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Abstract - Time series forecasting is usually limited to one-step
ahead prediction.  This  goal  is  extended here to longer-term
prediction,  obtained  using  the  least-square  support  vector
machines  model.  The  influence  of  the  model  parameters  is
observed when the time horizon of the prediction is increased
and for  various  prediction  methods.  The  model  selection  to
optimize the design parameters is  performed using  the Fast
Bootstrap methodology introduced in previous works.

I. INTRODUCTION

Time  series  forecasting  is  a  general  problem
encountered  in  many  field  as  engineering  (electrical
consumption, gas consumption, …), finance (share or stock
evolution, …), environment (river flood, …) to give only a
few  examples.  The  general  problem  of  time  series
forecasting can be rephrased as the problem of finding a
model able to forecast the future evolution of a time series
given its past evolution. Most of the time, the forecasting
problem is limited to a short-term time series prediction. In
other words, as one tries to model the future evolution of a
time series, the usual goal is to be able to perform a one-
step  ahead  prediction.  The  main  reason  motivating  such
approach  is  reliability  of  the  predicted  values.  One-step
ahead  predictions  can  be  reasonably  reliable,  while  the
uncertainty on future values increases with the time horizon.
The idea is thus to see how models that have been used to
perform  one-step  ahead  predictions  behave  in  the  more
general  framework  of  multiple  steps  ahead  predictions
(where multiple steps can mean a relatively large number of
future  values).  Furthermore,  as  these  models  are
parameterised, the relative importance of their parameters
will be observed on longer-term prediction. The influence
of  these  parameters  will  thus  be  underlined  as  the  time
horizon of the prediction increases. Since one chooses a
family  of  parameterised  models,  there  exists  as  many
models as there are different values for the parameters. The
problem is thus to be able to choose the best one among a
family of models, according to some criterion (usually the
generalisation error). 

Many techniques  have  been  developed  in  the  general
framework of model selection. Some of them are based on a
penalisation of the model complexity, as AIC, BIC, MDL
[1, 2, 3],  while others are based on resampling, as k-fold

cross-validation, leave-one-out, and bootstrap [4]. Although
they differ in their approach, these methods, either based on
complexity penalty or resampling, have been proved to be
asymptotically  equivalent  [5].  Within  the  resampling
methods, the bootstrap will be used here, as it provides a
more  robust  estimate  of  the  generalisation  error  [6].
Nevertheless, the bootstrap has an awkward limitation. The
computation  time  needed  to  obtain  an  estimate  of  the
generalisation error can be very large when using nonlinear
models. 

An  improvement  to  the  bootstrap,  namely  the  Fast
Bootstrap, will be extended here to the case of least-squares
support  vector  machines  (LS-SVM)  [7,  8].  This
improvement  has  already  been  applied  to  radial  basis
function networks [9, 10]. In the following of this paper,
we first  recall  some basic  concepts  about  LS-SVM. The
principle of the bootstrap will also be recalled in section III.
The Fast Bootstrap improvement will be introduced for LS-
SVM  in  section  IV.  Section  V  deals  with  various
approaches  for  long-term  forecasting.  The  LS-SVM  will
then be applied  to  the SantaFe A time series in order  to
observe the influence of the model in the case of long-term
forecasting. This influence will be finally discussed in the
conclusion. 

II. LEAST-SQUARE SUPPORT VECTOR MACHINES

Consider a given training set of  N data points {xk,  yk}
with xk a n-dimensional input and yt a 1-dimensional output.
In feature space SVM models take the form: 

( ) ( )Ty x x b= w j + ,
where the nonlinear mapping j(.) maps the input data into a
higher dimensional feature space. In least squares support
vector  machines  for  function  estimation,  the  following
optimization problem is formulated:
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subject to the equality constraints:
( ) ( ) ,  1,..., .T

ky x x b e k N= w j + + =
This  corresponds  to  a  form  of  ridge  regression.  The
Lagrangian is given by:
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with Lagrange multipliers k. The conditions for optimality
are: 
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for  k = 1..N. After elimination of  ek and  w, the solution is
given by the following set of linear equations:
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where y = [y1; …; yN], 1
r

= [1; …; 1],  = [] and Ω
follows Mercer’s condition:
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This finally results into the following LS-SVM model for
function estimation:

( ) ( )Ty x x b= w j + ,
where  and b are the solution to (6) and w is given by (5).
For the choice of the kernel function y one has several
possibilities [7,8].  In this paper, Gaussian kernels are used:
yx xk=exp-||x-xk||2.  The remaining unknowns are 
and  g.  These  model  hyperparameters  will  be  selected
according to  a  model  selection procedure  detailed  in  the
following of this paper. 

III. BOOTSTRAP FOR MODEL STRUCTURE SELECTION

The  bootstrap  [4]  is  a  resampling  method  that  has  been
developed in order to estimate some statistical parameters
(like  the  mean,  the  variance,  etc).  In  the  case  of  model
structure  selection,  the  parameter  to  be  estimated  is  the
generalization error  (i.e.  the average error  that  the model
would  make  on  an  infinite-size  and  unknown  test  set).
When  using  the  bootstrap,  this  error  is  not  computed
directly.  Rather  the  boorstrap  estimates  the  difference
between  the  generalization  error  and  the  training  error
calculated on the initial data set. This difference is called
the  optimism.  The estimated generalization error  will thus
be  the  sum  of  the  training  error  and  of  the  estimated
optimism.  The  training  error  is  computed  using  all  data
from the  training set.  The optimism is  estimated  using a
resampling technique based on drawing within the training

set with replacement. Using notation 
,j j

j

A AE  where the first
exponent  Aj denotes  the  training  set  while  the  second

exponent  Aj indicates  the set  used  to  estimate  the  model
error,  the  Bootstrap  method  can  be  decomposed  in  the
following stages: 
1.  From the initial set I, one randomly draws N points with
replacement. The new set Aj has thus the same size that the
initial set and constitutes a new training set.  This stage is
called the resampling.
2.  The training of the various model structures q is done on
the same training set Aj. One can compute the training error
on this single set:

 2
*

, * 1
( , ( ))

( , ( ))

j j

j j

j

N
A Aq
i j i

A A i
j

h x q y
E q q

N
=

q 
q =

å , (9)

with qj
 the model parameters after learning, hq the qth model

that is used,  xi
Aj the  ith input vector from set  Aj,  yi

Aj the  ith

output and  N the number of elements in this set.  Index  j
means that the error is evaluated on the jth new sample. 
3.  One can also compute the validation error on the initial
sample which now plays the role of the validation set V=I: 
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Here again index j means that the error is evaluated on the
jth new sample. 
4.  The difference between these two errors (9) and (10) is
calculated and defined as the optimism by Efron [6]:
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5.  Steps 1 to 4 are repeated  J times. The estimate of the
optimism is then calculated as the average of the  J values
from (11):
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)

6.  The training of the  q model structures is  done on the
initial data set  I and the training error is calculated on the
same set.  Two  exponents  I  are  used  to  indicate  that  the
initial data set is used for both training and error estimation:
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)

7.  An approximation of the generalization error is finally
obtained by: 

),()(ˆ)(ˆ *, q+= qEqismmoptiqE II
gen . (14

)
Êgen(q) is an approximation of the generalization error for
each  model  structure  q.  The  best  structure  that  will  be
selected  is  the  one  that  minimizes  this  estimate  of  the
generalization error. In this paper, the Bootstrap .632 will
be used instead of the classical Bootstrap described above.
In  Bootstrap  .632,  the validation  set  V is  made with the
elements that are in the initial data set I but not the training
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set Aj. Since the set Vj is different for each set Aj, one have
to  replace  V by  Vj in  relations  (10)  and  (11)  while  the
remaining  equations  remain  unchanged.  Finally,  (14)  is
replaced by:

),(368.)(632.)(ˆ *, q+= qEqoptimismqE II
gen . (15

)
The main advantage of this version is that the estimate of
the generalization error  obtained by the Bootstrap .632 is
unbiased [4].

IV. FAST BOOTSTRAP AND TOY EXAMPLE

In  this  section,  an  improvement  to  the  Bootstrap
methods is presented. This improvement is called the Fast
Bootstrap  and allows reducing the computational  time of
the traditional Bootstraps [9-10]. This method is based on
experimental  observations and is  presented on a function
approximation example. In this example, 200 inputs  x has
been drawn using a uniform random law between 0 and 1.
The output y has been generated by the function:

sin(5 ) sin(15 ) sin(25 )y x x x= + + + e , (16
)

with  e a uniformly distributed random value in [-0.5 0.5].
This function is represented in Figure 1.

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

x

y

Figure 1: Example of function (dots) and its approximation (solid line).

A  LS-SVM  is  used  to  approximate  this  function.  Two
parameters still have to be determined, namely  and g. For
a  fixed   =  0.1,  the  optimal  gis  determined  using  the
Bootstrap method. The set of gthat is tested ranges from 0
to 100 with a 0.1 step. The number of resamplings in (12) is
equal  to  100.  The  apparent  error  defined  in  (13)  is
computed  and  represented  in  Fig.2.  The  optimism  is
computed  using  (12)  and  represented  in  Fig.3.  The
generalization error is computed using (15) and represented
in Fig.4. The value of  g that minimizes the generalization
error is  equal to 11.  In Fig.3,  the optimism is very close
from  an  exponential  function  of  g.  This  fact  has  been
observed on other examples and benchmarks. Then, using
this information, the number of values of g to be tested can
be considerably reduced. In this example, this set is indeed
reduced  to  5  to  100  with  an  incremental  step  of  5.  An
exponential approximation of the optimism is used. Thanks

to  the  approximation,  the  number  of  Bootstraps  is  also
reduced  by  a  factor  10  in  (12).  The  new optimism and
generalization error are represented as dotted lines in Fig.3
and Fig.4 respectively. The optimum is close to the one that
has  been  selected  by  the  Bootstrap  method.  This  new
method, denoted Fast Bootstrap, is in this toy example 500
times  quicker  than  the  traditional  Bootstrap.  In  other
examples, the Fast Bootstrap is at least 100 times quicker
than  traditional  Bootstrap  for  the  selection  of  the  g
parameter for a LS-SVM, without loss of precision.
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Figure 2: Apparent Error with respect to g.
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Figure 3: Optimism with respect to g using Bootstrap (solid line) and Fast
Bootstrap (dotted line).
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Figure  4:  Generalization  Error with  respect  to  g using  Bootstrap  (solid
line) and Fast Bootstrap (dashed line).

V. LONG-TERM FORECASTING STRATEGIES

A. Definition of the problem
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Long-term forecasting is just an extension of the usual
one-step ahead prediction that  could be called short-term
forecasting. More formally, having at disposal a time series
of inputs xt and exogenous variables ut, with t between 1 and
n, the one-step ahead prediction problem is usually defined
as:

 q= + ,,...,,,,...,,ˆ 111 qtttptttt uuuxxxhx (17
)

where h(.) is the model used to predict the time series, xt are
the model inputs, ut are some exogenous variables, θ the set
of model parameters and 1ˆ +tx  is the output at instant t+1 to
be predicted. p represents the amount of past inputs used in
the  model  while  q is  the  number  of  past  exogenous
variables used in the model. Note that model h(.) could be
either a linear model or a non-linear one. In our case this
model will be a LS-SVM. 

Long-term forecasting can be defined in a similar way,
as a straightforward extension of (17):

 
 q

=



+++

,,...,,,,...,,
ˆ,ˆ,...,ˆ

11

12

qtttpttt

ttht

uuuxxxh
xxx (18

)
where  h denotes  the  final  time horizon  of  the  long-term
forecasting. In this last relation, the goal of the long-term
forecasting is clearly illustrated: obtaining the whole set of
h future values at time t (current time). The question arising
now is how such a long-term forecasting can be obtained.
Two methods are proposed here: the rolling forecasting, and
the block forecasting. 

B. The rolling forecasting strategy

This first strategy is a recursive one. Consider one has a
one-step ahead prediction model. The idea to obtain long-
term forecasting with this short-term forecasting model is
straightforward.  At time  t,  all  what has  to  be  done  is  to
predict  the  output  at  time  t+1  as  usually.  Then  the
prediction at time t+1 can be used to predict the output at
t+2;  this processus is  repeated recursively up to the final
time horizon h. For example, if we consider here h = 5, we
can write:

 q= + ,,...,,,ˆ 211 pttttt xxxxhx ,
 q= +++ ,,...,,,ˆˆ 1112 pttttt xxxxhx ,

…
 q= +++++ ,,...,ˆ,ˆ,ˆˆ 42345 pttttt xxxxhx ,

(19
)

where  the  exogenous  variable  have  been  omitted  for  the
sake of simplicity.

C. The block forecasting strategy

This  second  strategy  is  a  direct  one.  The  idea  is  an
immediate  application  of  relation  (18),  i.e.  the  use  of  a
multiple output model. The number of outputs is the same
as the time horizon h. For the above example with h = 5, the
model has 5 outputs. 

D. Comments

The main problem of the rolling forecasting strategy is that
there is a certain amount of  error  between the prediction

1ˆ +tx  and the true next value  xt+1. As the first prediction is
taken  as  input  to  obtain  the  second  one,  this  error  is
propagated through the model. The second prediction has
potentially twice more error:  the difference between  2ˆ +tx
and xt+2 plus the propagated error. With an increasing time
horizon  h,  this accumulation can be important. The block
forecasting strategy avoids this problem since the recursive
step is avoided. On the other hand, the main problem with
the  block  forecasting strategy is  that  a  single  model  can
perform badly on multiple outputs. Indeed, it has to model
various dynamics since the relation with the p last inputs xt

(and potentially the  q last  exogenous variables  ut)  is  not
necessarily the same for xt+1, xt+2 and xt+h. The model should
be able to capture various dynamics with a parameter set θ
of  limited  size,  which  is  obviously  a  difficult  task.  The
rolling forecasting approach is not subject to this problem
since only the next value dynamics is modelled. Advantages
and  drawbacks  of  the  two  proposed  methods  have  been
discussed  briefly.  The  aim  now  is  to  observe  how  this
intuition is verified when applying those two strategies with
a  specific  model,  namely  the  LS-SVM.  Furthermore  a
particular  attention  will  be  given to  the  influence  of  the
model  parameters   and  gwhile  using  both  long-term
forecasting strategies. 

VI. SANTAFE A TIME SERIES

The Time Series used here is a well-known benchmark: the
SantaFe A time series [11]. The number of samples is 1000.
This series is represented in Fig. 5. 
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Figure 5: SantaFe A Time Series.

The model based on relation (18) that is used here is:
 q= + ,,,ˆ 211 tttt xxxhx . (20

)
The number of inputs (number of past values of  x in (20))
has been selected using the Fast Bootstrap .632 according to
the  procedure  described  in  the  following.  The
generalization error (defined as the sum of squared errors
on all predictions) with respect to the number of inputs is
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represented in Fig.6.  For each value in Fig.6, parameters 
and g have been optimized.  To obtain the optimized  and
g, the  g parameter is optimized by Fast Bootstrap .632 for
each  value  of  ,  in  a  selected  range.   Note  that  the
generalization error used here is a one-step ahead prediction
error.  The  minimum of  the  generalization  error  in  Fig.3
corresponds to a regressor of size 3 (as already mentioned
in (20)).  For this size of the regressor,  the generalization
error with respect to   is represented in Fig.7 (each value
on  this  curve  is  the  result  of  a  Fast  Bootstrap  .632
optimization on  g).   The minimum is situated at   = 60.
Fig.8 shows the generalization error with respect to g, for a
fixed value of  = 60.
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Figure 6: Generalization error with respect to the number of inputs.
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Figure 7: Generalization error with respect to .
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Figure 8: Generalization error with respect to g

The generalization error is minimum for   = 60 and  g =
525.  To  explain  Fig.8  and  justify  the  use  of  the  Fast

Bootstrap  .632  procedure,  the  apparent  error  and  the
optimism (for   = 60) are represented in Fig.9 and Fig.10
respectively.
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Figure 9: Apparent Error with respect to g.
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Figure 10: Optimism with respect to g.

In  Fig.10,  the  optimism  is  an  exponentially  increasing
function  of  g (similarly  to  Fig.3).  The  whole  procedure
above to select , g and the size of the regressor is based on
one-step ahead predictions and errors.  In order to extend
the  procedure  to  long-term  forecasting,  the  same
methodology is applied for t+2, t+3, …, t+10, first with the
block forecasting strategy:

 q= + ,,,ˆ 2111 tttt xxxhx ,
 q= + ,,,ˆ 2122 tttt xxxhx ,

…
 q= + ,,,ˆ 211010 tttt xxxhx ,

(21
)

In  (21),  each  model  hi corresponds  to  a  LS-SVM.  We
assume that   = 60 remains valid and only  g is optimized
using  Fast  Bootstrap.  According  to  equation  (19),  the
rolling forecast methodology is also used:

 q= + ,,,ˆ 211 tttt xxxhx ,
 q= ++ ,,,ˆˆ 112 tttt xxxhx ,

…
 q= ++++ ,ˆ,ˆ,ˆˆ 78910 tttt xxxhx ,

(22
)
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We again assume that   = 60 remains valid and only  g is
optimized  using  Fast  Bootstrap.  In  this  last  case,  it  is
interesting to note that the optimal g that is selected is very
different  from  the  one  selected  in  the  one-step  ahead
prediction case. This is shown in Fig.11.
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Figure 11: Optimal g with respect to the number of steps ahead.

The  hyperparameter  gis  decreasing  with  respect  to  the
horizon of prediction. The model that is selected is thus a
less complex one. This result is in accordance to the results
obtained in [3] for linear models. The results of the block
forecast  and  rolling  forecast  strategies  are  presented  in
Fig.12.
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Figure 12: Generalization error with respect to the number of steps ahead:
for rolling forecast (solid line) and block forecast (dashed line).

For  prediction  horizons  less  or  equal  to  4,  the  rolling
forecast  performs better  than  the  block  forecast  strategy,
while the opposite becomes true for larger horizons. This
result is in accordance to the intuition presented in section
V.

VII. CONCLUSIONS

In this paper, the ability of the Fast Bootstrap to select
the hyperparameters of a LS-SVM has been shown on Toy
example and a time series prediction benchmark. The main
limitation of  the  Bootstrap  is  its  computational  load;  the
Fast Bootstrap is 10 to 100 times faster. 

Two  strategies  for  long-term  prediction  have  been
presented:  the  rolling  forecasting  strategy  and  the  block

forecasting  one.  Both  of  them have  been  applied  to  the
SantaFe  A  prediction  benchmark.  Firstly,  the  rolling
strategy provides better predictions for short horizons while
the opposite becomes true for larger ones.  Secondly, for the
rolling  forecasting  strategy,  the  hyperparameter  g is
decreasing with the horizon of prediction. These two results
are obtained in a  fast and efficient  manner with the Fast
Bootstrap methodology.  
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