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ABSTRACT

The minimum number of misclassi�cations in a multi-class classi�er is reached when the

borders between classes are set according to the Bayes criterion. Unfortunately, this criterion

necessitates the knowledge of the probability density function of each class of data, which is

unknown in practical problems. The theory of kernel estimators (Parzen windows) provides a

way to estimate these probability densities, given a set of data in each class. The computational

complexity of these estimators is however much too large in most practical applications; we

propose here a neural network aimed to estimate the probability density function underlying a

set of data, in a sub-optimal way (while performances are quite similar to those in the optimal

case), but with a strongly reduced complexity which makes the method useful in practical

situations. The algorithm is based on a \competitive learning" vector quantization of the data,

and on the choice of optimal widths for the kernels. We study the in
uence of this factor on the

classi�cation error rate, and provide examples of the use of the algorithm on real-world data.

1. Introduction

The Bayes rule, well known in statistics, provides

a criterion to �x the boundaries between classes in

a multi-dimensional classi�cation problem, in order

to minimize the number of misclassi�cations. The

criterion however supposes the knowledge of the a

priori probabilities of the classes, and also of their

underlying probability density functions.

While an estimate of the a priori probability of

each class can be computed through the ratio be-

tween the number of samples in this class available

in the learning set by the total number of sam-

ples, estimating the probability density functions

is a more di�cult problem. The principle of Parzen

windows [2] or kernel estimators is to sum normal-

ized kernel functions centered on each point in the

data set; it can be proven that the sum of all ker-

nel functions converges asymptotically to the true

probability density of data, given some (realizable)

assumptions on the kernels and on the sum.

The convergence is however only asymptotic; in

order to obtain a good estimate of the probability

density functions, one has to use a very large num-

ber of samples in the data sets. Since the estimate

requires the computation of one distance, one non-
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linear function (the kernel), and one addition per

sample in the data set, this can very quickly lead

to a computational load much too high for a real-

world application.

The idea in using a neural network to reduce

the complexity of the method is then to replace

the original set of data by a reduced set with the

same underlying probability function, through an

adaptive vector quantization method. At the same

time, the optimal parameters (width of the kernels)

are estimated in order to obtain a good estimate of

the probability density functions through the sum

of kernels, even with this reduced set of data. The

hypothesis that we use to compute the optimal val-

ues of the kernel widths is that the clusters, i.e. the

in
uence region of each point in the reduced set,

are su�ciently small so that the true probability

density function may be roughly approximated by

a constant over one cluster.

In this paper, we �rst provide a brief introduc-

tion to the Bayesian classi�cation theory and its

approximation by the use of kernel classi�ers. We

then present the method to replace the original set

of data by a reduced set, including the computa-

tion of the optimal widths of the clusters and the

underlying hypotheses. We also present results of

the method on real-world data, and show how to

slightly modify the parameters of the network in

order to take into consideration slight deviations

from our hypotheses. The simulations give a qual-
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itative view of how the hypotheses of our method

and of [4] must be used in di�erent situations.

2. Statistical classi�cation: theory and

practice

A classi�cation problem consists in attributing a

class label to an observed vector u of Rd among

c known classes denoted !i, 1 � i � c. In the

Bayesian context, it is assumed that any vector u

belonging to a given class !k is drawn from a single

conditional density p(uj!k) and that the occurrence
of any class !i has a constant probability denoted

P (!i). With these assumptions, if all wrong deci-

sions are given the same penalty, the Bayes clas-

si�cation decision will be to select the most prob-

able class, i. e. the class for which the product

p(uj!i)P (!i) is maximum.

2.1. Bayes-like classi�cation with kernel den-

sity estimate

According to the Bayes law, the knowledge of the

conditional densities p(uj!i) and of the a priori

probabilities P (!i) of each class is needed to take

the decision which minimizes the probability of mis-

classi�cation for an observed vector u. But these

values are never known in real case problems: we

only have at our disposal a �nite set AN of ob-

servations x(n); 1 � n � N having known classes

!x(n) : AN = [fANi
g with ANi

= fx(n); !x(n) =
!i; 1 � n � Nig and N =

Pc

i=1Ni. The a priori

probabilities P (!i) may be simply estimated by the

relative frequency of the class occurrences in the

learning set P̂ (!i) = Ni=N .

A consistent estimate of a multivariate probabil-

ity density function can be obtained by a kernel

density estimator [2, 3]. Using such estimator, the

probability density in each class !i can be estimated

by

p̂(Ni; uj!i) = 1

Ni

NiX
n=1

K

�
u� x(n)

h(n)

�
(1)

where fx(n); 1 � n � Nig denote the available

patterns in class !i and K(�) a radial kernel func-

tion depending only on the norm of its argument.

Parameter h(n) is called the width factor of the ker-

nel. The estimator is said to be \variable" if h(n)

depends of x(n) and \�xed" otherwise. Variable

estimators always provide better estimates, but it

is very di�cult to locally compute the optimal value

of h(n).

Due to their nice analytical properties, radial

Gaussian kernels in dimension d are often used:

K

�
u� x(n)

h(n)

�
=

1�
h(n)

p
2�
�d :

exp (�1

2

�ku� x(n)k
h(n)

�2
); (2)

So, a classi�er based on kernel density estimation

require an extremely light computational cost dur-

ing the learning (a simple storage of the training

patterns) and have very good Bayes-like classi�ca-

tion performances. Unfortunately, for large train-

ing sets the required memory size and the computa-

tional cost of the classi�cation become incompatible

with hardware constraints and real time classi�ca-

tion tasks. The purpose of the suboptimal Bayesian

classi�er presented here is to drastically reduce the

number of kernels Ni in each class, in order to use

(1) in realistic situations, avoiding to reduce the

quality of the density estimation.

2.2. The suboptimal Bayesian classi�er

The principle of the proposed method is to use

a vector quantization technique to split into clus-

ters the portion of the space where vectors can

be found. The aim is thus to approximate the

sets of patterns ANi
by sets of so-called centroids

BMi
= fc(m); !c(m) = !i; 1 � m � Mig, where

Mi << Ni, roughly keeping the same probability

density of vectors for sets ANi
and BMi

.

For the estimation of probability densities in each

class, we then use the reduced sets BMi
to build

variable kernels estimators of each class instead of

the original sets ANi
; this strongly decreases the

number of operations involved in (1).

The vector quantization used is an iterative ver-

sion of the \Generalized Lloyd Algorithm" [6], the

neural \Competitive Learning" (CL); the iterative

character of this rule is used to set the position of

the centroids and to evaluate the inertia of each

cluster in order to obtain an approximation of the

optimal variable width factors associated to each

cluster. The principle of this method is the follow-

ing in each class !i.

First, the Mi centroids c(m) are randomly ini-

tialized to any of the Ni patterns, keeping the same

a priori probabilities of classes for both sets ANi

and BMi
. Inertia coe�cients i(m) associated to

each cluster are initialized to zero. Then, each of

the Ni patterns x(n) is presented to the set BMi
,

and the centroid c(a) closest from x(n) is selected

and moved in the direction of the presented pattern

while its inertia coe�cient is updated:

c(a) = c(a) + �(x(n)� c(a)) (3)

i(a) = i(a) + �(kx(n)� c(a)k2 � i(a)) (4)

where a is the index of the closest centroid to a

learning vector x(n) and � is an adaptation factor
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(0 � � � 1) which must decrease with time dur-

ing the learning to ensure the convergence of the

algorithm.

After several presentations of the whole set of

patterns ANi
, the distribution of centroids c(m) in

BMi
re
ects the one of the training set ANi

, and

the inertia coe�cients i(m), 1 � m � Mi, con-

verge to the average inertia of points in the clus-

ters associated to c(m) ((4) being a kind of convex

combination at each iteration between the previ-

ously estimated value of i(a) and a new contribution

kx(n)� c(a)k2 due to the input vector x(n)):

i(m) ' 1

n(m)

X
v2C(m)

kv � c(m)k2 (5)

where the sum goes on every point v of the original

training set belonging to C(m), the cluster associ-

ated to the centroid c(m) in the Voronoi tessellation

obtained after the vector quantization, and n(m) is

the number of these points.

At the end of the learning, and under the hy-

pothesis of a su�ciently large number of centroids

for a good coverage of the partition of the space

where the classes are present, the clusters will be

su�ciently small so that the true probability den-

sity inside each cluster can be approximated by a

constant. We use this hypothesis to set the width

factors of the Gaussian kernel function in order to

keep the estimate (1) of the density as constant

as possible over two consecutive clusters (clusters

sharing the same border). Under this hypothesis,

if we consider that the local arrangement of the

centroids of consecutive clusters will be as the ver-

tices of an hypercube, it may be shown [9] that the

relation between h(m), the optimal width factor of

the Gaussian kernel function to set on c(m) and the

estimated inertia i(m) is:

h(m)
2
=

3

2 ln2

i(m)

d
(6)

where d is the data space dimension.

Finally, the estimation of probability density in

each class will be calculated through a neural net-

work implementing (1), applied on a set of centroids

�xed by (3), the width of the kernels being �xed by

(6). Bayesian classi�cation is then realized by using

the Bayes law where the probability densities are

replaced by their estimates P̂ (!i) and p̂(Mi; uj!i)
(7).

3. Empirical results and discussion

3.1. Vector quantization e�ect on the code-

book distribution

The �rst main hypothesis of the method we use

to build the suboptimal Bayesian classi�er is that
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Fig. 1: Mean probability density estimation error of the
suboptimal kernel estimator for the estimation of a Gaussian
mixture with three modes using the number of points per
cluster (dashed line) or not (solid line) .

the vector quantization process will lead to a dis-

tribution of centroids c(m) in BMi
similar to this

of the training set ANi
for each class. This hypoth-

esis would be well veri�ed if n(m), the number of

points belonging to C(m) (the cluster associated to

centroid c(m) in the Voronoi tessellation obtained

after the vector quantization) would approximately

be constant for each cluster.

Several experiments on arti�cial and real distri-

butions showed us that this hypothesis is veri�ed for

large codebook sizes, but if we desire to drastically

reduce the complexity of the estimator, the code-

book size must be su�ciently small. In this case

n(m) can be locally approximated by a constant

(over a few consecutive clusters), but will globally

depend on the clusters position in the initial distri-

bution. So, in order to keep the best approximation

of the probability density function in each class, the

estimator proposed in [4] will provide better results,

and the equation of the kernel estimator based on

the reduced design set BMi

p̂(Mi; uj!i) = 1

Mi

MiX
m=1

K

�
u� c(m)

h(m)

�
(7)

has to be replaced by:

p̂(Mi; uj!i) = 1

Ni

MiX
m=1

n(m)K

�
u� c(m)

h(m)

�
(8)

To illustrate this, we used the reduced estimator on

a two-dimensional Gaussian mixture distribution

with three modes containing 2500 training patterns

p(x) = p1(x)=2 + p2(x)=2 + p3(x), where p1(x) and

p2(x) are radial Gaussian functions of standard de-

viation �x = �y = 0:2 and of respective mean (0; 0)

and (0; 2) while p3(x) is centered on (2,1) and has

a diagonal covariance matrix with �x = 0:2 and

�y = 1.
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The estimator was built with a codebook size

varying from 5 to 200; the CL learning consisted of

10 presentations of the 2500 training patterns with

a � adaptation factor linearly decreasing from 0.3

to 0.001. Figure 1 shows the evolution of the mean

error on the probability density function (pdf) es-

timation (the square root of the mean square error

computed over a 50x50 grid covering more than

99.9% of the distribution) for estimators built with

(7) and (8) using width factors provided by (6).

The vector quantization process leading to values

of n(m) which are \locally constant", the hypothe-

sis used to obtain the \optimal" value of the h(m)

width factor (equation 6) is still veri�ed, even if the

values of n(m) are not \globally constant". But,

as we will see in the following, the actual optimal

value of h(m) will also depend on the data space

dimension and on the codebook size.

3.2. The optimal width factor

As said in section 2.2 the hypothesis leading to the

\optimal" value of the h(m) width factor (6) is that

the number of centroids is su�ciently large so that

the CL learning leads to clusters small enough in

order to allow to approximate the true probability

density inside each cluster by a constant.

On the other hand, as the codebook size de-

creases, the vector quantization will lead to larger

clusters which do no more have the above men-

tioned property of being \small"; we can thus guess

that (6) will be no more valid and that the optimal

width factor h(m) will decrease. In fact, if the

codebook size exactly corresponds to the number of

modes in the learning distribution the optimal value

of h(m) will corresponds to the maximumlikelihood

estimate of the standard deviation of an isotropic

Gaussian centered on centroid c(m) and modeling

the mode of the distribution centered on c(m) [4, 3].

This minimum value of the optimal h(m) is linked

to the averaged inertia coe�cient i(m) by:

h(m)min
2
= �̂2 =

i(m)

d
(9)

So, depending on the codebook size, the width

factor providing the best approximation will be

h(m)opt = 


r
3

2 ln2

i(m)

d
(10)

where 
 is a multiplying factor depending on the

codebook size, on the number of modes in the initial

distribution and on the data space dimension (
 be-

ing egal to 0.6798 when h(m)opt egal h(m)min and

to 1.0 when the codebook size become su�cient).

Extended experiments [8] proved this: the optimal

width factor found in simulations varies about from


 = 0:7 for a small number of clusters to 
 = 1 for a

large number of clusters. We can also mention that
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Fig. 2: Mean classi�cation error on the \phoneme" database
with 20, 50, 100 and 200 centroids.

the optimal width factor is always obtained with 


closer from 0:7 than from 1 in large dimensions; this

is due to the \empty space phonomenon" described

in [5], by which the number of samples in large

dimensions can always be considered as small.

3.3. A real-world problem

Tests have been carried out on a real-world clas-

si�cation database used in the European ROARS

ESPRIT project [1]: \phoneme". Its aim is to

distinguish between the classes of nasal and oral

vowels. The database contains 5404 vowels com-

ing from isolated syllables (for example: pa, ta,

pan,...). Five di�erent attributes characterize each

vowel: the amplitudes of the �ve �rst harmonics,

normalised by the total energy (integrated on all

frequencies).

Simulations consisted in measuring the perfor-

mances of the suboptimal Bayesian classi�er (8)

built with a total number of 20, 50, 100 or 200

clusters (for all classes together). The reported er-

ror percentages were obtained by a Averaged Hold-

out test method over �ve di�erent partitions in a

learnset and a testset of equivalent size (2702 pat-

terns) and the Competitive Learning consisted of

10 presentations of the 2702 training patterns with

the � learning factor linearly decreasing from 0.3

to 0.001. The errors were computed for a 
 mul-

tiplying factor varying from 0.2 to 2; value 0.67

corresponds to the maximum likelihood estimate

(9) and 1.0 to (6).

Figure 2 clearly shows a minimum in the value

of the error for a multiplying factor 
 ' 0:8. It

is important to mention that a large number of

simulations carried out on other databases showed

similar qualitative results.
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4. Conclusion

The use of kernel estimators with reduced design

sets provided by vector quantization techniques en-

ables to approach the Bayesian classi�cation solu-

tion with a minimum amount of computations.

While the vector quantization process is deemed

to have converged to centroids having the same dis-

tribution as the initial points, experiments showed

that this process leads to clusters including di�erent

number of points. The solution we use to increase

the quality of approximation is to take into account

the number of points associated to each cluster.

Another problem is the evaluation of the appro-

priate optimal widths factors for the kernels used

in neural networks which estimate the probability

density functions; in this paper, we proposed the

use of a 
 multiplying factor which could take into

account the e�ects of the data space dimension, of

the codebook size and of the particularities of the

distributions to approximate. With the hypothe-

sis of small clusters (veri�ed with large codebooks

in small dimensions), 
 is close from 1, which can

be seen as an experimental proof of the hypothesis

used in [7, 9]. When the codebook size decreases, 


decreases too, what con�rms the results of [4] when

the number of classes decreases to reach the num-

ber of modes of the distribution. The experiments

presented in this paper may thus be seen as an uni-

�ed way to present the optimal width kernel factors

of radial Gaussian kernel estimators, depending on

the hypotheses on the size of the clusters and the

dimension of the space.
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