
An Analog Processor Architecture for 
a Neural Network Classifier 

Many neural-like algorithms cummtly under study support classification tasks. Several of 
these algorithms base their functionality on LVQ-like procedures to find locations of 
centroids in the data space, and on kernel (or radial-basis) functions centered on these 
centroids to approximate functions or probability densities. A generic analog chip could 
implement in a parallel way all basic functions found in these algorithms, permitting 
construction of a fast, portable classtication system. 
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P onparametric classification of data 
is certainly one of the main tasks 
that let us successfully compare 
neural networks, or neural-like 

algorithms, to the more conventional methods 
known in information theory. However, these 
algorithms generally require large amounts of 
computation, and some applications also require 
real-time, portable classification systems that do 
not continuously connect to a host computer. 
We set out to design a fast, portable system to 
fill each of these requirements. 

Our design of a parallel analog implementa- 
tion of a VLSI processor efficiently computes the 
operations involved in most neural-like classifi- 
cation algorithms and implements the recogni- 
tion phase of classification tasks. It assumes that 
an external host computer has achieved learn- 
ing, and that the results of this learning have 
been downloaded on the analog processor 
through the digital control unit. 

Algorithms for classification tasks 
Classification algorithms generally behave as 

follows. First, the algorithms partition into class- 
es a multidimensional space containing data, 
which usually measures in a physical system. The 
problem itself generally determines the number 
of these classes, while the algorithms compute 
the shape of each partition in the space accord- 

ing to the distribution of stimuli or input data. 
Distribution, of course, includes the class label 
associated with each piece of input data during 
(supervised) learning. Then, when the partitions 
are fixed, the algorithms can classify each new 
input data, without class labels, by determining 
to which partition it belongs. 

Classifiers support various application domains 
such as signal processing (image compression, 
phoneme or sound recognition), optical charac- 
ter recognition, detection of anomalies in fabri- 
cation lines, and detection of abnormal conditions 
in an industrial process or a huge number of mea- 
surements. Usually, the supervised learning and 
generalization phases-the periods during which 
partitions are determined and vectors are classi- 
fied-are completely separated. In some practi- 
cal situations, however, these two phases overlap. 
Then we use an adaptive algorithm to adapt the 
shapes and sizes of the partitions as new data 
belonging to known classes appear. This ap- 
proach avoids the need to recompute the whole 
set of parameters, which would require the mem- 
orization of all input data since the beginning of 
the learning process. 

To illustrate the concept of data classification, 
we introduce two kinds of algorithms: learning 
(or adaptive) vector quantization (LVQ) and 
kernel-based classifiers of probability densities 
(KBC). Depending on the complexity of the prob 
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lem. dimension of the data space, number of classes, overlap 
between classes in the space, decision to or not to obtain a 
Bayesian classifier, speed requirements, and many other fac- 
tors, we can use either method. Researchers are currently 
studying both methods in many different areas requiring clas- 
sification. We describe them here as “case studies;” they are 
not the only way to build classifiers. We do not evaluate the 
respective advantages and drawbacks of these methods. 

LVQ algorithm. Vector quantization finds in the input 
space a restricted number of patterns, called centroids, whose 
distribution (probability density) is as close as possible to 
the whole set of input vectors. In other words, vector quan- 
tization restricts the number of data points for further pro- 
cessing, keeping as much information as possible from the 
initial distribution. 

Kohonen’ proposed several LVQ algorithms. We discuss 
the original LVQl algorithm; others are based on the same 
principle of moving centroids depending on input data and 
require the same computing resources as the LVQl. Consider 
in the following that N d-dimensional input vectors x1 (1 $ j 
5 A9 form the input distribution, and that there are P cen- 
troids (or prototypes) pi (1 2 i I P). We can describe the 
LVQl algorithm then as follows, 

Before the first iteration, the algorithm randomly initial- 
izes the P prototypes p, If a priori limits on the set of input 
vectors are known, LVQl chooses the prototypes inside these 
limits; one possibility is to initialize the prototypes to any P 
of the Ninput vectors. At each iteration, LVQl compares a 
d-dimensional input vector x1 to all prototypes and selects 
the one pa for which the standard Euclidean distance 
between pa and x1 is minimal, according to 

Ilp,-x,Ill IIp,-~ll,VkE(l...p)\ (u),llalP (1) 

If vectors xj and pa belong to the same class, pa moves in 
the direction of x, : 

Pa = Pa + a(+- Pa 1 

where a is an adaptation factor (0 I a I 1). If the two vec- 
tors belong to different classes, pa moves in the opposite 
direction. 

Adaptation factor a must decrease with time to obtain a 
good convergence of the algorithm. Usually, the algorithm 
keeps the same value of a for a whole epoch and decreas- 
es it before the next one. (An epoch consists in presenting 
once the whole set of input patterns.) 

After convergence, that is, after several epochs, the algo- 
rithm locates centroids pz in the space so that their distribu- 
tion represents the initial distribution of input vectors SC,. 
LVQl is an iterative version of the Linde-Buzo-Gray method,2 
which is commonly used in vector quantization. After train- 
ing, we use Equation 1 to select centroid pa, which is closer 

to a new input xj than any other centroid. Then we attribute 
the class of pa to the input pattern to achieve classification. 
We can adequately approximate the boundaries between 
classes only if we chose the number of centroids in each 
class proportional to the respective a priori probability den- 
sities of the classes.’ Thus, we approximate a class a priori 
more probable than another with more centroids, which 
seems intuitively reasonable. 

KBC algorithm. Kernel-based classifiers work in two 
phases. They estimate the probability density of the data dis- 
tribution inside each class. Then, they use the Bayes law to 
determine the boundaries between classes in the data space; 
and thus classify new input vectors. 

To estimate the probability density of data belonging to a 
particular class, we sum the kernels centered on the data 
from the learning set available in this class: 

(2) 
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where (x, , 15 i < N, > denotes the samples at disposal in class 
w,. We suppose that there are C classes denoted w, , 1 I c 5 
C The scalar parameter h is called the width factor of the ker- 
nel. Kernel @ is said to be radial if it is only a function of the 
norm of its argument. Several types of @ kernels may be used, 
the most classical one being a Gaussian function: 

u- xi 
@- 

! 1 

1 1 
h =dhde 

+q) 

P-1 2a (3) 

where dis the dimension of u and x,. 
Cacoullos proves the convergence of such an estimator 

3&N,, u I w,) to the true density px<u I WJ in the mean square 
sen.se3,4 when N, tends to infinity and the kernels @ respect 
some conditions. 

We can vary width factor h for each kernel @ (U - X; / h); 
in this case we refer to kernels as variable rather than fixed. 
However, the prohibitive number of operations involved in 
the case of variable kernels make them rather inefficient in 
terms of software or hardware implementations. Further- 
more, tests show limited gain in performances between esti- 
mators based on fixed and variable kernels, especially for 
finite databases. For these reasons, we consider only fixed- 
kernel estimators here. 

Finally, even if the probability density estimators are 
shown to be asymptotically unbiased, we can reduce the 
number of computations in practical applications by reduc- 
ing the number of samples through some kind of vector 
quantization, for example, an LVQ procedure. For the LVQ 
procedure to give an appropriate distribution of the centroids 
in each class, we must set their number proportional to the 
a priori probabilities of the respective classes. 

Once the probability densities are estimated in each class, 
we can use the Bayes criterion to classify any new vector X, 
class w, (1 < c I 0 will be attributed to vector x if 

~,(X~W,)P(W,)2 $~(XIWi)p(ZUi)t 1 s is c (4) 

where Rw,) is the a priori probability of class w? Such a 
classifier is interesting mostly because of its property to 
approximate the Bayes limits between classes, that is, the 
boundaries leading to a minimum number of misclassifica- 
tions in case of overlapping distributions. Most other classi- 
fication systems do not have this property. 

Complexityoftheclass~cati~algori~andadvan- 
tages of a parallel chip. A weak point of the two classes of 
algorithms certainly resides in the number of operations 
involved in classifying data (after learning). Indeed, for each 
input vector to classify, both algorithms require calculation of 
at least P distances between this input vector and the cen- 
troids. After that, the LVQ algorithm selects the minimum of 
these distances (and computing a minimum of Pvalues neces- 

sitates at least P- 1 comparisons). Alternatively, KBC divides 
the resulting distances by the respective width factors to serve 
as inputs to kernel functions (exponentials), which then must 
be added and compared. This implies a lot of computations, 
directly proportional to the number of centroids memorized 
in the network and to the number of data to classify. 

Speed is not always a limitation in applications. When 
monitoring a process line, for example, we do not need to 
classify the measurements made on this line with a delay 
that is much shorter than the time constant of the physical 
process itself. However, in many other applications, like 
speech recognition or image compression, the number of 
data to classify is so huge that it would be difficult to hold 
real-time processing on a conventional personal computer or 
workstation, or even on a dedicated signal processor. 

We immediately imagined building a specialized VLSI 
processor to speed up these operations. The nature of the 
algorithms makes a parallel processor the best candidate for 
such implementation. For example, PX d identical cells can 
implement a distance between P d-dimensional centroids 
and one d-dimensional input vector by calculating distances 
on one component of the vectors, their results being summed 
by groups of d. We propose an architecture that uses ana- 
log computation blocks to realize these operations. 

Realizing a dedicated chip for classification is not only inter- 
esting for its speed. Many industrial applications require a 
portable stand-alone and easy-to-use classifier. This means 
that, after learning, the system should be able to indicate the 
class of a vector, representing both input and output as elec- 
trical signals, either analog or digital. In addition, the system 
should be ready to operate without complex programming. 
We based our architecture on an analog operative chip, cou- 
pled with a digital control pan, which fulfills these requirements. 

Mixed analog-digital architecture 
Specialized VLSI cells can easily implement all the opera- 

tions we’ve just described (addition, multiplication, distance 
computation, nonlinear Gaussian-like functions, winner-take- 
all operation). Sums, winner-take-all, and nonlinear kernel 
functions are particularly suited to analog realizations. We 
can easily realize nonlinear functions, using the nonlinear 
characteristics of transistors and amplifiers, and sums just by 
connecting several current sources on common current lines. 
Various researchers have studied analog winner-take-all 
functions. 

It is more difficult to decide how the values will be mem- 
orized. Digital memory points are, of course, the easiest to 
implement. Static memory points require a large silicon area, 
and the solution is thus oriented toward dynamic ones 
(which require refreshment). The problem is still the num- 
ber of memory points that would be necessary to store on 
the chip, if one memory point must be used for each bit of 
each stored pattern, Another drawback is the availability of 
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the data in the chip in digital form, which requires a digita- 
to-analog conversion before further analog processing. 

Even if we use analog cells to carry out most operations 
in the two classification algorithms, a sequencing of the oper- 
ations must obviously take place in the architecture. The 
sequencing determines which operations will be used, in 
which order, and which input and output lines must be used. 

Figure 1 shows the principle of the architecture used to 
implement the classification algorithms. It consists of two 
different parts. An analog processor classifies data, by means 
of one of the algorithms. We essentially restrict inputs and 
outputs of this part to the classification data, their classes (at 
the input for memorization and at the output for classifica- 
tion), and some control lines. The control lines include para- 
meters to characterize some operations (the shape of 
Gaussian kernels, for example) and choices between one 
operation or another. This part of the architecture is inde- 
pendent of the algorithm used, in the sense that a unique 
processor is implemented to cover the whole set of opera- 
tions needed in the different algorithms. 

We devoted the second part of the architecture to control. 
It essentially uses the outputs of the processing part to 
sequence the operations and the allocation of units. It also 
provides the control lines necessary to the analog proces- 
sor. This part is dependent on the algorithm, since different 
algorithms will need different sequences of operations, and 
the use of different output lines of the processor. The con- 
trol section is a digital finite-state machine with either a spe- 
cialized or general-purpose digital chip, discrete components 
on a printed-circuit board, or even FPGAs. Combining the 
analog processor and the digital control section leads to an 
efficient architecture for classification tasks. 

Analog processor 
Figure 2, next page, shows that we’ve built the core of our 

system around P identical cells. Each cell contains memory 
points to store the coordinates of the centroid and its class, 
together with a distance calculator to compute the distance 
between this centroid and an input vector. Briefly, the sys- 
tem stores a set of P centroids pk, 1 5 a 5 Pin the processor; 
in the case of the KBC algorithm, the coordinate of the cen- 
troid corresponds to the center of kernel function R. Then, 
when an input vector enters the circuit for classification, the 
algorithms compute all distances between this input vector 
and each of the centroids in parallel; this is the purpose of 

-the P distance computation cells. 
The algorithms use P computed distances in two ways. 

On one hand, they compare distances to find the smallest 
one so they can select the closest centroid from the input 
vector. The LVQ algorithm uses the shortest distance when 
selecting centroid pa in Equation 1. On the other hand, the 
distances serve as inputs to PGaussian-like kernel functions 
used in KBC algorithms, as mentioned in Equation 3. 

Input 
vectors 1 

Classes 
1 (for learning) 

Stand-alone 
classification Classes 

system h!A - 
Algorithm dependent Algorithm independent 

Figure 1. Mixed architecture for classification algorithms. 

The LVQ algorithm uses the selection of the winning cen- 
troid pa to complete the recognition phase of the algorithm. 
The KBC algorithm sums the Pkernel outputs class by class, 
according to Equation 2 to estimate the probability densities 
of each class. External commands, as detailed later, adjust 
the parameters of the kernels, namely their widths and 
shapes. According to Bayes law (Equation 41, the algorithm 
then classifies the input pattern by selecting the largest prob- 
ability density from among the different classes. 

Equation 4 gives us supplementary factor P(w,>, which cor- 
responds to the a priori probabilities of the classes. However, 
the same equation supposes that&x I w,> represents the 
estimate of the probability densities, that is, functions whose 
integral is 1. This is why we multiplied factors in Equation 3. 

In our circuit, however, we can adjust the parameters of 
the kernels themselves. In reality, each kernel in the circuit 
has an identical integral. Suppose this integral is equal to 1. 
Though this is pure convention, multiplying all kernel val- 
ues by a constant does not change the classification decision 
in Equation 4. Summing all kernels in each class will thus 
lead to an estimate of each probability density proportional 
to the respective numbers of kernels. If this number is itself 
proportional to the a priori probabilities P(q) in Equation 4, 
the maximum value from among probability densities esti- 
mates of each class computed by the second winner-take-all 
in Figure 2 will respect the Bayes decision. Since the num- 
ber of kernels in each class must already be proportional to 
the a priori probabilities for a correct boundaries approxi- 
mation through the LVQ algorithm, the chip will adequate- 
ly estimate the Bayes boundaries between classes. 

The circuit operates as follows. Input vectors, as well as 
the coordinates of the centroids for storage in the circuit, 
enter the chip as analog voltages. As seen later, the same 
input circuitry accommodates one coordinate of the input 
vector and the corresponding coordinate of the centroid, to 
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Figure 2. Functional description of the analog processor. 

eliminate mismatching problems. Each coordinate of each 
centroid is stored in an analog memory point; simultane- 
ously, the corresponding class label of the centroid is stored 
in classical static digital memory points. 

During the distance computation, each current corre- 
sponding to one coordinate of one centroid will be sub- 
tracted from the current representing the corresponding 
coordinate of the input vector. The algorithm obtains d val- 
ues in this way for each centroid and sums them on current 
lines to compute the Manhattan distance. This takes place 
before entry of the winner-take-all and kernel functions. We 
justify the use of the Manhattan distance instead of the 
Euclidean distance later. 

Outputs of kernel functions are also current. They are in 
turn summed on a second set of C current lines, one per 
class. A set of decoders connected to the static memory 
points that store the class labels selects the line where a par- 
ticular current must be added. The second winner-take-all 
finally selects the class corresponding to the largest estimate 

of the probability densities (multiplied by the a priori prob- 
abilities), to complete the classification process. 

We chose the sizes of all transistors to correspond to cells 
designed in the MIETEC 2.4~pm technology (standard 
European analog VLSI process), and for a circuit with P 
equaling 32 (the number of kernels), d equaling I6 (the 
dimension of the data space), and a precision in the memo- 
ry points equal to 8 bits. 

Analog memory potits. We justify the use of analog 
memory points to store the locations of the centroids as fol- 
lows If we consider that Pcentroids must be stored, and that 
each of them has d coordinates, the chip must contain P x d 
memories. If each of these memories must have, for example, 
a precision of 8 bits as assumed in the following, storing all 
values digitally would lead to a large silicon area, even if we 
use dynamic memories in a standard CMOS technology. 
Furthermore, if the centroids’ locations were digitally stored, 
the values would have to be converted locally into analog 
ones before using them in analog computation cells. 
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Figure 3. Analog memory point. 

The principle of our analog memory point is to store a 
current as illustrated in Figure 3. When switch transistor T, 
is on, the drain and gate of memory transistor T, connect, 
and its gate voltage adjusts to let the input current Z,,, flow 
through the transistor. When transistor T, is switched off, 
capacitor CR memorizes the gate voltage of T, to keep the 
same current b,, flowing through the transistor. 

However, several problems occur with the cell in Figure 
3. First, when transistor T, is off, a leakage current corre- 
sponding to the source blocked junction of this transistor 
flows between capacitor C, and the substrate. This current, 
represented by the dotted junction in Figure 3, decreases the 
stored voltage on C’ (referred to as V,,,). Second, when tran- 
sistor T, is switched off, some charges are injected in C,, 
modifying its voltage as well. Finally, if the drain voltage of 
transistor T, changes between the storage of current (T, on) 
and its reading (T, off), the current value also changes. 

To compensate for the effects of current leakage in the 
blocked junction, a refreshment system sequentially reads 
all analog values stored on the chip and refreshes them. Both 
the charge injection (when switching off transistor T,> and 
the leakage current in the blocked junction decrease the volt- 
age V(C, > between V, and the gate of T, from less than 
one least significant bit in refreshment period r This LSB is 
measured over the whole dynamics of stored voltages on C, 
In Figure 3, both the leakage current and the charge injec- 
tion have the same sign. The blocked junction injects posi- 
tive charges from V,, to C, just as does the switching of T, 
We then know the sign of the slope of V(C, >, as illustrated 
in the second part of Figure 3. 

Suppose the refreshment system now reads the analog 
value in a memory point at Tregular intervals and converts 
it into the smallest digital value greater than the analog one. 
Then the system can refresh the memory point to its initial 
level as illustrated, keeping the stored value fixed to a preci- 
sion of 1 LSB. The same system, an analog-to-digital converter 
followed by a digital-to-analog one, can refresh all memory 
points of the circuit. It can do so provided that period T 

Figure 4. Regulated cascade analog memory point. 

between two refreshments of the same memory point is small 
enough to ensure a decay in V(C,> of less than 1 LSB. 

To solve the dependency problem of the current in T, 
with its drain voltage, we designed the cell on the chip as a 
regulated cascode;5 see Figure 4. Fixing the current &flow- 
ing into the regulation transistor T, maintains the drain volt- 
age of T, through the cascade transistor T,. The drain voltage 
of T, at the input of the cell may now vary with almost no 
effect on the drain voltage of T,, because of the high gain 
of the loop formed by T, and T,. The impedance of the cell 
is thus high and the memorized current I,,, fixed. 

In Figure 4, T, operates in its linear region, reducing its 
transconductance g,,, as well as the current variation due to 
the charge injection on C,. To keep the drain voltage of T, 
as fixed as possible, we must increase the gain of the loop 
formed by T, and T, Both transistors remain in saturation, 
and transistor T, operates in weak inversion (through a very 
small & current) to maximize its gain (transconductance over 
output conductance). 

The capacitance of C, must be around 1 pF to reach an 8- 
bit accuracy in the stored current. To obtain this value, we 
added a supplementary capacitor realized between the two 
polysilicon layers of the MIETEC 2.4~pm technology in par- 
allel to the gate capacitor of T,. This gives us a constant 
capacitor. We set the maximum current memorized in the 
cell to 128 @with one LSB corresponding to 500 IA 

We derive the approximate time constant for a current 
memorization in the cell by T= C’ /g,,, where g,, is the 
transconductance of T,. Since g,, is approximately 100 
@/V, the time constant Tis about 10 ns. 

We obtain the first-order output impedance of the cell by 

Here g,, and g,,,, are the transconductances of T, and T,, 
and g,,, g,,, and g,, are the output conductances of T,, T,, 
and T,. This output impedance Z is approximately 400 
Mohms in our cell. 
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Refreshment system. 
As mentioned earlier, the 
principle of the refresh- 
ment system for analog 
memory points is to read 
the analog current stored in 
a cell, and to refresh it to 
the next upper reference 
current in the digital range, 
as illustrated in Figure 3. 
(The next upper voltage on 
C, refers to V,, corre- 
sponding to the next upper 
current Z,,,.) 

Figure 5 shows the archi- 
tecture of the refreshment 

system. Cells 1 to 8 contain current sources in the power of 
2, namely 1 LSB, 2 LSBs, 4 LSBs, . . . . 128 LSBs. Matching these 
current sources is critical, since an error of 1 LSB may cause 
nonmonotonicity in the converter. We realize the sources by 
connecting elementary current sources of 1 LSB, through a 
design that interleaves these elementary sources to minimize 
the influencing oxide and technological parameter gradients 
in the chip. 

When current Z,, must be measured, the comparator suc- 
cessively switches on cells 8 to 1, according to the succes- 
sive approximation scheme. (This scheme compares I,,, 
with a reference made from 128 elementary sources. If I,,, 
is greater than the reference, the comparator compares Z,,, 
with 128 + 64 elementary sources, and the most significant 
bit equals 1. Otherwise it compares I,,,, with 64 elementary 
sources, and the MSB equals 0.) 

After eight comparisons, the comparator obtains the 8-bit 
digital value, together with a I,, current, which refreshes the 
memory point. At each iteration of the successive approxi- 
mation scheme, Vcomp on a high-impedance node goes high 
or low, depending on the sign of the subtraction of I,, from 
Z rnenl~ It then fixes the next bit in the digital value. Macq and 
Jespers’ describes the converter and comparator cell in detail. 

Synapse and input circuitry. The circuit in Figure 6 
repeats P x d times on the chip and connects to the P x d 

analog memory points described earlier. The purpose of the 
circuit in this figure is twofold. It acts as an input of the cor- 
responding memory point when a current must be stored. In 
this mode, an external input voltage V,, generates a current 
Z,, which is the current I,,, in Figure 4. Write transistor T, 
switches on, and the cell stores the current in memory. 

In the second operation mode, suppose Z,,, is in the cell’s 
memory as in Figure 4, and that it must be subtracted from 
current 4,. In the next section we show the use of this dif- 
ference to compute the distance between an input vector X, 
and a centroid p, In this mode however, the difference 
between currents I,,, and 4” may be allowed to flow out of 
these cells. 

The principle of the cascade cell in Figure 6 is similar to 
the principle of the memory point. Cascade transistor T, cou- 
pled with regulation transistor T, maintains the fixed drain 
voltage of T,, This makes Z, independent from the drain volt- 
age of T,. Moreover, since the transistor T,, operates in its 
linear region, the conversion between V, and 4, is linear. 
Finally, using the same transistors first to write a value in a 
memory point and then compare this value to another one 
compensates for deviations on the absolute value of the 
stored currents, which may depend on the transistors’ 
characteristics. 

The transistors’ operation modes in this cell are identical 
to the regulated cascade ones in the analog memory point; 
Figure 6 gives the sizes of the transistors. 

Distance computation. One of the main operations that 
must be realized on chip is the distance computation 
between a d-dimensional input vector and P d-dimensional 
centroids. The type of distance metric used for this compu- 
tation obviously influences the behavior of the algorithm; 
however, there is no a priori reason to prefer one type of 
distance metric to another. In a real-world database of leam- 
ing vectors, only the shape of the regions associated with 
each class in the data space may influence the choice 
between several types of distances. Since these shapes are 
not a priori known in most real classification problems, we 
cannot foresee which type of distance will lead to the best 
performances. This motivates the choice for the distance met- 
ric easiest to implement in practice, that is, the Manhattan 
distance. 

We obtain the Manhattan distance between an input vec- 
tor x and a centroid pi, 1 5 i I P by 

j-1 

Three operations must be realized: subtraction between x 
and p, coordinate by coordinate, absolute value, and sum of 
these results over all coordinates. When a memory point is in 
read mode, the difference between the memorized currents 
Zncmj and the input currents &, in Figure 7 (1 S jl d, flows out 
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Figure 7. Computation of the Manhattan distance between 
the input vector and one centroid. 

from the cells (transistors T, are switched on). This current 
may be positive or negative. Depending on its sign, it is direct- 
ed to one of the two summation current lines in Figure 7. 
Finally, we must compute the difference between these two 
sums to complete the implementation of Equation 5. 

The circuit illustrated in Figure 8 implements this current 
difference, and sets the respective voltages of current lines 
I+ and I_ (in Figures 7 and 8) to fixed values t$+ and t$. This 
lets us keep the output of each cell in Figure 7 in a limited 
voltage range to ensure the functionality of the memory 
points and the input circuits. We fixed VI+ and V/- to about 
1.6~ and 3.4V to let the currents flow through the diodes T,, 
and T,,, 1 < j I in Figure 7. 

Both of these values are not critical, so we roughly gen- 
erate them by dividing the power supply voltage. The influ- 
ence of technological parameters and temperature is 
negligible, provided that the voltages remain constant dur- 
ing the use of the chip. We determined the difference 
between these two values to avoid a constant current flow- 
ing through the diodes T, and T,, by keeping this differ- 
ence smaller than the sum of the absolute values of the two 
threshold voltages. 

The current mirrors in Figure 8 sum the absolute values of 
I+ and I_ to provide I&,, the distance between the input vec- 
tor and the memorized centroid. The dynamics of currents Z+ 
and I_ may be important. Since the maximum stored current 
in each memory point is 256 x 500 nA = 128 @, their sum 
may be as high as 16 x 128 J.LA z 2 mA. The mirrors used in 
the cell of Figure 8 divide the current dynamics by 10, to get 
acceptable currents for the winner-take-all and kernel cells. 

Figure 9 represents the simulation of one distance com- 
putation cell connected to the circuit of Figure 8. We assume 
a memorized current of 75 f.tA, while V,, of the input cell 
ranges from 2V to 4.5V. The first curve (Figure 9a) repre- 
sents the current in the input cell, which ranges from 20 to 
180 @  (the expected dynamics). The second curve (Figure 

Figure 8. Absolute value of the sums of currents. 
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Figure 9. Simulation of Manhattan distrance computation. 

9b> represents the output voltage V, of the cell in Figure 7 
(between transistor T, and the diode-connected transistors). 
The last curve (Figure 9c) represents the output current after 
inversion by the circuit of Figure 8. 

Winner-take-all. Iazzaro et al.’ first proposed the prin- 
ciple of a winner-take-all circuit with current inputs, as 
shown in Figure 10, next page. V, is the gate voltage of all 
transistors T,, and the source voltage of all T2, , 1 I i $ P. Since 
all transistors T,, have the same gate voltage, their drain volt- 
age will adjust to let the Jni currents flow through the tran- 
sistors Since the currents are different (the maximum must 
be chosen), only one T,, is in saturation, while the others are 
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in their linear region. T,, has a gate voltage lower than the 
others, and catches the main part of the current 4.r since the 
source voltages of T,, are fixed to V, too. The output voltage 
of each cell detects the winner. 

Lazzaro et al. only uses transistors in weak inversion. In 
our circuit however, because of the dynamics of the input 
currents, and also to reduce the time constants, we prefer 
transistors in strong inversion. We added a Schmitt trigger at 
the output of each cell, to avoid oscillations between winners 
should two currents be approximately identical, We select- 
ed the threshold of these Schmitt triggers to ensure at most 
one output would be high, with the possibility that all out- 
puts would remain low if several cells share current I,, and 
if two or more input currents are similar. 

The sizes of the transistors given in Figure 10 are valid for 
input currents from 0 to 200 l.tA, which is the range of the cur- 
rents coming from the distance computation cells. We chose 
an I,, current of 1 l.tA. However, the LVQ algorithm neces- 
sitates the selection of the centroid whose distance is the 
minimum from the input vector, and the winner-take-all 
block of Figure 10 selects the maximum of its input currents. 
Therefore, we need to subtract current I& of Figure 8 from 
a fixed value to get &, in Figure 10; in our circuit J,, equals 
200 PA - I&. The second winner-take-all, which selects the 
largest estimate of probability densities from among classes 
for the KBC algorithm, does not need this subtraction. With 
the sizes of transistors given in Figure 10, we can discrimi- 
nate between two currents with 1 percent difference, what- 
ever the absolute value of these currents (0 to 200 l.tA). 

Kernel functions. Recent developments in the theory of 
KBC algorithms* show that we can greatly improve the qual- 
ity of probability density estimations by adjusting two kinds 
of parameters in the Gaussian kernels. The first one is clas- 
sically its width factor. A second one, which must be adjust- 
ed depending on the dimension of the data space, 
determines the tail curvature of the Gaussian function, that 

‘inp 
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-I 

is, the rate at which the kernel function drops off. 
Figure 11 shows the differential pair used to realize a 

Gaussian-like kernel. Note that the exact kernel shape is not 
critical for the approximation of probability densities as soon 
as two such parameters can be adjusted. Moreover, only half 
of the Gaussian function must be realized, since its argument 
is always positive (distances). We will thus use the nonlin- 
ear characteristics of a differential pair to evaluate the 
Gaussian-like functions. 

In Figure 11, flowing the argument of the kernel func- 
tion-namely the current Idisr in Figure &into a transistor in 
its linear region generates V,,,. V,, determines the width of the 
kernel, while modifying V,, which acts on the conductance 
of Tj, adjusts its curvature. In the implementation, three tran- 
sistors connected in parallel with W/L sizes of 31'160, s/SO, 
and 3/40 form T3. Only logic voltages (0 and 5V) are allowed 
on their gates to modify the shape of the kernels, so that the 
values may be memorized in static memory points. We keep 
on at least one of these three transistors. 

Another solution for T, would be to implement only one 
transistor and to control its conductance by varying its gate 
voltage. However, this transistor must work in a resistorlike 
linear region to ensure good behavior of the cell. This pro- 
hibits the use of low voltages on the gate of T,, which seri- 
ously limits the dynamics of the slope in Figure 13. Figures 
12 and 13 show a simulation of the kernel function for a T3 
of size 31160 with 5V on its gate and Vrer between 0.5V and 
2.5V. The figures also show different combinations of switch- 
ing on or off transistors T, for V,, fixed to 1.5V. Current & 
stays fixed to 1 l.tA. 

Cascadability of the chips. The fabrication yield of ana- 
log integrated circuits limits the size of our chip. As men- 
tioned earlier, we calculated all sizes for a number P of 

“DD 

F Tl 

Figure 10. Winner-take-all circuit. Figure 11. Kernel Gaussian-like function. 
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Figure 12. Kernel simulation for TX fixed and Vref between 
0.W and 2.W. 

kernels equal to 32, and for a space dimension dequal to 16. 
While several chips cannot be directly cascaded to increase 
d, it is possible for the number of P. All operations in the 
chip are separated from one kernel to another, except the 
two winner-take-all blocks. When these blocks are connected 
together between chips, a set of several circuits can imple- 
ment the LVQ and KBC algorithms with an increased num- 
ber of kernels. 

The first winner-take-all block selects the winner from 
among all distances computed in a chip. To select a winner 
among distances computed in two different chips, a sup- 
plementary input at the winner-take-all block in the second 
chip enters the distance already selected as the winner in 
the first chip. Depending on the selected winner in the sec- 
ond chip, the digital control section determines whether the 
winner is in the first or the second chip, and thus which is 
the winning centroid. In reality, two supplementary inputs 
at the first winner-take-all are provided in each chip, for pos- 
sibile connection in a tree structure, to minimize propagation 
delays between chips. To avoid the influence of technolog- 
ical parameter mismatches between two different chips on 
the current flowing into the winner-take-all blocks, we must 
avoid voltage-to-current conversion from the input of the 
chip. In this case, a supplementary input cell identical to the 
regulated cascade input circuitry of Figure 6, but diode- 
connected? must be used at the inputs of the analog proces- 
sor, to allow current as well as voltage input. 

The problem of the second winner-take-all in Figure 2 is 
different. Its inputs are the current lines by class, which do 
not have to be duplicated if two chips are connected. Rather, 
we must sum the currents flowing on the corresponding lines 
in the two chips, the winner-take-all having then to select 
the winner among these sums. We simply connect the input 
currents of the two winner-take-alls, as the gates of T,, (volt- 
age VA>. In this way, we connect T,i in the two chips in par- 
allel and drive twice the current in a unique chip. 
Technological parameter mismatches between different chips 
do not directly influence the selection of the winner when 
connecting several winner-take-alls in parallel. We can mea- 
sure digital outputs after the Schmitt triggers in any of the 

Figure 13. Kernel simulation for V,, fixed to 1.5V and dif- 
ferent T,‘s switched on. 

two chips. Obviously, we can apply the same principle to 
more than two chips. Finally, cascading chips will increase 
the response times of the winner-take-alls, by adding capac- 
itances due to pads, wires, and packaging. 

Technology limitations 
When designing a complex analog VLSI circuit, we must 

carefully consider the accuracy and matching of components, 
as well as the parasitic effects (leakage currents, charge injec- 
tion) in some cells. We encountered two kinds of limitations 
during conception of the chip. The first limitation concerns 
the sizing of the regulated cascade analog memory points; 
the second concerned algorithmic considerations of the accu- 
racy in the different parts of the chip. 

Sizing regulated cascode cells. The simple analog mem- 
ory point, illustrated in Figure 3, presents three main draw- 
backs: blocked junction leakage currents, channel length 
modulation, and charge injection and clock feedthrough 
when switching off T,. 

We propose reducing these parasitic effects with 

l periodic refreshment to overcome the junction leakage 
effects, 

l cascade-like design to increase the output impedance, and 
l a large storage capacitor coupled with a small transcon- 

ductance for T, , to decrease the charge injection and 
clock feedthrough effects. 

Others have proposed some tricky solutions to reduce the 
last parasitic effect,‘-” but for simplicity we did not imple- 
ment them in our chip. Our refreshment system requires, 
however, the combined leakage currents and charge injec- 
tion effects (eventually compensated) to be smaller than 1 
LSB and of known sign. 

The block used for the analog memory point is in fact a 
regulated cascade, as illustrated in Figure 14 (next page). 
We multiply the output impedance of T, by the gain loop 
formed by T,, the cascade transistor, and T,, which regulates 
the loop. To obtain high gain, both transistors must have 
large transconductances (large W/L) and high output imped- 
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Figure 14. Regulated cascade analog memory point with 
voltage conventions. 

axes: They work in saturation. With a regulated cascade 
cell, the gain loop is so big that we can afford to put T, in a 
linear region to decrease its transconductance and thus the 
charge injection and clock feedthrough effects. 

The charge injection and the clock feedthrough occur 
when T, switches off. When the switch is on, the channel of 
this transistor is full of carriers, and the last ones must escape 
to the dram and the source when the transistor is turning off. 
This phenomenon is known as charge injection. The clock 
feedthrough effect results when storage capacitor C, and the 
gate-to-source overlap capacitor of T, form a parasitic capac- 
itor divider. A part of the clock signal is injected on C, 
through this path.’ We roughly compute the total amount of 
charges produced by these two phenomena by 

Q = (WLC, /2> (V, - V,, - nV, > + WC,,, AV,,, 

where A V,,, is the drop voltage on the gate of T,. In this 
equation, the first term in the right member represents the 
charge injection and the second one, the clock feedthrough. 
All parameters concern T, ; C, is the gate capacitor per unit 
area, and &is the gate-to-source overlap capacitor per unit 
length. 

This charge Q produces a voltage drop on the storage 
capacitor 

AV,=(Q/c,> (6) 

If C, is the gate capacitor of the memory transistor T,, the 
voltage drop strongly depends on its DC mode. From deep 
linear regime to strong saturation, the gate-to-source capac- 
itor evolves from WLC, /2 to 3WLC, /2, and the gate-to- 
draincapacitor from WLCJ2 to zero.12 To avoid a variable 
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capacitor in case of linear regime.or a nonefficient use of the 
silicon area in case of saturation, we chose a double poly- 
silicon capacitor, available in MIETEC 2.4-pm technology. 

The voltage drop A V,,,, on the storage capacitor and, of 
course, on the gate of T, modify the stored current. This lit- 
tle current drop due to the switching is 

AI = g,,, AV,, 

where lis the drain current in T,. The transconductance g, 
of T, also depends on its DC mode: 

if T, is saturated 

gl?l = Pnzbs if T, is linear 

where j3, is the conductance parameter of T, and n is the 
substrate effect parameter. A memory transistor in linear 
mode seems better than a saturated one with the injection 
and clock feedthrough problems for two reasons. The 
transconductance is constant in linear regime and thus also 
the variation of the current with the hypothesis of a constant 
charge injection from the switch. This transconductance is 
smaller than in saturation, 

Of course, if T, is in linear mode, each small modification 
on the drain voltage of this transistor will drastically modify 
the stored current. The gain loop formed by T, and T, must 
then be very high. This solution is possible if we use satu- 
rated transistors near to or in weak inversion, 

Sizing the transistors. The regulated cascade analog 
memory can be in write mode, with the gate of T, connect- 
ed to the drain of T,via T,, or in read mode when this con- 
nection is open. The circuit must be designed such as T, does 
not leave saturation and T, does not turn into saturation. 

In writing mode, the equation and the associated condi- 
tion of the drain current of T, are 

I= Pm V, lV,,- V,, - (n/2) V,,] 

v,, 5 KV,, - V,,>/nl 

and those of T, are 

(7) 

(8) 

I, = @,/2nXV, - v,, - nV,Y; v, 2 [(V, - V,&lnl 

Here voltage notations are indicated in Figure 14 (all volt- 
ages being referred to V,,), PC is the conductance parame- 
ter of T,, and V, is the threshold voltage of P-type transistors. 

The cell always needs a bias current to work properly. 
Increasing V,, provides a greater ratio between the useful 
current and the bias one, but this gate voltage cannot be too 
high to avoid some tricky problems on the input circuitry 
and on T,. Equations 7 and 8 give the maximum value for p,, 



mainly depending on the gate voltage V,, and on the maxi- 
mum drain current. On the other hand, the maximum and the 
minimum of V, determine the maximum and minimum gate 
voltages of T, and the minimum of its conductance parame- 
ter j3=. We also have Equation 6 for the injected current pro- 
duced by the switching of T,. If we take all these relations and 
minimize the surface of T,, T, and C’, considering a mini- 
mum drawing size of 5 km, we can compute all the values 
only in terms of V, and I&, the current of 1 LSB in the mem- 
ory point (fixed to 500 nA). 

The value of V,, is more difficult to optimize accurately. 
A higher V,, means higher gate voltages on T, and T, , but 
decreases on both conductance parameters pm and &. We 
fixed the value of V,, to 2V,,/3 for our circuit. An optimiza- 
tion process taking all these equations and limits into con- 
sideration gave a bias current of about 20 l.tA, a storage 
capacitance of 1 pF, and transistor sizes near the values 
shown in Figure 4. 

In read mode, the gate of T, is disconnected from the rest 
of the circuit. The conditions are similar: T, and T, are in lin- 
ear and saturated modes; but there is no direct relation 
between both transistors. The more restricting condition is 
the drain voltage of T,, which cannot be too low (referred to 
as VDo>, to avoid putting the transistor in linear mode and 
drastically dropping the impedance of the cell. 

The input circuitry is a regulated cascade cell in read 
mode, made of N-type transistors. The drain voltage of this 
cascade cell cannot be too high (referred to as V,,), to avoid 
putting the cascade transistor of the memory point in linear 
region. It cannot be too low anymore, to maintain the input 
circuitry in saturation. The input transistor is in linear mode 
to take advantage of the linear voltage-to-current conversion 
characteristic, since voltage sources directly drive the corre- 
sponding inputs of the circuit. 

Accuracy in the different chip cells. The accuracy 
needed for computations in a chip is a key problem for the 
analog designer. The same accuracy is not necessary in the 
different parts of our chip, if we consider the requirements 
of the problem to solve itself rather than directly focusing 
on the different cells of the chip. We had decided earlier to 
design the analog memory points to have 256 different lev- 
els, that is, a precision of 8 bits. To obtain this accuracy in 
all the circuit cells is, however, quite impossible and unnec- 
essary as well. 

A precision of 8 bits in the memory points (and in the input 
circuitry) means that 256 different values are possible for 
each coordinate of a centroid, that is, 256d different possible 
locations. Consider the distance computation between a cen- 
troid and an input vector. When adding the different com- 
ponents in the Manhattan distance computation (Equation 
5), we sum the absolute errors (1 LSB per synapse). 
However, we must not forget that this is an absolute error, 
which does not depend on the memorized value itself. The 

relative error on one memorized current is thus greater than 
I/256, just as the relative error on the sum. This first con- 
sideration already justifies the idea that a precision of 8 bits 
in further computations, and especially in the current mir- 
rors of Figure 8, is unnecessary. 

On the other hand, the question may arise about a reduced 
precision in the distance computation that does not have. a 
negative influence on the performances of the algorithm. If 
the current mirrors in Figure 8 have a relative precision of t 
bits (t is around 6 in our implementation), one of the two 
currents Z+ and I_ may be corrupted up to a factor l/2 t for 
the other current in the computation of the Manhattan dis- 
tance. In a classification problem however, only the small- 
est distances between an input vector and the centroids will 
further influence the computations, In kernel classification, 
the kernel evaluation of large distances gives negligible 
results. 

In LVQ algorithms, where the first winner-take-all func- 
tion must be used, a nonnegligible error on the input current 
of the winner-take-all could be generated. We find the dif- 
ference between I> the current representing the distance 
between the input vector and a centroid, and 2) a fixed value 
(to use a winner-take-all instead of a looser-take-all). 
However, this error, measured in terms of a fixed-error cur- 
rent, only produces a sensible influence when the input cur- 
rent at the winner-take-all is small, It is small when the input 
vector is far from a centroid, and thus nonrepresentative. 

In both cases, the absolute error made on the distance 
computation will thus sensibly influence the input current 
(compared to the influence of the restricted precision in the 
memorized currents) only when the smallest distances are 
themselves large. For example, suppose t equals 6, and the 
resulting current itself is four times the whole range of one 
memorized current. Then, the absolute error made on the 
resulting current in the distance computation would equal 
the error made in one memory point, This is obviously sel- 
dom the case, especially in a classification system in which 
the largest accuracy must be found in the regions where dis- 
tribution of different classes overlap, that is, where the dis- 
tances between an input vector and a centroid are small. 
Furthermore, one can imagine that, even if it should happen 
that the smallest computed distances are large compared to 
the dynamics of one memorized current, this would mean 
that the input vector to classify would be far away from all 
centroids memorized in the network. Thus an accurate deci- 
sion in its classification does not make sense. 

All these considerations justify the limited precision in the 
current mirrors of Figure 8, which certainly need not be 
designed to obtain the same &bit precision as in the analog 
memory points. We assumed a 6-bit precision in the distance 
computations, the winner-take-all blocks, and the kernels in 
our chip. 
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&i CLASSIFICATION PROBLEMS GROW in dimension, 
class number, and learning set size, the computation load 
increases in such a way that solving real-time problems on 
stand-alone machines becomes very difficult. Moreover, the 
need for portable systems that are not continuously con- 
nected to a host computer encourages the development of 
chip-based classification systems. 

Our analog architecture realizes the operative part of a 
classifier, implementing LVQ-like and kernel-based classi- 
fiers. We have implemented and are testing the analog cells 
and plan to produce a fully parallel processor in the near 
future. This chip must connect to a conventional finite-state 
machine implementing the control section to form an effi- 
cient, stand-alone parallel classification system. C 
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