-
eters.

The complete log-likelihood is given by

logL(µ,W,Ψ, ν) =
∑

n log p(yn,xn, un). (32)

First, we update the joint posterior distributions of the
latent scale variables and the latent vectors. These are
respectively given by

p(un|yn) = G(un|
D+ν

2 ,
(yn−µ)TA(yn−µ)+ν

2 ), (33)

p(xn|yn, un) = N (xn|B
−1WTΨ(yn − µ), unB),

(34)

where D = D1 + D2, A−1 ≡ WWT + Ψ−1 and
B ≡ WTΨW + Id. From these posterior distribu-
tions, we obtain the expectations ūn ≡ E{un} and
log ũn ≡ E{log un}, which are respectively defined by
(18) and (19), and x̄n ≡ E{xn} and S̄n ≡ E{unxnxT

n}:

x̄n = B−1WTΨ(yn − µ), (35)

S̄n = B−1 + ūnx̄nx̄T
n . (36)

Maximizing the expected complete data log-likelihood
leads then to the same M-step for µ, W and ν as for
robust PPCA, while for the noise matrices we obtain

Ψ −1
i ←

(
1
N

∑
n

{
ūn(yn − µ)(yn − µ)T (37)

−2ūn(yn − µ)(Wx̄n)T + WS̄nWT
})

ii
,

where i ∈ {1, 2}. The (·)11 and (·)22 notations denote
respectively the matrix upper left block of size D1×D1

and the matrix lower right block of size D2 ×D2.

5. Experimental Results

In this section, we show that the robust probabilistic
projection models find the same principal or canon-
ical directions in absence of outliers as the standard
(probabilistic) models. In addition, they are also able
to lower the effect of atypical observations whenever
they occur in the data sets, and are thus able to re-
cover the true principal or canonical directions in this
case as well. Note that in all the experiments, the
degrees of freedom ν regulates the robustness of the
model and is optimized automatically.
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Figure 2. Principal axes found by PPCA (black) or stan-
dard PCA, and the ones found by robust PPCA (dark grey)
in presence of 3 outliers (uniform random noise in the in-
terval [-10,10] in each direction; indicated by circles). The
data is drawn from a multivariate 2-dimensional Gaussian
distribution. The light grey lines indicate the principal
axes found by PPCA and robust PPCA in absence of out-
liers.

5.1. Experiments with Robust PPCA

Let us first consider a simple 2-dimensional data set
of size 100 and which is drawn from a multivariate
Gaussian distribution. The data is shown in Figure 2.
Only 3 outliers are added. In presence of few outliers,
PPCA is not able to recover the principal directions of
the data. By contrast, robust PPCA is able to recover
the same principal directions as PCA in absence of
outliers.

The second data set that we consider is drawn from
a 4-dimensional Gaussian distribution. The third and
fourth dimensions have little thickness (small fraction
of the standard deviation in the other directions) and
can thus be viewed as noisy dimensions. Again 3 out-
liers are added. Figure 3 shows the principal directions
in the {y1, y2}-subspace. Observe that here, instead of
finding a rotated version of the principal directions,
PCA and PPCA do not find the same subspace as in
the absence of outliers. By contrast, robust PPCA
does.

The third data set is the Old Faithful geyser data (see
Figure 4 and 5), which is 2-dimensional. The data is
normalized and then 20 outliers are added. In Fig-
ure 4, the outliers are drawn from a uniform distribu-
tion in the range [−5, 5] in each direction. Again, there
is an advantage to use robust PPCA. At first sight, one

−8 −4 0 4 8
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4

8

y
1

y 2

Figure 3. First two principal axes found by standard PCA
and PPCA (black) and the ones found by robust PPCA
(dark grey) in presence of 3 outliers (uniform random noise
in the interval [-10,10] in each direction; indicated by cir-
cles). The data is drawn from a multivariate 4-dimensional
Gaussian distribution (third and fourth dimension corre-
spond to noise). The light grey lines indicate the principal
axes found PPCA and robust PPCA in absence of outliers.

might think that the outliers have only a limited im-
pact as their number is rather large. However, this is
due to the fact that they are distributed in a balanced
way around the data. By contrast, Figure 5 shows the
situation where this not the case anymore. The out-
liers are now only located in the right portion of the
input space. Clearly, the robust approach outperforms
the standard ones.

5.2. Experiments with Robust PCCA

The first example we consider for CCA is such that

y1n,1 + y1n,2 = y2n,1 + y2n,2, (38)

where y1n ∼ N (0, I2) and y2n ∼ N (0, I2). This data
set has a single canonical correlation which is equal to
1 and the canonical directions are both (1, 1)T. Note
that we add some Gaussian noise to the data. In or-
der to asses the quality of CCA, we investigate how
well the single cannonical correlation is identified. In
Figure 6, it can be observed that in absence of outliers
standard and robust PCCA find the same canonical
direction, which is nicely aligned with the true one.
However, when few outliers are added PCCA is not
able to recover the true canonical direction, resulting
in a projection mismatch.

The second example to illustrate robust probabilistic
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Figure 4. Principal axes found by standard PCA and
PPCA (black) and the ones found by robust PPCA (dark
grey) in presence of 20 outliers (uniform random noise in
the interval [-5,5] in each direction; indicated by circles).
The data set is the the normalized 2-dimensional Old Faith-
ful geyser data. The light grey lines indicate the principal
axes found by PPCA and robust PPCA in absence of out-
liers.
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Figure 5. Principal axes found by standard PCA and
PPCA (black) and the ones found by robust PPCA (dark
grey) in presence of 20 outliers (uniform random noise in
the interval [-3.5,8.5] in horizontal direction and [-5,5] in
vertical direction; indicated by circles). The data set is
the the normalized 2-dimensional Old Faithful geyser data.
The light grey lines indicate the principal axes found by
standard and PPCA and robust PPCA in absence of out-
liers.

CCA is the following:

x1 ∼ N (0, I2), x2 = x1 + (0, ǫx)T, (39)

y1 ∼ N (W1x1,Ψ1), y2 ∼ N (W2x2,Ψ2), (40)

where ǫx ∼ N (0, τx). The projections matrices W1 ∈
IR2×2, W2 ∈ IR5×2, as well as the noise matrices
Ψ1 ∈ IR2×2 and Ψ2 ∈ IR5×5, are arbitrary symmetric
positive definite with eigenvalues greater than a spe-
cific bound τy. Additional atypical points are gener-
ated from the independent latent variables x′

1,x
′

2 ∼
U(−2, 2). We investigate how well the projections
from each data space into the low-dimensional sub-
space match. Figure 7 shows the 2-dimensional projec-
tions. Without outliers the models perform similarly.
Unlike robust PCCA, standard PCCA is not able to
recover the true canonical directions when there are
outliers. This results in a projection mismatch (cf.
the projections are not nicely aligned with the noise-
less projections). Nevertheless, note that part of the
correlation is also lost by robust PCCA in the second
canonical direction (lower panel).

6. Conclusion

Many probabilistic models rely on a Gaussian assump-
tion. In practice, however, this crude assumption may
seem unrealistic as the resulting models are very sen-
sitive to non-Gaussian noise processes. A possible
approach is to embed the Gaussian distribution in a
wider family of elliptical symmetric distributions, the
Student-t distribution.

In this paper, we have shown that robust versions of
probabilistic PCA and probabilistic CCA can be con-
structed based on a Student-t noise distribution. Re-
cently, an increasing number of works have used a sim-
ilar approach in other contexts (Peel & McLachlan,
2000; Archambeau, 2005). The Student-t distribution
enables us to lower the effect of outliers. As a result,
the low-dimensional latent subspace is recovered with
a higher confidence.

In order to find tractable solutions for the parameters,
we view the Student-t distribution as an additional
latent variable model and find a local maximum of
the likelihood by an EM scheme. The approach works
well on several illustrative examples. Of course, the
models could be further tested on other real world data
sets. Future work includes the extension to mixtures of
robust PPCA and PCCA, as well as looking for non-
linear relationships in the data sets with the kernel
extension to PCA and CCA.
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(a) No outliers.
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Figure 6. The first canonical correlation obtained for
(P)CCA (broken black line) and robust PCCA (dark grey
solid line). The light grey line indicates the true cannonical
correlation. It can be observed that in presence of outliers
PCCA is not able to identify the correct cannonical corre-
lation.
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Figure 7. The left panels are the projection obtained for
(P)CCA and the right panels are the ones obtained for
robust PCCA. The black dots are the projections obtained
by standard CCA without outliers (noiseless projections).
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A. Appendix

CCA is generally resolved by a generalized eigenvalue
problem. Computing the reduced singular value de-
composition

Σ̄
−

1
2

11 Σ̄12Σ̄
−

1
2

22 = V1ΥVT
2 , (41)

one can show that the canonical direction are given by
{

U1d = Σ̄
−

1
2

11 V1,

U2d = Σ̄
−

1
2

22 V2.
(42)

Matrix Υ is the diagonal matrix of the corresponding
correlation coefficients. Working with the probabilistic
CCA model, the ML covariance estimates are

Σ̄11 = Ŵ1Ŵ
T
1 + Ψ−1

1 , (43)

Σ̄12 = Ŵ1Ŵ
T
2 , (44)

Σ̄21 = Ŵ2Ŵ
T
1 , (45)

Σ̄22 = Ŵ2Ŵ
T
2 + Ψ−1

2 . (46)

It is possible to identify the canonical direction from
these estimates, noting that

V1Υ
2VT

1 = Σ̄
−

1
2

11 Ŵ1Ŵ
T
2 (Ŵ2Ŵ

T
2 + Ψ2)

−1Ŵ2Ŵ
T
1 Σ̄

−
1
2

11

= Σ̄
−

1
2

11 Ŵ1(Id −B−1
2 )ŴT

1 Σ̄
−

1
2

11

= Ṽ1(Id −B−1
1 )(Id −B−1

2 )ṼT

= Ṽ1RΥ̃
2
RTṼT

1 (47)

where we made use of the Woodburry inversion for-

mula and defined Bi ≡ ŴiΨiŴ
T
i + Id and Ṽ1 ≡

Σ̄
−

1
2

11 Ŵ1(Id − B−1
1 )−

1
2 , which is an orthogonal ma-

trix. The matrix R contains the eigenvectors of

(Id−B−1
1 )(Id−B−1

2 ) and Υ̃
2

the corresponding eigen-
values. Identifying the first and the last equalities, we
find V1 = Ṽ1R and Υ = Υ̃. Finally, doing the same
development for V2Υ

2VT
2 , and using formula (42) we

find {
U1d = Σ̄

−1
11 Ŵ1(Id −B−1

1 )−
1
2 R,

U2d = Σ̄
−1
22 Ŵ2(Id −B−1

2 )−
1
2 R.

(48)

References

Archambeau, C. (2005). Probabilistic models in noisy

environments and their application to a visual pros-

thesis for the blind. Doctoral dissertation, Université
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