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DD-HDS: A Method for Visualization and
Exploration of High-Dimensional Data

Sylvain Lespinats, Michel Verleysen, Senior Member, IEEE, Alain Giron, and Bernard Fertil

Abstract—Mapping high-dimensional data in a low-dimensional
space, for example, for visualization, is a problem of increasingly
major concern in data analysis. This paper presents data-driven
high-dimensional scaling (DD-HDS), a nonlinear mapping method
that follows the line of multidimensional scaling (MDS) approach,
based on the preservation of distances between pairs of data. It
improves the performance of existing competitors with respect
to the representation of high-dimensional data, in two ways.
It introduces 1) a specific weighting of distances between data
taking into account the concentration of measure phenomenon
and 2) a symmetric handling of short distances in the original
and output spaces, avoiding false neighbor representations while
still allowing some necessary tears in the original distribution.
More precisely, the weighting is set according to the effective
distribution of distances in the data set, with the exception of a
single user-defined parameter setting the tradeoff between local
neighborhood preservation and global mapping. The optimization
of the stress criterion designed for the mapping is realized by
“force-directed placement” (FDP). The mappings of low- and
high-dimensional data sets are presented as illustrations of the
features and advantages of the proposed algorithm. The weighting
function specific to high-dimensional data and the symmetric
handling of short distances can be easily incorporated in most
distance preservation-based nonlinear dimensionality reduction
methods.

Index Terms—High-dimensional data, multidimensional scaling
(MDS), neighborhood visualization, nonlinear mapping.

1. INTRODUCTION

ISUALIZATION of high-dimensional data is intended
Vto facilitate the understanding of data sets by preserving
some “essential” information. It generally requires the mapping
of the data into a low- (usually 2- or 3-) dimensional space.
However, high-dimensional data raise unusual problems of
analysis, given that some properties of the spaces they live in
cannot be extrapolated from our common experience. In partic-
ular (notably in the case of Euclidian spaces), we often face the
problems of empty space and concentration of measure: When
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the number of dimensions is high, the neighborhood of each
object is scarcely filled whereas most of the other objects are
found in a thin outer shell. Distances between high-dimensional
objects are usually very concentrated around their average [1].

Exploration and analysis of high-dimensional data are often
made by means of dimension reduction techniques [2], [3].
Since human experience mostly deals with 3-D space (and most
data display devices are 2-D), finding a meaningful mapping
of high-dimensional data into such low-dimensional spaces
is a major issue. Often linear mapping methods do not lead
to satisfactory representations. Indeed real data most often
show nonlinear relationships that cannot be approximated in a
satisfactory way by linear methods. Nonlinear mappings (also
called nonlinear methods for dimensionality reduction) offer
more flexibility, often at the price of an additional complexity.

In this paper, we propose a nonlinear dimensionality reduc-
tion method specifically adapted to high-dimensional data. It
follows the line of multidimensional scaling (MDS) methods,
based on the preservation of distances between pairs of data [4].
However, it differs from existing methods in two ways. First, it
includes a weighting of distances that takes the concentration
of measure phenomenon into account (see Section IV-A); this
is of primary importance when dealing with high-dimensional
data, for which the concept of “small” and “large” distances
strongly differs from the traditional view in low-dimensional
spaces. Second, existing nonlinear dimensionality reduction
methods either favor the preservation of small distances in the
original space ([5], for example), at the risk of collapsing far
points together in the representation, or favor the preservation
of small distances in the output space ([6], for example), al-
lowing sometimes unwanted tears in the original distribution.
The method proposed in this paper is symmetric with respect to
distances in the original and output spaces (see Section IV-B),
leading to better and more intuitive representations, as attested
by experiences. Finally, the optimization of the method-specific
objective function is performed by force-directed placement
(FDP), as an alternative to more traditional gradient-based
algorithms (see Section IV-C).

This paper is organized as follows. Section II shows known
phenomena occurring in high-dimensional spaces, and how
metric transformations can deal with them. Section III briefly
reviews dimensionality reduction methods, and highlights
the difficulties encountered in these methods with high-di-
mensional data. Section IV presents our original nonlinear
mapping algorithm called data-driven high-dimensional scaling
(DD-HDS). Section V defines efficiency measures used in
Section VI that presents experimental results and comparisons
with existing methods.

1045-9227/$25.00 © 2007 IEEE
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Fig. 1. Histogram of distances between uniformly distributed data in a unit cube, according to space dimension. Histograms for dimensions larger than 200 would
have the same Gaussian-like shape, but their centers would be shifted to the right proportionally to the square root of the dimension.

II. DISTANCES IN HIGH-DIMENSIONAL SPACE

Mapping methods based on the comparison of distances be-
tween pairs of data in the original and output spaces, such as
MDS, need to take care of how distances are measured. Spe-
cific distances are often used to measure similarities in the orig-
inal space; distances in the (low-dimensional) output space are
usually measured in a more conventional way. In this paper, we
focus on Euclidean and derived metrics (Sections II-A and II-B,
respectively) for the representation of data in the original space
and on the Euclidean metric for the output space for sake of
simplicity. However, most results in this paper may be easily
extended to other metrics.

A. Euclidean Distances in High-Dimensional Space

Several surprising phenomena appear when dealing with
high-dimensional data. This fact is known as the “curse of
dimensionality” [1], and has strong impact on the validity
and performances of data analysis tools [7]. In particular, the
Euclidean metric (||z|| = /> #?) is known to suffer from the
unwanted concentration of measure phenomenon [8]. Let us
consider the distances between pairs of uniformly distributed
data in an n-dimensional unit-edge hypercube. It can be shown
that the mean of the distances increases with the square root
of n, while the variance remains constant. This is illustrated
in Fig. 1. As a result, it is much more difficult to discriminate
between small and large distances in a relative way (e.g., when
distances are normalized) in a high-dimensional space. As we
will see in a short review in Section III, nonlinear dimension-
ality reduction tools will thus fail to give more weight to small
and/or large distances, as it should be the case for a proper
functioning of the algorithms.

The Euclidean norm is not the only one to suffer from the con-
centration of measure phenomenon. All other Minkowski met-
rics, Minkowski pseudometrics (fractional norms), Pearson cor-
relation metric, etc., have this characteristic, though at different
levels [8]. Transformations of distances may be used to over-
come these problems. We briefly review such transformations
in Section II-B.

B. Derived Metrics

Changing data representation to help the mapping procedure
and, eventually, to add supervised information is common
practice (see [9], for example). Three powerful approaches

are particularly useful as preprocessing when dealing with
high-dimensional data.

1) Today, kernel methods have a huge attractiveness in data
analysis [10]. Kernel methods rely on the principle of first
mapping data onto a (usually higher dimensional) space
before further processing. In practice, the mapping is not
explicitly calculated: a so-called kernel k(.,.) is used to
calculate distances between the mapped data. If the kernel
is positive definite, it can be verified that it is indeed
the scalar product between data in a transformed space:
k(z;i,z;) = (¢(zi), #(x;)) where (.,.) denotes the scalar
product and ¢(.) a mapping to a possibly high-dimensional
space. The so-called kernel trick avoids calculating both
the mapping and the distances (here scalar products) in
the original spaces—only the outputs of kernels have to
be evaluated.

By using nonlinear transformations of data, kernel methods
succeed in building nonlinear models (e.g., for classifica-
tion and regression) keeping many advantages of linear
tools. Their optimization procedure is also simplified com-
pared to many other nonlinear models.

Kernels are used in the context of nonlinear dimension-
ality reduction as well. This leads, for example, to the
kernel principal component analysis (KPCA) method con-
sisting in applying the linear PCA method in a kernel-in-
duced space [10]-[13]. As kernels are defined as a dot
product between nonlinear data transformations, KPCA
can be viewed as PCA applied after a transformation of
metric. As in MDS methods, the user is faced with the
crucial choice of an adequate metric transformation, more
precisely, the choice of the kernel [11], [14]. Weinberger
et al., for example, use semidefinite programming for man-
ifold learning that provides optimized kernels for high-di-
mensional data projection [15], [16]. In this context, the
high similarity of this approach with fast mixing Markov
chains must be pointed out [17]. A variant, described in
[10, p. 436], consists in using classical MDS on a distance
matrix generated through a kernel function. Taking the ex-
ponential of (Euclidean) distances is a possible transfor-
mation that enhances the contrast between small and large
distances.

2) Geodesic metrics (also called curvilinear metrics) may
offer interesting data representations when dealing with
high-dimensional spaces. They are based on the fact that
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if data occupy a nonconvex part of the space, it seems
legitimated to force distances to be measured through the
cloud of data, instead of using a conventional Euclidean
distance. Intuitive justifications for the interest of curvi-
linear distances may be found, for example, in [18] and
[19]. The curvilinear distance is measured in a graph the
nodes of which are the data themselves (or a reduced
set). Close data in the space are linked together to form
a connected graph (the way they are connected defines
the type of distance; classically, each node is connected
to the k closest nodes). The curvilinear distance between
any pair of data z; and z; is subsequently the sum of
Euclidean distances between all pairs of data connected in
the shortest path on the graph between x; and x;.

Floyd and Dijkstra’s algorithms may be used to compute
such distances [20], [21]. [somap [18] and curvilinear dis-
tance analysis (CDA) [19], [22] are methods belonging
to this category, the difference resulting in the way dis-
tances are weighted: Isomap extends classical MDS [4]
while CDA extends the “curvilinear component analysis”
[6]. Extensions to these methods have been published, e.g.,
to allow the possibility for tears in the original distribution,
avoiding loops or other closed surfaces to collapse in the
mapping (see, for example, [23]).

3) A last class of derived metrics discussed here consists in

using rank orders. Indeed, on some data (such as genomic
signatures [24]), the ranking of neighbors is important,
while the distance itself may be less [25]. Switching from
distance to rank order may thus reveal interesting data
properties. Kruskal’s criterion is close to such a transfor-
mation [26], [27].
Rank orders are not symmetric: let us note X =
(z1,22,...,2nN) the data in the original space; if data x;
is the kth neighbor of z;,z; is not necessarily the kth
neighbor of z;. In order to use the rank as a distance, d{j
may be defined as the average of the rank order of z; with
respect to z; and vice-versa. Note that, nevertheless, d"
must be called a pseudodistance as it is does not respect
the triangular inequality. Furthermore, this pseudodistance
is data set dependent (just as curvilinear distance is), as
d;; may be influenced by the addition of a data zy, (k # i
and k # 7) in the data set; to limit this effect, it is possible
to normalize the pseudodistances (for example, by their
maximum value). By construction, rank orders do not
suffer from the concentration of measure phenomenon;
however, they are not commonly used in nonlinear dimen-
sionality reduction methods, probably due to the lack of
conventional distance properties.

All these derived metrics are designed to enhance the con-
trast between small and large distances. However, whatever is
the method used for that purpose, all the methods fail to address
the specific properties of high-dimensional data. The concentra-
tion of distances phenomenon detailed in Section II-A causes
that all distances are approximately equal. Transforming these
distances by a nonlinear function, such a kernel does not help,
unless the transformation is designed specifically to take the
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concentration phenomenon into account. This is the goal of the
algorithm described in Section IV.

III. DIMENSION REDUCTION TECHNIQUES

Data X = (x1,%9,...,2y) are defined in the vector space
FE with associated metric m;. Our goal is to represent X in a
vector Euclidian space F> of lower dimension than N.

Mapping data from a high-dimensional space to a low-dimen-
sional one, keeping exactly all distances between the pairs of
points in the original and output spaces, is most often impos-
sible whatever is the distance used to measure similarities in
the original space. Then, a data representation has to release
some constraints according to a specific “point of view.” Nu-
merous dimensionality reduction methods have been proposed,
with variants in the methodology and in the criterion (the point
of view) to optimize. In this section, we briefly present the main
aspects of these techniques, before providing some insight about
the difficulties encountered when the dimension of the original
space is high.

A. Approaches for Dimension Reduction

Because keeping exactly all distances between pairs of points
unchanged in the representation is most often impossible, all
methods emphasize the preservation of some distances or types
of distances, therefore, privileging a specific point of view. For
example, PCA and classical MDS [4], [28], [29] maximize
the variance of the data cloud after projection, under linear
projection hypothesis; the resulting representation expresses
the overall form of the data set. Locally linear embedding
(LLE) [30], Laplacian eigenmaps [31], and Hessian-based
locally linear embedding (HLLE) [32] assume that data are
located on a manifold, smooth enough to be reasonably well
approximated by local linear models; these methods unfold the
set of data through local linear projections. The merging of
local projections may be optimized afterward [33]. Supervised
methods such as discriminant analysis and partial least squares
(PLS) regression [34] use a dependent variable (discrete or
continuous, respectively) to guide the mapping. Self-organizing
maps (SOMs) [35], [36] visualize data on a grid obtained
by a topology-preserving vector quantization. A visualiza-
tion-induced SOM (ViSOM) and a probabilistic regularized
SOM (PRSOM) merge SOM and MDS algorithms in order
to map data based both on topology and distance preservation
[37]-[39]. The generative topographic mapping (GTM) is
also inspired from SOM [40]: a lower dimensional manifold
is optimized to approach data in the original space (see [41]
for discrete data). The Gaussian process latent variable model
(GP-LVM) results from a novel probabilistic interpretation of
PCA [42]. This nonlinear method is close to KPCA and GTM.
Methods such as Sammon’s mapping [5], nonlinear MDS [26],
[27], [43], curvilinear component analysis (CCA) [6], [44], and
isotop (a SOM the nodes of which are positioned by CCA) [45],
[46] emphasize on local neighborhood preservation, often at the
price of allowing huge deformations of the global shape of the
data cloud. Note that the CCA acronym used in this paper ac-
cording to the literature covering this algorithm does not mean
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here canonical correlation analysis. As detailed in Section II,
derived distances in the original space may be used, entitling,
for example, the use of MDS after a kernel transformation, or
the replacement of Euclidean distances by curvilinear distances
in MDS and CCA, leading to isomap and CDA, respectively.

The method introduced in Section IV is placed in the context
of neighborhood preservation. The goal is to build a method em-
phasizing on the preservation of small distances, possibly at the
price of distortions in large distances. The difference with re-
spect to previously mentioned methods arises from the fact that
the specific properties of high-dimensional spaces are taken into
account when measuring distances in the original space. Fur-
thermore, the question whether to emphasize on small distances
in the original or output space is answered in a symmetric way,
offering a compromise between the risk of mapping far points
together and the possibility to tear the initial distribution for a
better representation.

B. Sammon’s Stress and High-Dimensional Data

Distance preservation methods such as Sammon’s mapping,
CCA, and CDA minimize the differences between d;;, the
distance between x; and z; in the original space, and dgj,
the distance between their representations x; and z’; in the
output space. Small distances are emphasized in order to
preserve local topology (and small distances). An objective cri-
terion ¢ = 37, . F(|d;j — di;|-k(di;)) similar to the original
Sammon’s stress, where & (d,;j) is a monotonically decreasing
function giving more weight to small distances in the F' crite-
rion is generally used. Sammon’s stress [5] is, for example
_ L gk

Dicidii i di

and Kruskal criterion [27] is

Sammon

dij — d';;)?
gKruskal — Z( J d/2 J) . (2)
ij

i<j

Stress functions as (1) and (2) are also called error functions,
energy functions, or loss functions, depending on the literature.

In both cases, the weighting function is related to the in-
verse of the distance. In high-dimensional spaces, however, as
detailed in Section II-A, all distances tend to be similar. The
weighting factor in (1) and (2) does not play its role anymore.
Then, the criterions give similar weights to small and large dis-
tances, leading to a mapping that mixes global representation
and local neighborhood preservations. Such a poor behavior
of Sammon’s stress was already mentioned by its author, who
noted that linearly separable classes in high-dimensional spaces
might not be separable in the mapping [5].

C. Representation With False Neighborhoods or Tears

Distance preservation methods penalize more heavily mis-
matches in small distances, by weighting the stress criterion
with a decreasing function of either the distances in the orig-
inal space [see (1), for example], or the distances in the output
space [see (2), for example]. However, in the first case, it is dif-
ficult to tear distributions with loops, leading to the so-called
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“false neighborhood” representation: Data far from each other
in the original space could be mapped to close points, exactly
as PCA “flattens” volumes when the number of principal com-
ponents used in the projection is not sufficient. As an example,
the extreme points of a “C”-shape (2-D space) with two long
branches (with respect to their inter-distance) will be projected
as neighbors (in a 1-D space), although their distance in the orig-
inal space is large (compared to distances between neighboring
points in the “C”-shape); a good mapping procedure would un-
roll the “C”-shape instead of flattening it.

In the second case, tears are allowed, with the risk that
neighbor points in the original space may be found widely
separated in the output space; tears are sometimes necessary,
but may lead to wrong interpretations of neighborhoods in the
output space. For example, mapping an “O”-shape requires
tears to avoid flattening and false neighbors, but the location
of tears appears randomly in some methods, or depends more
strongly on the density of data in the original space than on the
manifold geometry.

False neighbors and tears are limitations of nonlinear dimen-
sionality reduction methods, which cannot be avoided in most
cases due to the intrinsic nature of the manifold. Illustrations of
tears and false neighbors are provided in Section VI-B, where
mappings of open boxes with various algorithms are shown.

However, in most cases, there is no reason to favor a priori
false neighbors or tears. See [47] for a comprehensive discus-
sion of this problem in terms of similarities and dissimilarities
between data. Thus, there is a need for a method that implements
a compromise and reduces the risk of both false neighbors and
tears.

IV. DD-HDS: PRINCIPLES RULING THE METHOD

In this section, a new nonlinear dimensionality reduction
method is proposed, which addresses the two shortcomings
detailed previously: the method implements a weighting of
distances specifically adapted to high-dimensional data, and
avoids too high risks of both tears and false neighbors through
a symmetric weighting approach.

A. Sigmoid Balancing Function

Based on Fig. 1, it seems obvious that a discrimination be-
tween small and large distances cannot be achieved in high-di-
mensional spaces by a simple inverse of distances (or inverse of
squares of distances) as in Sammon-like (or Kruskal-like) cri-
teria. Thus, we suggest using a weighting function of the form
di;

Fu, 1, 0)du 3)

— 00

k(dij) =1 -

where f (u,p,0) is the probability density function of a
Gaussian variable with mean p and standard deviation (std) o.
An example of such function is shown in Fig. 2, where it can be
seen that small distances in their effective range will contribute
to the objective stress, while large ones will not. Sigmoid-like
weighting functions were already proposed by Demartines [6].
Here, the shape of the weighting function is adapted to the
effective distribution of the data in the high-dimensional space.
Note that using a cumulative Gaussian function as weighting
does not assume, in practice, that the distribution of distances is
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Fig. 2. Weighting function as implemented by (3) fits the distributions of distances in 7-dimensional spaces (see Fig. 1; histograms from left to right are drawn
with n = 1, 10, 50, and 200, respectively). For n = 200, the effect of varying parameter A (A = 0.9, 0.7, 0.5, 0.3, and 0.1) is illustrated.

Gaussian. What we are interested in is to discriminate between
small and large effective distances in the distribution, with,
respectively, a large and a small weighting. Thus, we may
observe that the beginning and the end of the decreasing part of
the weighting function are located at distances that correspond
approximately to small and large effective distances in the
distribution, respectively. Besides these characteristics, the
exact shape of the weighting is not important, similarly to other
choices of weighting functions in other mapping methods. In
this case, the cumulative Gaussian function has been chosen
because the central limit theorem ensures that distances in
high-dimensional spaces will be Gaussian distributed, at least
when the marginal distributions are independent identically
distributed (i.i.d.). The weighting function is called a sigmoid
balancing function, because of its similarity in shape with the
sigmoid function, and its balancing role in the weighting of
small and large distances.

Of course, mean y and std o must be chosen in order to adapt
to the effective distribution of data. As a rule-of-thumb, it is
suggested to take

mean std
1= 1gicien (dif) = 2(1 = A) 1 qicjen (dij)
4
and
std
0 =2\ 1¢;cjcn (dij) 5)

where the mean and std are taken over the distribution of
distances between all pairs of data in the original space. Thus,
the weighting function can make the difference between small
and large distances even if data come from a high-dimen-
sional space. Such data-dependent weighting is similar to the
p-Gaussian kernel proposed in [48] to take into account the
effects of dimensionality. A is a positive user-defined param-
eter (usually to be taken between 0.1 and 0.9). Section IV-D
details how A is varied during the course of the algorithm, and
Section VI-B shows the effect of A on the resulting mapping in
the case of the two open boxes problem. This single parameter
allows controlling how large distances are taken into account
in the stress objective function, as compared to small distances.
Making it vary leads to weighting functions & (d;;), as shown

in Fig. 2. Of course, for more flexibility or for the fine-tuning
of the weighting function, p and o could be individually
considered.

B. Importance Given to a Distance Depends on Original
Space and Output Space

Section III-B detailed how existing nonlinear dimensionality
reduction methods avoid tears either in the original distribution
or false neighborhood representations (see also [49]). It is sug-
gested here to avoid as much as possible both drawbacks, by
using a weighting function that is symmetric with respect to
distances in the original (d;;) and output (d;;) spaces: Short
distances in the two spaces will be emphasized. The weighting
function is subsequently defined by

min(di]-,dé])

k(min(dij, di;)) =1 — / flu,p,0)du.  (6)

Fig. 3 shows the mismatch level between a distance in the
original space and the corresponding distance in the output
space, in three different situations: without any weighting, with
a weighting using the distance in the original space, and with
the weighting given by (6), which clearly shows the symmetry
of the weighting with respect to both original and output
spaces. The symmetric function prohibits that far points in the
original space could be displayed as neighbors in the output
space, while still allowing tears when they are necessary to map
distributions with closed loops.

Note that a symmetric use of distances in the original and
output spaces is made possible by the fact that Sammon-like
methods precisely aim at making these distances equal. Thus,
there is no scaling problem or risk that the distances in both
spaces could not be comparable.

The resulting stress function is given by

min(dij,d;j)
¢ = Z <|dij —di] - <1 - / f(u,u,a)du)) )

i<j
(N
Usually, the stress function is related to the square of dif-
ferences between distances. However, absolute values are used
here instead of squares, to avoid giving a too high importance
to large distances (often responsible for large differences) in the
criteria. Moreover, the formulation of the stress proposed in this
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k=1 ;be(u,,u,o‘)du

distance in original space (d)

min(dd'; )

k=1- I [ (uu,0)du

(b) ©)

Fig. 3. Stress (weighted mismatch between d;; and d’;;) when (a) no weighting is used, (b) the weighting is based on the distances in the original space, and

(c) the symmetric weighting is used (stress increases from light to dark).

paper is consistent with the optimization procedure described in
Section IV-C (the spring metaphor).

C. Optimization by FDP

In general, the optimal position of the data in the output space,
resulting from the optimization of stress (7), cannot be obtained
analytically. It is necessary to implement a function minimiza-
tion algorithm with widely recognized robustness and conver-
gence properties. Classically, in the context of dimensionality
reduction, one uses the generalized Newton—Raphson algorithm
[50], TABU search [51], genetic algorithms [52], [53], simu-
lated annealing [54], or neural networks [6]. To optimize (7) in
the context of the proposed method, it is suggested here to use
an algorithm based on the FDP.

FDP is an optimization technique for graph visualization in-
troduced by Eades [55]. It compares graphs to spring systems:
Nodes are associated to masses and edges to springs between
masses [56], [57]. Such system generates forces on the masses,
inducing their movement. After a transition phase the system
stabilizes; the assumption is made that the final organization cor-
responds to an acceptable graph representation. The stopping
criterion of the algorithm may be a maximum number of itera-
tions, but it has been shown (cf. [56] and [57]) that it is possible
to define an energy function whose minimum is attained when
the algorithm stabilizes; then, this function may be used to con-
trol the convergence and stop the algorithm.

FDP principles are commonly used in graph representation
[56]. They are also used for data visualization [58]-[60], as a
data set may be seen as a complete graph, the distance matrix
defining the edge lengths. A similar approach is also used for the
design of printed circuit boards [61], [62]. Although defining
objective performance criteria for a mapping must obviously
reflect the goal of the user, FDP is known to give satisfying
results in mappings for visualization [55]-[57], [60]. One of
the main advantages of FDP over other optimization techniques
for graph and data visualization is its plasticity: Adding or re-
moving a node or edges rarely induces a strong change in the
graph mapping. When new data are added, this makes it possible
for the user to keep its intuitive view of the graph and be familiar
with the new representation [56], [57]. In addition, FDP makes
it possible to escape easily from local minima of the mapping

stress because of the iterative algorithm and the extra random
force that accounts for pressure, as detailed in Section IV-E,
[58]-[60]. Computational complexity of FDP is O(N?) per it-
eration [58], [59] but can be reduced to O(N VN ) [59].

Despite its advantages, FDP is not a central feature of the
method presented in this paper. FDP is used as one way to
minimize the stress function (7), but other ways could be used
as well. In particular, any gradient-based procedure compatible
with the high number of parameters (the locations of the data in
the mapped space) could be used. Advantages and drawbacks
may be found both in the use of FDP and gradient-based op-
timization procedures. They depend on the number of data, the
number of parameters, the complexity of the stress function that
results, e.g., from the complexity of the initial manifold, on the
need for an easy addition of new data in the mapping, etc.

In the case of the proposed algorithm (FDP), each data z; is
associated to a node z in the output space. Each node is linked
to all others through springs whose lengths at rest correspond to
the distances between nodes in the original space; in this way,
FDP places the nodes in the output space keeping all distances
as similar as possible to those in the original space.

The stiffness of the springs is adjusted to give more im-
portance to small distances; according to the discussion in
Sections IV-A and I'V-B, the stiffness is given by (6). The force
acting on node ¢ by node j is thus given by

Fz{ ! = (d;] — dLj) . k(nlin(du./ di]) ’l_l:LJ

-min(di]-,d;j)
®)

where ;; is the unitary vector oriented from z; to ;.

At time ¢, a node is characterized by its position (noted x?),
its speed (noted #;), and its acceleration (noted @;). @; is given
by the resultant of forces on the node: @;(t) = Zjvzl ﬁz;mé .
At being the time increment, v; is modified according to
(1) = 0 x T;(t — At) + @;(t) x At where § € [0,1] is a
damping coefficient (here § = 0.7). The node 7 is then moved
in the direction of ¥; (24(t) = «i(t — At) + 0;(t) x At).

Applying these formulas for acceleration, speed, and posi-
tion forces the positions x to converge toward a minimum of
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the stress function (7). Indeed the system is relaxed until sta-
bility. Stability of each node means that the acceleration of each
node, or the sum of the forces applied to it, vanishes. Comparing
(7) and (8) shows that this situation is reached when the forces
themselves vanish, which results in a minimum of the stress
function. However, stability could also be reached when the sum
of forces applied to a node vanishes, while forces do not. This
situation corresponds to a local minimum of the stress func-
tion; Section IV-E describes a stochastic perturbation scheme
designed to escape from such a minimum.

The system is relaxed until stability. The level of stability may
be measured by the total energy in the system given by

1 N
E=2 |l ©
i=1

where N is the number of nodes. When the system becomes
stable, the positions of the nodes z in the output space form a
mapping of the original data. Using criterion (9) instead of (7)
to measure the level of stability is justified by the fact that (9)
can be compared to 0 with a simple, not critical threshold, while
(7) never reaches 0; using (7) would mean the development of
a strategy based on the empirical derivative, which reveals to be
much more critical in practice. Using a stopping criterion such
as (9) is also standard practice within FDP framework [56], [57].

Of course, as it is the case in any distance-based dimension-
ality reduction method, the orientation of the resulting graph has
no specific meaning, as any result obtained by rotation or sym-
metry would be equivalent. The possibility to obtain different
mappings when the algorithm is run several times on the same
data results from its stochastic character; the only stochastic part
of the method is described in Section IV-E.

D. Dimensionality Reduction Algorithm

The proposed dimensionality reduction algorithm is detailed
here, based on the concepts described previously.

The goal of the algorithm is to find the locations z of the
points in the output space. The unknowns of the optimization
procedure are thus these locations. To find them, the stress func-
tion given by (7) is minimized. In practice, if the FDP optimiza-
tion algorithm is used, this is done by moving the points so as to
minimize (7) after the computation of acceleration and speed.

The algorithm first builds a global representation based on a
limited number of data, and then, iteratively adds subsets of data
to refine the mapping at the local level, possibly at the price of
a global distortion. Each addition of new data is followed by a
learning phase aimed at refining the mapping.

The order of selection of data is obtained because of a pro-
cedure that was described by Hastie et al. to select adequate
“seeds” before a clustering procedure [2]. The advantage of this
procedure is that the selected data are guaranteed to spread over
the whole domain of the original data; the well-known drawback
of Hastie’s clustering procedure, i.e., the need for the complete
distance matrix is not relevant here since this matrix is also re-
quired for the mapping within the DD-HDS framework. More
precisely, the prototypes are selected as follows.
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The first prototype is selected as the data for which the sum
of distances to all other data is minimum (it is the closest data
to the center of gravity).

The (¢ + 1)th prototype is selected as the unselected data
giving the best quantization of the data when it is associated
with the ¢ already selected prototypes. The best quantization is
defined as the minimum of the quantization error, i.e., the sum
of distances between all data and their nearest prototypes.

Once the full data set is sorted as described previously, data
are positioned in the output space. It is always possible to place
p + 1 data in a p-dimensional output space, while exactly pre-
serving their distances in the original space. The p + 1 first data
(prototypes) are, therefore, first placed in this way. Next, the
number of prototypes to map onto the output is increased (multi-
plied by two, for example) according to the selection order. The
FDP algorithm is then used to find a stable configuration consid-
ering the new prototypes. Steps of prototype choice, and steps
of subset representation are alternated until the total number of
data is used. In practice, doubling the number of prototypes after
each relaxation step appears to be a good tradeoff between the
number of partitions and the relaxation time.

As the stiffness of springs (8) makes use of k(min(d;;, d;;)),
it is necessary to choose the value of A for insertion in (4) and
(5). At the beginning of the algorithm, prototypes are far one
from another, due to the data ordering procedure. It is thus le-
gitimate to choose a high value for A, so that large distances
influence the mapping. When the number of data is increased,
the value of ) is decreased to give more importance to neigh-
borhoods and small distances. The effect of A is, therefore, sim-
ilar to the neighborhood parameters in Kohonen’s SOMs. Its
final value reflects the user-driven compromise between the ef-
ficiency of local representations and a global view of the data
cloud or manifold.

For the experiments presented in Section VI, the number of
data was doubled and A was monotonously decreased from 0.9
to 0.1 after each step.

E. Pressure Allows Avoiding Local Minima

Forces given by (8) are applied to each node of the graph; the
resultant of forces moves the node. The sum of the modules of
these forces may be interpreted in terms of “pressure”

N

N
i

J=1,j#i

P, = (10)

Our use of the “pressure” term is not academic: It does not
strictly follow the physical definition of pressure. Nevertheless,
it allows differentiating stable nodes because forces are weak
(low value of P;), from stable nodes because nonnull forces
mutually compensate (high value of F;). In the latter case, the
position of the node corresponds to a local minimum of the
stress function. In order to escape from this minimum, a sup-
plementary force is added along a random direction (simulating
a Brownian movement). Its intensity is function of the local
pressure

(11

L o P
FBrownian; = «f(iteration) x ﬁl X i
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where 1; is a unit vector randomly oriented and « tends toward
0 when the number of iterations increases to allow system re-
laxation. Equation (11) describes the only stochastic part of the
method. It is responsible for the fact that slightly different map-
pings could result from different runs of the algorithm, as de-
tailed in Section I'V-C.

The resulting algorithm is called DD-HDS.

FE. Computational Complexity

Computational complexities of DD-HDS and other nonlinear
mapping algorithms such as CCA and Sammon’s mapping
are similar. Compared to CCA and Sammon’s mapping, the
sigmoid balancing function replaces other weighting functions
with similar complexity, and the FDP optimization procedure
is used as an efficient alternative to gradient-based proce-
dures. The computational complexity of all nonlinear mapping
methods is of course larger than the complexity of PCA;
the latter relies only on linear algebra computations, while
nonlinear mappings require optimization procedures. This dif-
ference is essential in terms of computational complexity; the
computational load of the optimization procedures themselves
is, however, quite impossible to evaluate in practical situations,
as it depends dramatically on the content of the initial data set,
which determines when the stopping criterion is reached. FDP
methods are, however, reputed to be fast and robust [57]; the
reader is referred to [56], for a discussion about the computa-
tional complexity of FDP.

V. VISUALIZATION OF THE MAPPING EFFICIENCY

Local and global visualizations may be used in order to ex-
plore the efficiency of the mapping with DD-HDS.

Pressure (10) gives valuable information about the efficiency
of mapping: The better the placement of a data with respect to
its neighbors, the smaller the pressure it undergoes. It must be
kept in mind, however, that the pressure depends on A, i.e., on
the size of the effective neighborhood (set by the user).

Criterion (10) may be averaged over all data x/ for a global
measure of the representation efficiency. Alternatively, Demar-
tine’s dy-dz diagram [6], [63] may be used to view how dis-
tances are preserved in the output space. The principle of this
diagram is to plot d; ; as a function of d;; for all pairs of data.
All pairs for which the distance in the output space is exactly
equal to the one in the original space fall on the diagonal of this
graph; if short distances are mapped without much distortion,
only small departures from the diagonal may be seen close to
the origin of the dy-dz diagram axes.

VI. EXPERIMENTAL RESULTS

In this section, four databases are mapped on a 2-D space.
The two first examples (earth globe and open boxes) are 3-D
distributions for which the intrinsic dimension is two (two co-
ordinates are sufficient to describe the location of a point on the
distribution).

The two last examples are high-dimensional distributions.
The first one is the set used by Tenenbaum [18]: Data are pic-
tures of a virtual face viewed under various angles and illumina-
tion conditions. As no preprocessing is used, the dimension of
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the data is the number of pixels in the images, i.e., 4096. How-
ever, the intrinsic dimensionality is three, as two viewing angles
and one illumination angle are sufficient to characterize each
image. As in [18], the data are mapped here on a 2-D surface.
The last example is a real-world high-dimensional data set,
carrying some information extracted from genome sequences
of living species. The intrinsic dimension of these data is not
known, as traditional dimension estimation techniques do not
result in convincing results. Nevertheless, a 2-D mapping is of
interest in order to make it possible browsing the data space.

A. Earth Globe

Data to be mapped are 273 large cities around the world. Their
distances in the original space are calculated in the 3-D space
(left graph of Fig. 4). The mapping by DD-HDS is given in the
right graph of Fig. 4. It can be seen that the mapping accounts
for the local density of cities. The north hemisphere is properly
developed. Continents can be identified. Cities-free areas (such
as Pacific Ocean, Antarctic, etc.) are distorted although conti-
nuity is preserved in most places.

The grid materializes latitudes and longitudes and shows the
deformations resulting from the mapping. The grid was not used
during the mapping process. It has been placed on the repre-
sentation a posteriori, through interpolations between mapped
cities: Each intersection between latitude and longitude lines
were placed in order to best fit its distances with cities in the
original space [according to (8)]. Then, points were connected
to give a lattice. This interpolation procedure is not specific to
DD-HDS and could be used in a similar way with other map-
ping methods.

This example makes it possible to understand the viewpoint
proposed by DD-HDS. Short distances are properly represented,
while large ones are not necessarily mapped in a realistic way.

B. Open Boxes

Original data live in a 3-D space. They are situated on the
sides of two open cubes with open sides pointing toward two
different directions (Fig. 5, upper left part). The mapping by
DD-HDS is shown to its right. Under these plots, the P; cri-
terion (10) for each point (left), and the dy-dx diagram (right)
are shown. Others subplots display mappings achieved by com-
peting methods.

This simulation illustrates on a simple example the advan-
tages of DD-HDS. It correctly develops the two boxes, despite a
twist on a large scale. The method effectively combines obvious
nonlinear properties with a faithful representation of neighbor-
hoods. Sammons’ mapping gives a more expected view, but the
lateral faces of the cubes are drastically compressed.

Even if nonlinear mappings are achieved with most methods,
it can be seen that more or less intuitive representations are ob-
tained. In the case of SOM, the two clusters are correctly found
and neighborhoods are preserved, but the shape of the original
objects is not recovered. Methods based on the geodesic con-
cept (isomap and LLE) give two disconnected plots for the two
boxes as there is no path available between them [see point 2) in
Section II-B]. The black line between the two box representa-
tions expresses this segmentation. The impact of long distances
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Fig. 6. Mapping of the two boxes data sets according to A. (a) Color code is the same as in Fig. 5. (b) Associated distances in output space and corresponding

weighting functions.

does not allow the development of the sides adjacent to the open
side of the boxes.

On the one hand, Sammon’s mapping does not generate any
tear, but many false neighborhoods (just as PCA does). On the
other hand, CCA succeeds in mapping data without any false
neighborhood, but some tears can be observed. This result was
expected (see Section III-B). Except for the mapping produced
by DD-HDS, all other methods show false neighborhoods
and/or tears.

The two open boxes data sets can be used to visualize the
impact of A (Fig. 6). High values for )\ increase the quality of
global structure representations (highest left panels) but neigh-
borhood relations are jeopardized. Low values for A (0.1, for
example) permit a better neighborhood representation, but the
overall shape is not guaranteed. Very low values for A (here
0.05) generate “unreasonable” weighting functions although the
mapping may still be found acceptable.

C. Face Data

The set contains 698 pictures of the same virtual face under
different angle and illumination conditions. It has been used
by Tenenbaum [18] who tested isomap on high-dimensional
data. The original dimension of the data is 4096 (number of
pixels), and their intrinsic dimension should be 3 (two viewing
angles and one illumination angle). Fig. 7 shows the mappings
achieved by PCA, Sammon’s mapping, CCA and DD-HDS with
Euclidean distance, and Isomap and DD-HDS with geodesic
distance (five neighbors have been used to build the grid for
geodesic distance). Each resulting map is displayed three times,
from top to bottom in each column, but points are colored dif-
ferently: From top to bottom, they are colored according to the

horizontal viewing angle, the vertical viewing angle, and the il-
lumination angle. Typical examples of images bordered by the
color corresponding to the respective angle are shown in the left
part of Fig. 7.

The intrinsic dimension of this data set is 3. Actually, most
of the tested methods succeed in mapping these data onto a
3-D space. However, maps on Fig. 7 are generated in a 2-D
space. This test cannot be perfectly passed: Tears or false
neighborhoods are unavoidable. Here, the challenge is to get as
less tears as possible while avoiding false neighborhoods. As
expected, PCA and Sammon’s mappings display high levels
of false neighborhood and tears. DD-HDS and CCA with
Euclidean distance effectively place points close from one
another when their characteristics are similar. This can be seen
through the fact that close points have similar colors on the
three graphs. Nevertheless, much more exceptions (close points
with different colors) are found with CCA. The methods illus-
trated in the two last columns of Fig. 7 (isomap and DD-HD)
use geodesic distance in the original space. It is much easier
to observe the continuity of the three intrinsic parameters (the
three angles) in these two mappings. The horizontal angle is
properly mapped by both methods. The vertical angle is also
properly captured by isomap, whereas DD-HDS provides a
smooth mapping of light rotation. However, only DD-HDS
mapping is such that almost all pairs of close points have
similar values (colors) for each of the three angles. Having
all three angles similar in a pair of points that are close in the
mapping is indeed the necessary condition to have two close
points corresponding to close faces (closes faces means that all
three angles are similar). Although both isomap and DD-HDS
lead to close points that do not fulfill these requirements (again,
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tears and false neighbors are unavoidable in this application),
Fig. 7 shows that the number of such situations is much lower
in DD-HDS: A large number of false neighbors (in isomap) has
been replaced by a lower number of tears (in DD-HDS).

D. Genomic Signature Issues

Dealing with real data often rises problems that are not en-
countered with simulated data. In particular, the eventual com-
plexity of real-data distribution in high-dimensional space may
strongly reduce mapping efficiency.

Genomic signatures are high-dimensional data resulting from
the analysis of DNA sequences in terms of short oligonucleotide
frequencies. Within the paradigm of genomic signature, DNA
sequences are considered as “texts” built with a four-letter
alphabet (nucleotides A, T, C, and G). Short oligonucleotides
are small DNA sequences (usually 2-8 nucleotides long). It
has been shown that the set of oligonucleotide frequencies
calculated from a DNA sequence at least several thousands
nucleotides long (the so-called genomic signature) is species
specific, i.e., different species have different signatures [24].

Similarities between species allow building a taxonomy
of life, usually displayed as a tree (the famous tree of life).
Traditional taxonomy is essentially based on macroscopic
observations about species. Genomic features may also be
used. Along branches of the tree of life, successive refinements
lead to an accurate description of species that are the leaves
of the tree. For example, “root, cellular organism, Eukaryota,

Fungi/Metazoa group, Metazoa; Eumetazoa, Bilateria, Coelo-
mata, Deuterostomia, Chordata, Craniata, Vertebrata, Gnathos-
tomata, Teleostomi, Euteleostomi, Sarcopterygii, Tetrapoda,
Amniota, Mammalia, Theria, Eutheria, Euarchontoglires,
Primates, Simiiformes, Catarrhini, Hominoidea, Hominidae,
Homo/Pan/Gorilla group, and Homo Sapiens” is the path in the
tree to a well known species.!

It has been shown that close species in terms of taxonomy
have close signatures and vice versa. It is not realistic yet to ob-
serve (and corroborate) the full tree of life using the genomic
signature as a criterion. However, large partitions (at the bottom
of the tree) as well as some specific branches are already prop-
erly described with it (see [64]-[66], for examples). It seems,
therefore, interesting to check the ability of dimensionality re-
duction methods to preserve the taxonomic features of genomic
signatures.

Depending on the size of examined oligonicleotides, the
genomic signature may have a various number of dimensions,
ranging usually from 16 to 65 536. For this paper, we focused
on 256-dimension signatures that have the most interesting
properties with respect to taxonomy. The study presented
here concerns 2046 genomic signatures illustrating the diver-
sity of living organisms [697 Eukaryotes (plants, vertebrates,
fungus, etc.), 1349 Prokaryotes made up of 1287 bacteria, and
62 archebacteria].

It has been shown that taxonomic information can be derived
from genomic signatures by means of the Euclidean metric

INational Center for Biotechnology Information (NCBI): www.ncbi.nlm.nih.
gov/Taxonomy/taxonomyhome.html
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Fig. 8. Weighting functions fitted to the distributions of distances: (a) Euclidean metric. (b) Rank-order pseudometric. (c) Geodesic metric (connectivity=>5).

that allows characterizing similarity between them [25], [64].
Euclidean metric and derived “metrics” (rank and geodesic)
were successively used within DD-HDS to compare genomic
signatures. According to the procedure described previously,
the weighting function was fitted to the various distributions
of distances (Fig. 8). The interest of an adaptive weighting
function is obvious here, considering the diversity in values and
shapes of the distance distributions.

Fig. 9 shows the mapping obtained by PCA, KPCA, SOM,
Sammon’s mapping, CCA, isomap, and DD-HDS using the
three “metrics.” In the upper part of the figure, we are con-
cerned with the ability of the mapping to express segmentation
between signatures near the root of the tree of life. The
groups the species belong to (namely Eukaryotes, bacteria, and
Archebacteria) are recognized by the gray intensity of points.
Mappings achieved by PCA and KPCA do not clearly reveal
the taxonomic features of the genomic signatures. The high
nonlinear correlations between variables are likely responsive
for the typical croissant shaped layout. Although Sammon’s
mapping makes a better use of the output space, it fails to dis-
play the species organization: The projection remains folded,
because of the limitations resulting from the Sammon’s stress
weighting by distances in the original space, and also prob-
ably because of the concentration of measure phenomenon
(see Section III-B). Groups are not easily identifiable in the
Kohonen map although a general organization of signatures is
observable. [somap allows separating Eukaryotes from bacteria
but overlapping remains important. CCA offers an interesting
display where groups can be localized and segmented. The
paving-like structure may result from the ultimate preservation
of short distances between signatures, considering that in
high-dimensional Euclidean spaces, even “short” distances are
“long.”

DD-HDS also offers mappings where groups of species can
be segmented. In addition, DD-HDS provides a sharper separa-
tion between groups of species.

Mappings obtained using the rank-order pseudodistance and
with isomap are pretty close. The spatial orientation of data fol-
lows the nucleotide bias (frequencies of the nucleotides are not
necessarily equal over species). It is already known in fact that
although the nucleotide bias largely varies between species, it is
not linked to taxonomy. The nucleotide bias explains an impor-
tant part of the overall dispersion of genomic signatures in the
high-dimensional space. It is also captured by PCA and KPCA.
Mappings obtained from Euclidean distances and geodesic dis-
tances are more informative. In particular, substructures in data
are observable (see subplots in Fig. 9, lower part, where acti-
nobacteria are highlighted). They correspond to well-identified
subgroups of species and are probably the expression of local
substructures in the original space.

We would like to point out that the mapping of genomic sig-
natures achieved in this paper would have been better, if more
dimensions were allowed for the output space. Our experience
with genomic signatures, DD-HDS, and other experimental pro-
tocols suggests that the intrinsic dimension of the genomic sig-
natures should be around 7-8.

VII. CONCLUSION

This paper presents DD-HDS, a mapping method designed to
take into account the specificities of high-dimensional data. In
particular, it introduces a specific weighting of distances taking
into account the concentration of measure phenomenon, and a
symmetric handling of short distances in the original and output
spaces, avoiding false neighbor representations while still al-
lowing some necessary tears.
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Giving an “objective” quantitative evaluation of the ef- obviously a subjective part in the low-dimensional mapping
ficiency of mapping methods is quite difficult: There is of high-dimensional data. Some authors even use the term
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aesthetic or pleasant drawing. For the genomic signatures data
set at least, we observe structures that correspond to known
organizations of species based on the tree of life. The different
hierarchical levels of organization, which are available here,
may be more or less detected, depending on the methods and
parameters. Only experts (biologists in that case) may validate
(or invalidate) the mappings. It is believed that the exploration
of high-dimensional data must be somehow supervised (i.e.,
user driven), and, depending on the “point of view,” mappings
may be quite different and more or less satisfying. In DD-HDS,
a single user-defined parameter allows fixing the compromise
between local neighborhood preservation and global mapping;
in our experience, this feature turns out very convenient for the
interactive exploration of high-dimensional data.
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