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Abstract—This paper presents a compression scheme for digital
still images, by using the Kohonen’s neural network algorithm,
not only for its vector quantization feature, but also for its
topological property. This property allows an increase of about
80% for the compression rate. Compared to the JPEG standard,
this compression scheme shows better performances (in terms of
PSNR) for compression rates higher than 30.

Index Terms—Discrete cosine transforms, entropy coder, image
processing, JPEG, self-organizing feature maps, variable length
codes, vector quantization.

I. INTRODUCTION

I N the context of image processing, compression schemes
are aimed to reduce the transmission rate for still (or fixed

images), while maintaining a good level of visual quality.
One of the main common methods to compress images is

to code them through vector quantization (VQ) techniques [1],
[2]. The principle of the VQ techniques is simple. At first, the
image is splitted into square blocks of pixels, for example
4 4 or 8 8; each block is considered as a vector in a 16- or
64-dimensional space, respectively. Second, a limited number
( ) of vectors (codewords) in this space is selected in order
to approximate as much as possible the distribution of the
initial vectors extracted from the image; in other words, more
codewords will be placed in the region of the space where there
are more points in the initial distribution (image), and vice-
versa. Third, each vector from the original image is replaced
by its nearest codeword (usually according to a second-order
distance measure). Finally, in a transmission scheme, the index
of the codeword is transmitted instead of the codeword itself;
the compression is achieved if the number of bits used to
transmit this index ( ) is less than the number of initial
bits of the block ( if is the resolution of each
pixel).

Many authors used the Kohonen’s algorithm [3] or self-
organized feature map (KSOM) [4] to achieve the vector
quantization process of image compression. Kohonen’s algo-
rithm is a reliable and efficient way to achieve VQ, and has
shown to be usually faster than other algorithm and to avoid
the problem of “dead units” that can arise for example with
the LBG algorithm [5].

Kohonen’s algorithm has however another important prop-
erty besides vector quantization: it realizes a mapping between
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an input and an output space that preserves topology; in other
words, if vectors are near from each other in the input space,
their projection in the output space will be close too.

In the proposed compression scheme, we will use a two-
dimensional Kohonen map corresponding to a grid of code-
words (instead of a one-dimensional table in standard VQ), as
the projection of an initial space including all vectors coming
from blocks of the initial image.

The main aspect of this paper is to use the topology
preserving property of KSOM. In a standard image indeed, we
can make the hypothesis that two consecutive blocks, along
the horizontal or vertical directions, will be similar in most
cases, just because uniform regions in the image are generally
much larger than the size of the blocks. According to the self-
organization property of KSOM, two consecutive and similar
blocks will be coded into similar codewords; the use of a
differential entropic scheme to encode consecutive blocks will
thus improve the compression ratio.

Other authors already used the topology-preserving property
of KSOM’s for different reasons. In [6], this property is used
for progressive transmission of the image. In [7] it is used
for further differential coding, as in this paper, but on images
without discrete cosine transform (DCT) transform, and with
a less-performant zeroth-order predictor (instead of first-order
in this paper). In [8], an original neural network model is used
instead of a first-order predictor, but on images without DCT
transform. Finally in [9], the topology-preserving property is
used to minimize the effect of transmission errors in noisy
channels.

In this paper, we present a compression scheme based on
DCT transform of the original image, vector quantization
by Kohonen map, differential coding by first-order predictor,
and entropic coding of the differences. Simulation results are
provided, together with comparisons with similar compression
scheme (DCT/VQ) without differential coding, and with a
standard JPEG algorithm.

II. THE GLOBAL COMPRESSIONSCHEME

The global compression scheme for lossy compression is
described in Fig. 1. After a vectorization (transformation of
image blocks into vectors), a DCT [10] and a low-pass
filter first reduce the quantity of information by keeping only
the low-frequency coefficients. Then, the vector quantization
is performed, with another loss of information. Finally, the
indexes of the codewords found by the vector quantizer
are transformed by a differential coding, and the results are
compressed by an entropic coder [11] ; these two last steps do
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Fig. 1. Global compression scheme for lossy compression.

not introduce any loss in the information. The decompression
scheme performs the same operations in the opposite way.

A. Image Preprocessing

The image is first decomposed into blocks (44 or 8 8
pixels as usual); the DCT transform is applied on each block,
in order to eliminate a part of the information contained in the
image, that is, high frequencies not visible to human eyes.

The DCT transform of a by pixels block is again a
by block. However, in the transformed block, low-frequency
coefficients are grouped in the upper-left corner, while high-
frequency ones are grouped in the lower-right corner. The
low-pass filter on the transformed block will thus keep only the

coefficients nearest from the upper left corner, with ;
the remaining coefficients are disgarded, supposing that
they do not contribute too much to the visual quality of the
image.

B. Kohonen’s Self-Organizing Maps

As mentioned in the introduction, the goal of this algorithm
is to create a correspondence between the input space of
stimuli and the output space constituted of the codebook
elements, the codewords, or neurons. After learning [12], these
last ones have to approximate the vectors in the input space
in the best possible way.

All neurons, or codewords, are physically arranged on a
square grid; it is thus possible to define-neighborhoods on
the grid, which include all neurons whose distance (on the
grid) from one (central) neuron is less or equal to.

Each of the codewords is represented by its weight
, where is the dimension of the space (

in the compression scheme). For each presentation of an
input vector during the training phase, the index
of the codeword nearest from is determined, according to
the Euclidean distance

(1)

The selected neuron, and all neurons in a-neighborhood
of neuron , are then “moved” in the direction of the input
vector , according to the relation

(2)

where represents the index of all neurons in the-
neighborhood of neuron and the learning factor.

and must decrease during the learning to ensure a
good convergence of the algorithm. The topology-preserving

Fig. 2. Organization of a Kohonen map.

Fig. 3. Determination of the best direction to calculate the difference be-
tween blocks.

property of KSOM, resulting from this learning process, means
that two vectors in the input space, close with respect to the
Euclidean distance, will activate two close centroı̈ds on the
grid (Fig. 2).

KSOM’s have two properties used in our compression
scheme. First, it quantizes the space like any other vector
quantization method, what constitutes a first (lossy) compres-
sion of the image. Then, the topology preserving property of
KSOM, coupled with the hypothesis that consecutive blocks
in the image will often be similar, and to a differential entropic
coder, constitutes a second (nonlossy) compression of the
information.

C. Differential Coding

As mentioned above, if we suppose that most parts of
the image are smooth, a differential coding applied to the
codewords after vector quantization will lead to “small” codes
in average. The use of an entropic coder, which encodes these
differences into variable-length words (i.e., words which will
use fewer bits if the differences themselves are small), will
thus lead to further compression.

1) Smooth Gradient Principle:Because of the entropic
coder, the compression ratio will be higher if the difference
between codewords are low. Instead of using a simple
differential scheme (zeroth-order predictor) where each
codeword is substracted from the codeword corresponding
to the previously encoded block in the image (i.e., the one
at the left of the current block), we will use the following
principle (first-order predictor): we suppose that gradients in
the image are smooth, and thus that the direction in which the
differences between two successive blocks was minimum for
already encoded blocks will be the same as the direction in
which the difference is minimum for a new block to encode.
In other terms, and with the notations in Fig. 3, we suppose
that the minimum difference between blocksand , and

, and , and and , will be, respectively, in the same
direction ( or ) as the minimum difference
between already encoded blocksand , and , and
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Fig. 4. Coding the difference between indexes.

Fig. 5. Decoding the difference between indexes.

, and and . In most cases, with images having smooth
gradients (which is usually the case except in the regions with
sharp variations, where the differential scheme does not bring
any advantage), the selection between four possible directions
will give smaller differences than a conventional scheme.
Moreover, the selected direction does not have to be coded:
since blocks to have already been transmitted when coding
block , the direction of the minimal difference between them
can be computed with the already existing blocks, and not
being transmitted.

The coding of a block is summarized in Fig. 4. The best
direction is first computed according to the above scheme, and
block or is selected. The new blockis then encoded
by the Kohonen’s algorithm, and the difference between the
two indexes is sent to the entropic coder.

The decoding is illustrated in Fig. 5. The best direction is
first computed with the already decoded blocks; the sum of
the selected index and of the transmitted difference is then the
index of the new block to decode, and is converted again in
an image block by the look-up table created with Kohonen’s
algorithm.

It must be mentioned that the scheme proposed in Fig. 3 is
only valid when the two first lines have already been encoded.
For the two first lines, a classical differential scheme is used.

D. Entropic Coder: UVLC

Run length coding (RLC) and variable length coding (VLC)
are widely used techniques for lossless data compression.
We used an entropy coding system combining these two
techniques in order to achieve a higher compression ratio. This
system is similar to the one described in [11].

III. SIMULATIONS AND RESULTS

For the simulation of the whole compression process (see
Fig. 1), we used 4 4 points image blocks; the Kohonen
algorithm was trained with a decreasing function. While the
simulations have been carried out on different images with
similar results, the conventional Lena image is used in this
paper for illustration purposes.

TABLE I
PSNR (IN DECIBELS ) AFTER THE LOW-PASS FILTERING

Fig. 6. Compression rate evolution with the number of codewords.

Fig. 7. Peak signal-to-noise ratio evolution with the number of codewords.

First, we have to show the consequences of the low-pass
filtering: by removing a part of the high frequencies, we delete
a part of the information contained in the image. An immediate
consequence of this is a reduction of the peak signal to noise
ratio (PSNR), even though the image visual quality remains
more or less unchanged. In other words, before compression,
the image quality will be degraded by the filtering. We can
see in Table I the evolution of the PSNR on the Lena image,
when the number of DCT coefficients kept after the low-pass
filtering varies from “2” to “8.”

To keep an acceptable subjective quality of the image, six
and eight DCT coefficients will be kept in the next simulations
(PSNR of around 30 dB before vector quantization).

The tests made with our compression scheme consist of a
variation of the codebook size for a given cut frequency (six
or eight DCT coefficients). The obtained compression rate in
function of the codebook size (differential coding) are shown
in Fig. 6 while their associated PSNR are given in Fig. 7.

As a comparison, the compression rate without differential
coding (and thus without use of the topology-preserving prop-
erty of KSOM’s) is equal to , where each
bit of the image is coded on eight bits, and is the number
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Fig. 8. Comparison of PSNR for the proposed lossy compression scheme
and the JPEG algorithm.

of bits necessary to code all codewords (seven for
codewords, eight for 256, and nine for 512).

Two remarks can be made.

• The compression rate does not vary too much with the cut
frequency (Fig. 6): the difference is about 5% between
DCT6 and DCT8.

• The signal to noise ratio (PSNR) does not vary too much
with the cut frequency (Fig. 7). The difference between
DCT6 and DCT8 is about 1%.

The fact that we obtain a better PSNR for the DCT6 can
be explained by the fact that the space quantized with DCT6
has a lower dimension (dimension six); by this way, with a
codebook of given size, the space can be better quantized than
with the DCT8 one (dimension equal to eight). Nevertheless,
the image quality of the DCT6 image, before the compression
step, is lower (1.8 dB for Lena in Table I) than the DCT8 one.

Differences between DCT6 and DCT8 in Fig. 6 are not
significant, but the higher compression rate for DCT8 could
be explained by a better “organization” of the Kohonen map,
because the input vectors (in dimension 8 instead of 6) better
represent the “correlated” image vectors.

Due to the use of Kohonen’s self-organization relation, the
compression rate is increased by about 80%. It is an important
result showing the effectiveness of the proposed compression
scheme.

A. Comparison with JPEG

To give an idea of the performance of the proposed coder-
decoder using Kohonen maps, we compare our results with
those obtained with the JPEG standard [13]; the JPEG experi-
ments were carried out with default tables for the quantization
process.

Fig. 8 compares the compression rates obtained by our
proposed compression scheme (Kohonen on the figure) and
by the JPEG algorithm. We can see that our approach gives a
higher PSNR as soon as the compression rate is higher than
about 25. This simulation was carried out on the Lena image.
From a visual point of view, we can compare the Lena image
(and the difference image) compressed by our method and by
the JPEG algorithm, in Fig. 9, for a compression rate of about

(a) (b)

(c) (d)

Fig. 9. (a) Lena image compressed by the proposed method, compression
rate = 25.22, PSNR= 24.7dB. (b) Lena image compressed by the JPEG
algorithm, compression rate= 25.04, PSNR= 25.3dB. (c) Lena image
compressed by the proposed method, compression rate= 38, PSNR= 24dB.
(d) Lena image compressed by the JPEG algorithm, compression rate= 38.55,
PSNR= 22.46dB.

25. The PSNR is slightly higher for the JPEG, but the visual
quality of the image is slightly better for our compression
scheme. Fig. 9 shows the Lena image compression with our
method and with the JPEG, for a compression rate of about
38. In this case, we can see that the PSNR is higher for our
method, and claim with no doubt that the visual quality is
much increased.

IV. CONCLUSION

In this paper, we proposed a new compression scheme based
on the use of the organization property of Kohonen maps. It
is based on the fact that consecutive blocks in an image are
often similar, and thus coded by similar codewords with a
vector quantization algorithm. The Kohonen map organization
property makes the indexes of the coded vectors similar too,
and, using an entropy coder, this property is used to increase
in a significant way the compression ratio, for a given image
quality (in a lossy compression scheme). The same method can
also be used in a lossless compression scheme. Comparisons
with JPEG also show that the quality of a compressed image
is better with our proposed scheme, for compression ratios
greater than about 25.
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