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Abstract: Within the framework of the OPTIVIP project, an optic nerve based visual 
prosthesis is being developed in order to restore partial vision to the blind.  In this paper, 
we concentrate on the classification problem of visual sensations generated by multiple 
electrical stimulations.  We propose to use probabilistic neural networks in order to 
perform Bayesian classification.  Statistical sampling techniques are utilized in order to 
reduce the bias on the estimated performances and assess the sensitivity of the method.  In 
noisy environment the Parzen window estimator seems more reliable than finite Gaussian 
mixtures.  Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
Since the late eighties cochlear implants have 
rehabilitated deaf patients for whom there was no 
other potential treatment.  Spurred by this success, 
several multidisciplinary teams were established 
during the past decade aiming at restoring partial 
vision to the blind and improving their quality of life.  
The principle consists in implanting a neural 
prosthesis either intra-ocularly or intra-cranially and 
bypass, by electrical stimulation, neurons that have 
become non-functional. 
 
In the previous European project MIVIP 
(MIcrosytem based VIsual Prosthesis), the feasibility 
of the optic nerve based visual prosthesis was 
investigated.  The electrical stimulation of the optic 
nerve was demonstrated (Veraart, et al., 1998), in 
particular for pathologies for which the optic nerve 
remains partly intact and functional.  Retinitis 
pigmentosa (RP), a leading cause of blindness in the 
western world, is an example among others.  As a 
consequence, further research was undertaken: a 

microelectronic prototype was built (Doguet, et al., 
2000), a considerable amount of data was gathered 
concerning the visual sensations evoked in a blind 
RP volunteer and an attempt was made to coarsely 
understand the underlying physiological process 
(Delbeke, et al., 1999). 
 
Within the framework of the European project 
OPTIVIP (OPTImisation of an Implantable Visual 
Prosthesis), the optic nerve based visual prosthesis 
has been further developed and optimised.  One of 
the main challenges is to understand, decode and 
model the physiological process linking the 
stimulating parameters to the visual sensations 
produced in the visual field of a blind volunteer.  A 
black-box prediction model has been developed by 
Archambeau, et al. (2001), which showed 
satisfactory prediction accuracy for single contact 
stimulations, i.e. stimulations generated by a single 
electrode contact and leading to a single visual 
sensation.  The primary aim of such prediction model 
is to allow latter reconstruction of basic shapes 
extracted from video images after some edge 
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detection and, as a result, supply meaningful visual 
information to the blind.  In addition, the achievable 
accuracy and reconstruction resolution is being 
evaluated. 
 
In this paper, we provide a tool to decompose 
multiple stimulations, i.e. complex stimulations 
generated by multiple contact activations and leading 
to (apparently) simultaneous multiple visual 
sensations, to single ones. A proper decomposition of 
multiple stimulations will enable us to explore the 
combining rules of complex stimulations by 
advanced data analysis, to simplify greatly the 
stimulation strategy and to increase extensively the 
available experimental data, which is extremely 
valuable for improving the black-box prediction 
models. 
 
This paper is organised as follows.  In section 2, we 
address the problem of classifying visual sensations 
generated electrically.  The next two sections 
describe the structure of probabilistic neural 
networks (PNN) (Specht, 1990).  The PNN is defined 
as a 3-layer feed-forward neural network capable of 
approximating Bayes’ classifier.   The first and the 
second hidden layers are described in section 3.  
They consist in estimating the probability density 
function (PDF) of the different classes.  Two 
alternatives are considered: the Parzen window 
estimator, a non-parametric PDF estimator, and finite 
mixture models, a semi-parametric PDF estimator.  
The third layer of the PNN is introduced in section 4.  
It makes the optimal decision according to the 
Bayes’ law.  In section 5, we propose a method to 
estimate statistically the classification performances 
and finally in section 6 we apply those techniques on 
the classification of visual sensations and discuss our 
results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Definition of the correspondence problem 
between the visual sensations and the active 
electrode contacts, (a) for the single stimulation 
case and (b) the complex stimulation case. 

2. CLASSIFICATION PROBLEM 
 
The microelectronic prototype used in OPTIVIP 
controls a four contact cuff electrode, wrapped 
around the right eye’s optic nerve of a volunteer.  
Consider a single electrode contact stimulation Cs.  
The electrical stimulation Cs produces a visual 
sensation ss in the visual field of the blind volunteer 
(figure 1a).  Single visual sensations are called 

phosphenes. Next, consider a complex stimulation 
formed by two simultaneous electrode contact 
stimulations Cm,1 and Cm,2.  It has been 
experimentally established that each contact 
stimulation produces one single phosphene.  As will 
be discussed in section 6, this means that we can 
perform classification of multiple phosphenes based 
on the knowledge of the class PDF of single ones.  
The classification problem can therefore be stated as 
finding, for each perceived phosphene, the 
corresponding electrode contact among the active 
ones (figure 1b). 
 

 
3. PROBABILITY DENSITY ESTIMATION 

 
When we have a sufficient number of data points to 
estimate the probability density functions (PDF) of 
the different classes, we may be inclined to perform a 
Bayesian classification, which can be stated as the 
optimal classification scheme.  In this section, we 
recall two techniques to estimate PDFs: Parzen 
windowing and the finite mixture models. 
 
 
3.1 Parzen Windowing 
 
The Parzen windowing PDF estimation (Parzen, 
1967) is a non-parametric method.  Such a method 
does not assume any functional form of the PDF, but 
allows its shape to be entirely determined by the data. 
It consists in placing a well-defined kernel function 
on each data point xn and determining a common 
width s , also defined as a smoothing parameter.  In 
practice, Gaussian kernels are often used.  The total 
PDF is then defined as the sum of all the Gaussian 
kernels (Silverman, 1986): 
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where N is the number of data and d their dimension. 
 
The main advantage of Parzen windowing over 
simple histograms is that the shape of the PDF is not 
discontinuous at the arbitrary bin edges and does not 
depend on an arbitrary choice of the origins, which 
can both lead to a false representation of the PDF. 
 
 
3.2 Finite Mixture Model 
 
Finite mixture models are semi-parametric PDF 
estimation methods.  As non-parametric techniques, 
they do not assume the a priori shape of the PDF to 
estimate.  However, unlike the previous method, the 
number of kernel functions, also denoted 
components, is limited to a number NM <<  in order 
to avoid a prohibitive increase of the number of 
parameters with the size of the data set.  In practice 
Gaussian kernels are often used.  A Gaussian mixture 
model can be defined as a linear combination of the  
Gaussian component densities (McLachlan and Peel, 
2000): 
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where cm and sm are the centres and the widths of the 
Gaussian kernels respectively and pm the mixing 
proportions, which are non-negative and must satisfy 
the following constraint: 
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Such mixture models can approximate any 
continuous PDF, provided the model has a sufficient 
number of components and provided the parameters 
of the model are chosen correctly (Bishop, 1995). 
 

Next, let us define the likelihood function L : 
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Maximizing the likelihood function is then 
equivalent to finding the most probable PDF estimate 
provided the data set { }N

nn 1=x .  In order to avoid the 
complexities of a non-linear optimisation scheme for 
computing the maximum likelihood estimate (MLE), 
a practical method is obtained by applying the 
expectation-maximization (EM) algorithm 
(Dempster, et al., 1977).  The EM is a two stage 
iterative method.  First, in the E-step, the expected 
value of some “unobserved” data is computed, using 
the current parameter estimates and the observed 
data.  Subsequently, during the M-step, the expected 
values computed in the E-step are used to compute 
the MLE and the model parameters are updated.  
Each iteration t of the EM can be summarized as 
follows (McLachlan and Peel, 2000): 
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Note that in equation (5) )(t
lτ  corresponds to the 

posterior probability that xn is generated by 

component l provided that the data point xn is known.  
The convergence properties of the EM algorithm 
have been discussed by Xu and Jordan (1996).  
 

 
4. CLASSIFICATION 

 
Once we have computed the PDF p(xn|Ci) of the 
different classes, we can perform an optimal 
classification based on the Bayes’ law: 
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In this equation P(Ci|xn) stands for the posterior 
probability that data point xn belongs to class Ci 
provided xn is known, whereas P(Ci) stands for the 
priors.  They can simply be estimated by counting the 
number of samples in each class.  At this point it 
should be stressed that an optimal classification 
implies a minimization of the classification error, but 
it does not entail an error-free classification. 
 

 
5. PERFORMANCE ESTIMATION 

 
The two previous sections provide the building blocs 
for performing optimal classification by PNNs.  As 
in the classical neural networks theory, in order to 
estimate the model performances, the data set has to 
be divided in a learning set, for which the model 
parameters are estimated, a validation set, for which 
the optimal model is selected, and a test set, on which 
the performances of the optimal model are evaluated. 
 
However, for some applications the data acquisition 
turns out to be fastidious and time consuming, 
especially when we are not dealing with an automatic 
data acquisition procedure and when a human being 
is involved, as for example in OPTIVIP.  Therefore, 
we have favoured the approach of avoiding the 
definition of a test set.  This enables us to have a 
greater amount of data at our disposal during the 
learning step and thus enhance the approximation 
quality of the PDF.  Moreover, in practice, there is 
only a slight difference between the classification 
errors of the optimal model evaluated on the 
validation set and the test set. 
 
Nevertheless, the data split is still arbitrarily.  This 
can lead to a strong bias in the model parameters, 
which in turn can cause poor performance estimation 
and a bad generalisation by an inappropriate model 
selection.  In order to reduce the bias and estimate 
the data sensitivity of the probabilistic model, 
statistical sampling methods can be used.  One 
popular technique for achieving this is the K-fold 
cross-validation.  The method can be summarized as 
follows (Efron, 1998): 
 
1. The initial data set is split in K roughly equal 

sized subsets. 
2. For Kk K1= : 
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§ Define the validation data set DV as the kth 
part of the split and the learning data set DL as 
the remaining 1−K  parts; 

§ Calculate the classification error Ek computed 
on DV, for the model fitted on DL; 

 
3. Compute the statistical estimate of the 

classification error and its standard deviation: 
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Such statistical sampling method makes it possible to 
use a high proportion ( K

11− ) of the available data 
to train the networks, while also making use of all 
the data points when evaluating the cross-validation 
error.  A disadvantage of the approach is that it 
requires the training process to be repeated K times, 
which can lead to large processing times.   
 

 
6. CLASSIFICATION OF VISUAL 

SENSATIONS 
 
In this section, we will demonstrate the relevance of 
PNNs for approximating the optimal classifier in a 
real life problem: the classification of phosphenes 
generated in the frame of the OPTIVIP project. 
 
By electrical stimulation, visual sensations are 
selectively produced in the visual field of the blind 
RP volunteer, as drawn in figure 2.  The locations 
depicted in each box correspond to phosphenes 
induced by successively activating one single 
electrode contact, letting the stimulation parameters 
vary. 
 
The implanted cuff electrode contains four electrode 
contacts, wrapped around the optic nerve.  Each 
contact Ci is named by its radial position around the 
nerve: 
 

{ }°°°°= 270,180,90,0: iCi  (13) 
 
Experimentally, it was found that for each contact, a 
restricted, but dissimilar area of the visual field is 
accessible (figure 2).  This experimental fact 
confirms the hypothesized retinotopic structure of the 
optic nerve, which postulates that the neighbouring 
optic nerve fibres correspond to the neighbouring 
photosensitive cells of the retina. 
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Fig. 2. Location of the phosphenes in the visual field 
of the blind RP volunteer, measured 
experimentally for each of the four electrode 
contacts.  The positions are measured in degrees, 
in both horizontal and vertical directions. 

 
 
Furthermore, for complex stimulation it was 
established that the number of perceived phosphenes 
is, in most cases, equal to the number of activated 
electrode contacts.  Indeed, depending on the type of 
complex stimulation, this was confirmed for 80% to 
90% of the data. 
 
Based on these two experimental results, it seems 
reasonable to assume spatial superposition when 
complex stimulations are provoked.  That is, when a 
set of single contact activations are combined in 
order to build one complex stimulation, we can 
assume the resulting visual perception as being the 
spatial superposition, in the visual field, of all the 
single visual perceptions.  In practice however, a 
slight influence has been noticed on the exact 
phosphene location, but the effect is limited and 
localized inside the specific area of each electrode 
contact. 
 
 
6.1 Probability Density Estimation 
 
In order to estimate adequately the class PDFs, the 
optimal model parameters are selected.  First, let us 
define the total classification error Etot: 
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(14) 
where 

iCkE ,  is the classification error for class i 

associated to the kth part of the data split, that is, the 
number of misclassifications divided by the number 
of data of the validation set corresponding to this 
class. 
 
In figure 3, the estimated classification error by 10-
fold cross-validation is represented.  We clearly see 
that for Parzen windowing the minimum Etot is 
obtained for a smoothing factor s  equal to 2.5.  When 
we use Gaussians mixtures to estimate the PDFs the 
optimal number of components per class is located 
around 5. 
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Fig. 3. Classification error for each class statistically 

estimated by 10-fold cross-validation.  (a) depicts 
the classification error of the PNN using the 
Parzen windowing estimator and (b) the PNN 
using finite mixture models. 

 
As we compare both methods, we see that, in 
practical problems that can be considered as very 
noisy due to the low number of available data 
(around 500 per class), the Parzen windowing 
estimator appears more reliable than iterative 
methods such as mixture models.  The last get 
trapped in local minima, which leads to a higher total 
classification error and a greater sensitivity of the 
performances on the data subset selection.  Indeed, 
looking at figure 4, where the standard deviation of 
the classification errors of the different classes is 
represented, we observe a greater variability for the 
Gaussian mixture models.  Note that the scale is 
different from figure 3. 
 
The PDF of the four electrode contacts are shown in 
figure 5.  The optimal class PDFs are computed 
using the complete data set.  Unfortunately it can be 
seen that the classes are strongly overlapping.  This 
means that even for an optimal classification, the 
classification error will be relatively large. 
 
 
6.2 Classification Performances 
 
The performances of a classification scheme can be 
evaluated by using a confusion matrix.  The 
confusion matrix M is defined as follows: 
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Fig. 4. Standard deviation of the classification error 

for each class based on (a) Parzen windowing 
estimator and (b) mixture models. 

 
 

 
where fj(x) is the estimated class indicator function 
and p(x|Ci) is the estimated  posterior density.  Thus, 
the confusion matrix counts, for each class i, the 
number of data that are correctly classified and the 
number of misclassifications, both labelled by their 
classification bin j in which they are classified. 
 
Based on 10-fold cross-validation, the estimated 
classification performances are represented in table 1 
when four phosphenes are perceived. 
 
 
Table 1 Confusion Matrix for four activated contacts. 

(Correct classifications  are bolded) 
 

Electrode Bin Bin  Bin  Bin 
 Contact   0°  90° 180° 270° 

 
     0° 56% 20% 17% 09% 
    90° 23% 52% 18% 07% 
   180° 17% 22% 43% 18% 
   270° 13% 08% 09% 70% 

 
 
 
At first sight, the performances are relatively poor 
(55% of correct classification on average).  This is 
mainly due to the important overlapping of the 
different classes as it can be observed in figure 5.  
Nevertheless, in practice most of the complex 
stimulations are induced by activating only two or 
three single contacts.  When fewer contacts are used, 
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the classification performances increase rapidly since 
the overlapping is reduced.  Table 2 and 3 show 
examples of the increase of correct classifications for 
3 and 2 perceived phosphenes respectively.   
 
 

Table 2 Confusion Matrix for three activated 
contacts. (Correct classifications  are bolded) 

 
Electrode Bin Bin Bin 
 Contact   0°  180° 270° 

 
     0° 70% 21% 09% 
   180° 22% 63% 14% 
   270° 16% 09% 76% 

 
 
 
Table 3 Confusion Matrix for two activated contacts. 

(Correct classifications  are bolded) 
 

Electrode Bin Bin 
 Contact   90°  270° 

 
   90° 89% 11% 
  270° 19% 81% 

 
 

 
7. CONCLUSION 

 
In this paper, we have addressed the classification 
problem of visual sensations induced by electrical 
stimulation of the human optic nerve.  We have 
provided a practical tool for decomposing complex 
stimulations into single ones that is showing 
satisfactory performances for further study of the 
underlying physiological process.  Optimal 
classification was performed using PNNs.  The 
actual performances of the method were statistically 
estimated by K-fold cross-validation, reducing the 
bias and estimating the sensitivity.  Comparing the 
Parzen window estimator and finite Gaussian 
mixtures, we showed that in noisy environments the 
former was more reliable.  Moreover, the class PDF 
estimates gave us additional insight in the 
physiological process relating the stimulating 
parameters to the perceived visual sensations. 
 
 

 
Fig. 5. Class PDF estimation of the phosphenes in 
the visual field of the blind volunteer, based on their 
location. 
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