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Abstract. The visual interpretation of data is an essential step to guide
any further processing or decision making. Dimensionality reduction (or
manifold learning) tools may be used for visualization if the resulting
dimension is constrained to be 2 or 3. The field of machine learning has
developed numerous nonlinear dimensionality reduction tools in the last
decades. However, the diversity of methods reflects the diversity of qual-
ity criteria used both for optimizing the algorithms, and for assessing
their performances. In addition, these criteria are not always compati-
ble with subjective visual quality. Finally, the dimensionality reduction
methods themselves do not always possess computational properties that
are compatible with interactive data visualization. This paper presents
current and future developments to use dimensionality reduction meth-
ods for data visualization.
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1 Introduction

Data analysis has become an overwhelming discipline in many areas of our ev-
eryday life. Modern ways to acquire and to store information are responsible for
a data deluge. Extracting relevant information from huge amounts of data is a
challenge that is responsible for important and recent scientific developments
in statistics and machine learning. Applications of such new data analysis tools
range from (bio)medicine to consumer profiling, industrial and quality control,
environmental monitoring, and many others.
A specific aspect of data analysis is visualization. Visual inspection of data is

unavoidable in many practical situations. The main reason is that, despite the
power of modern data analysis tools, few of them are really blind in the sense that
they can be applied without any understanding of the data at hand: preliminary
qualitative knowledge is needed, and visualization might help in this context for
example in finding outliers, clusters, etc. Another reason, among many other
ones, to visualize data is that non-experts are often difficult to convince about
the benefits of mathematical tools, if they cannot see the results in the way they
are used to see and to analyse them.
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Visualization has been developed rather independently by two research
communities. One one side, the machine learning community has developed di-
mensionality reduction (DR) methods that may be used for visualization if the
resulting dimensionality is restricted to be 2 or 3. One the other side, the infor-
mation visualization (IV) community has developed graphic ways of representing
the information under the angle that is most usable by the user. Unfortunately,
only few attempts exist to combine the features and advantages of both fields.
Dimensionality reduction is a generic term including manifold learning, non-

linear projection, etc. The goal of DR is to handle data that contain a high
number of attributes (and therefore cannot be visualized easily), and to reduce
them (through the optimization of mathematical information content criteria) to
a lower-dimensional space, while preserving as much as possible the information
content in the data. If the dimension of the latter space is 2 or 3, this provides
an obvious way to visualize data. On the other hand, information visualization
focuses on user-centric graphic objectives, and largely relies on controllability
(the user decides which is the best way he needs for representing data) and in-
teraction (the controllability is achieved through a user interface that responds
almost immediately, making different views affordable in a single session).
Controllability and interaction are two concepts that are mostly absent from

dimensionality reduction. Most DR methods rely on the algorithmic optimization
of a predefined information criterion; although the results can be satisfactory on
the point of view of information content preservation, they are usually not in terms
of effective visualization. Problems such as the sensitivity to initial conditions,
possible rotations and mirroring are common. More dramatically, the criterion
to be optimized has to be predefined; adjusting the criterion to another balance
between conflicting goals (see below for details) needs to run the algorithm again,
which implies prohibitive computational load and simulation times.

2 Dimensionality Reduction: State-of-the-Art

Dimensionality reduction [1] has its roots in methods such as principal com-
ponent analysis (PCA) [3]. PCA can be used to reduce the dimensionality of
high-dimensional data; new features are generated by linear combinations of the
original features, by optimizing a maximum variance/minimum loss of informa-
tion criterion. If the resulting dimension is limited to 2, PCA provides an easy
way to represent high-dimensional data; however, PCA only aims to preserve
simple second-order statistics (directions of main variance) and can miss the
important characteristics of more complicated data distributions.
Except for a few older methods like Sammon’s mapping [4], most nonlinear

extensions to PCA were frenetically developed in the 80s and 90s. Relaxing the
linearity constraint has been found to open the way to new information preserva-
tion criteria, which tend to yield better low-dimensional data representations in
practice. Methods such as Sammon’s mapping and curvilinear component anal-
ysis (CCA) [5] result from a nonlinear view of PCA: while PCA tries to preserve
all Euclidean distances between pairs of points in a data set (while projecting it
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to a lower-dimensional space), Sammon’s mapping and CCA emphasize preser-
vation of small distances, which are usually the ones that are the most important
for effective visualization. At the same time, methods such as Curvilinear dis-
tance analysis (CDA) [6] and Isomap [7] were developed, where the distances to
be preserved are based on the data distribution itself, such as geodesic or graph
distances. The graph distances allow a better representation of the important-
to-preserve similarities and distances in the data; in some sense they act against
the well-known unreliability of estimating data properties in high-dimensional
spaces, called the curse of dimensionality [8].

The diversity of the many DR methods has revealed how difficult it can be to
analyse relationships between different methods and their suitability for a partic-
ular analyst’s needs. Part of the problem is that nonlinear DR has been done by
optimizing relatively abstract criteria, and the relationships of the criteria to help-
ing analysts in a meaningful task has not been clear. Recent analysis has made it
clear that (at least) two conflicting goals exist in DR: in terms of a relaxed form of
distance preservation called neighbourhood preservation, 1) two data items that
are neighbours in the original space should remain neighbours in the projection
space, and 2) two data items should be shown as neighbours in the projection space
only if they are neighbours in the original space. Recently, both two goals have
been shown to correspond to performance in an information retrieval task, visual
retrieval of neighbours from the output display, as measured by the information
retrieval measures precision and recall respectively. The conflict between the goals
yields a natural trade-off between the precision and recall measures, and between
visualizations that are good for one goal versus the other [9] [10]. For example,
projecting a spherical surface distribution to a two-dimensional space results in
flattening the sphere surface onto a circle if only goal 2 (recall) is optimized or
cutting the surface open like an orange-peel world map if only goal 1 (precision)
is optimized. This example illustrates the conflicting requirements in DR and vi-
sualization; neither result is obviously better than the other, the choice, or the
compromise, should be guided by the users needs.

3 Visualization

Information visualization [2] has developed ways to visualize data in a user-
centric way. IV relies on the adequation between the method and the cognitive
goal of understanding data. Many information visualizations are interactive, re-
flecting the difficulty to represent data in a unique, undebatable way. Interaction
also closes the loop with the user: interaction is based on cognition, therefore
helps reflecting the users’ needs.

Information visualization methods are largely based on extensive software
that combine user goals, modern computer visualization features, and interac-
tion. The representation principles behind the methods are usually quite simple
(parallel coordinates, dendograms, trees, heatmaps, etc.), although recent infor-
mation visualization often involves dimensionality reduction methods, such as
principal component analysis and Sammon’s mapping.
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Machine-learning based dimensionality reduction and information visualiza-
tion are complementary: the DR field has developed advanced mathematical
criteria and ways to optimize them, while IV takes into account users’ needs,
cognitive aspects and computer resources. However combining the advantages
from two fields requires an in-depth study of performance criteria and compu-
tational requirements.

4 Quality Criteria and Computational Requirements

Quality criteria exist to measure the performances of nonlinear dimensionality
reduction methods [10]. Most of them yield a pair of values (trustworthiness
and continuity, mean relative rank errors, etc.), which also reflects these dual
or conflicting requirements. These measures can assess the compromise between
the requirements for a given DR result (visualization), but so far the only way to
influence the compromise is to change the criterion of the DR method. Changing
the criterion yields two difficulties: A) the DR algorithm must be rerun, and since
most algorithms take from tens of seconds to hours on standard computers,
fast interaction with the user becomes impossible; B) the link between control
parameters in the mathematical optimization goal and the behaviour of the DR
algorithm is far from straightforward, especially when several control parameters
are involved.
These limitations exist even in the most recent DR algorithms. For example,

algorithms from the stochastic neighbour embedding (SNE) family [11] [12] have
been shown to outperform distance-based methods in the last years, especially
when the original space is high-dimensional. They optimize a divergence between
distributions of distances or neighbours in both spaces, and can partially alleviate
the curse of dimensionality by adjusting priors on the distributions, but the same
basic difficulties remain: the need to rerun the algorithm when the criterion is
modified, and the difficulty of controlling in an intuitive way the compromise
between conflicting objectives.
On the other hand quality criteria when visualization is involved are far from

the information content perspective brought by such trustworthiness and con-
tinuity pairs of measures. Performances in visualization are measured in a way
that takes the cognitive process into account, thus involving the user. In this
context it is much more difficult to define in advance the exact mathematical
criterion to be optimized. Interaction is thus needed between the method and
the user: the visualization is modified by the user, who can estimate in real-time
the adequacy between the visual result and his expected goal.
Interaction necessitates speed: one cannot reasonably expect the user to wait

for more than a few seconds between the request and the response. In DR meth-
ods, the quality criteria (or a proxy) are directly optimized to give the resulting
projection. As most modern criteria are nonlinear, non-linear optimization is
involved, with a number of parameters to optimize that is proportional to the
number of data in the database. In most situations, depending on the application
and on the DR method, this results in unaffordable computation times.
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5 New Developments

In order to lead to effective and usable visualization methods, the modern tools in
the dimensionality reduction field have to be adapted from several perspectives.

First, effective visualization necessitates parameters that may be controlled
by the user, in order to take cognitive aspects into account and adapt the results
of the algorithm to the user’s needs. Most DR methods do contain parameters.
For example, often one of them implements a compromise between the trustwor-
thiness and the continuity of the projection. Another might control the influence
of outliers, . . . In theory it is thus possible to influence the visualization through
user-controlled parameters. However, nothing indicates that the choice of these
parameters, guided by algorithmic and mathematical considerations, is appro-
priate with regards to the cognitive control. There is thus a need for identifying
the role of existing parameters and, if necessary, to change them to parameters
closer to the user’s needs.

Secondly the DR methods have to be rethought in the light of visualization
needs. Most modern DR methods are shown to outperform competitors in spe-
cific settings, and according to specific quality criteria. But are these criteria the
most appropriate ones when visualization is concerned? Is it reasonable possible
to use them as a proxy of subjective, cognitive criteria? Conversely, would it
be possible to express subjective criteria in a mathematical form and optimize
them directly?

Third, the question of stability has to be investigated. DR methods result in
a representation of the data. However what concerns visual perception, several
equivalent projections could be thought of (for example rotations, scalings, . . . ).
When the parameters of the DR methods are modified, even slightly, another
optimum of the criterion to optimize can be found, leading to an almost equiva-
lent but completely different projection. Such instability is of course undesirable
in the context of visualization, and must be controlled at the algorithmic level.

Finally, the computational requirements should be seriously investigated, in
the light of the possibility for user interaction. Fast algorithms have a clear
advantage. When necessary, incremental methods could be developed: slight
changes in the parameters of a method should not result in largely different
representations. This “continuity” in the process could be exploited to reduce
the computation time after user interaction.

6 Conclusion

The field of Machine Learning has generated a large number of dimensionality re-
duction methods. These methods can be used for the visualization of data, which
is a fundamental step in exploratory data analysis. In parallel, the field of Infor-
mation Visualization develops user-centric graphic ways to visualize data based
on cognitive results. The complementarity of the approaches is a challenge for
the future developments of dimensionality-based visualization methods: how to
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incorporate user control, cognitive criteria, stability and computational require-

ments in DR methods are key questions opening new perspectives for research

on dimensionality reduction.
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