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The possibility of missing or incomplete data is often ignored when describing statistical or
machine learning methods, but as it is a common problem in practice, it is relevant to con-
sider. A popular strategy is to fill in the missing values by imputation as a pre-processing
step, but for many methods this is not necessary, and can yield sub-optimal results.
Instead, appropriately estimating pairwise distances in a data set directly enables the
use of any machine learning methods using nearest neighbours or otherwise based on dis-
tances between samples. In this paper, it is shown how directly estimating distances tends
to result in more accurate results than calculating distances from an imputed data set, and
an algorithm to calculate the estimated distances is presented. The theoretical framework
operates under the assumption of a multivariate normal distribution, but the algorithm is
shown to be robust to violations of this assumption. The focus is on numerical data with a
considerable proportion of missing values, and simulated experiments are provided to
show accurate performance on several data sets.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In many real world machine learning tasks, data sets with missing values (also referred to as incomplete data) are all too
common to be easily ignored. Values could be missing for a variety of reasons depending on the source of the data, including
measurement error, device malfunction, operator failure, etc. However, many modelling approaches start with the assump-
tion of a data set with a certain number of samples, and a fixed set of measurements for each sample. Such methods cannot
be applied directly if some measurements are missing. Simply discarding the samples or variables which have missing com-
ponents often means throwing out a large part of data that could be useful for the model. It is relevant to look for better ways
of dealing with missing values in such scenarios.

If the fraction of missing data is sufficiently small, a common pre-processing step is to perform imputation to fill in the
missing values and proceed with conventional methods for further processing. Any errors introduced by inaccurate impu-
tation may be considered insignificant in terms of the entire processing chain. With a larger proportion of measurements
being missing, errors caused by the imputation are increasingly relevant, and the missing value imputation cannot be con-
sidered a separate step. Instead, the task should be seen from a holistic perspective, and the statistical properties of the miss-
ing data should be considered more carefully. In the current scenario, the interest lies in modelling data sets with a
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considerable fraction of missing data, and one cannot afford to discard the incomplete samples. The focus is on cases where
there is such a significant amount of data missing compared to the data available, that it is not conceivable to fully estimate
the distribution of the data. Instead, the only statistics we can hope to accurately estimate are the mean and covariance.

In this paper, the particular problem of estimating distances between samples in a numerical data set is studied. Assum-
ing that data is Missing-at-Random (MAR) [20] – i.e., the probability of a particular measurement being missing is indepen-
dent of the value it would have taken – and that the samples originate from some probability distribution, statistical
techniques are applied to find an expression for the expectation of the squared Euclidean distance between samples. A spe-
cific algorithm is presented to calculate such estimates of all the pairwise distances in a data set with missing values. The
theoretical framework operates under the assumption of a multivariate normal distribution, but the algorithm is shown
to be robust to violations of the assumptions concerning the distribution of data.

Being able to appropriately estimate distances between samples, or between samples and prototypes, in a data set with
missing values has numerous applications. It directly enables the use of several standard statistical and machine learning
methods which are based only on distances and not the direct values, e.g.: nearest neighbours (k-NN) [28], multidimensional
scaling (MDS) [9], support vector machines (SVM) [6], or radial basis function (RBF) neural networks [3]. The algorithm pre-
sented in this paper, when used as a pre-processing step, directly allows the user to apply such methods to their data, with-
out having to separately tweak the methods to explicitly handle cases with missing data. While there are methods to fill in
missing values, directly estimating the distance matrix from the data is more reliable than calculating distances from the
imputed data since the uncertainty of the missing data can be accounted for, as evidenced by the derivation and experiments
in this paper.

The sequel of this paper is structured so that Section 2 reviews related approaches for dealing with missing data. The jus-
tification and description of the proposed algorithm is presented in Section 3, while Section 4 contains the experimental re-
sults of simulations comparing the algorithm to alternative methods.
2. Related work

Data sets with missing data have been extensively studied from the perspectives of machine learning and statistics – see,
e.g., [20] for an overview, or [13] for an analysis on the effect of imputation on classification accuracy. Generally learning
with numerical data and missing attribute values has focused on filling in the missing values. A simple method of imputation
by searching for the nearest neighbor among only the fully known patterns can be effective when only a few values are miss-
ing [16,17], but is ineffective when a majority of the data samples have missing components. An improved approach is
incomplete-case k-NN imputation (ICkNNI) [29], which searches for neighbours among all patterns for which a superset
of the known components of the query point are known. This still fails in high-dimensional cases, or with a sufficiently large
proportion of missing data. A more intricate method where multiple nearest neighbours are considered, and a model is sep-
arately learned for each incomplete sample, is presented in [30]. Another variation is to restrict the search to certain samples
or attributes according to specified rules, as in the ‘‘concept closest fit’’ [14] and ‘‘rough sets fit’’ [19] methods. One possibility
for integrating the imputation of missing values with learning a prediction model is presented in the MLEM2 rule induction
algorithm [14].

The problem of directly estimating pairwise distances is, however, less studied. Previous approaches for estimating dis-
tances in data sets with missing values generally involve imputing the missing data with some estimates, and calculating
distances from the imputed data. This technique severely underestimates the uncertainty of the imputed values. Estimating
the distances directly leads to more reliable estimates as the uncertainty can also be considered.

A simple and widely used method for estimating distance with missing values is the Partial Distance Strategy (PDS)
[10,15]. In the PDS, an estimate for the squared distance is found by calculating the sum of squared differences of the mutu-
ally known components, and scaling the value proportionally to account for the missing values. This approach has a tendency
to underestimate distances, as it ignores the general variability of the data, and only takes into account the locally known
components. Also, if two samples have no common components, the output of this strategy is undefined. The PDS has been
used for nearest neighbour search in order to estimate mutual information [11].

The multiple imputation [24] paradigm has been proposed as another solution to naturally account for the uncertainty. It
still requires that some model is fit to the data, so that the imputation can be generated from the posterior distribution and is
thus non-trivial to conduct appropriately in practice [12,25].

In a specific case of an entropy-based distance measure [5], the authors propose that the distance to an incomplete sam-
ple can be estimated as the mean distance after the missing value is replaced by random draws. However, the missing value
is successively replaced by the corresponding attribute from every specified sample, ignoring any dependence to the ob-
served attributes of the incomplete sample.

Finding distances from each sample to some prototype patterns (where the prototypes have no missing values) has been
conducted by ignoring those components which are missing for the query pattern. Such distances from the same query point
to different prototypes are comparable, and this strategy has, for instance, been used successfully with self-organising maps
(SOM) [7]. However, if a prototype has a very extreme value for a component which the query point is missing, the distance
will be underestimated.
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3. Theory and description

An important consideration when dealing with missing data is the missingness mechanism. We will assume that a miss-
ing value represents a value which is defined and exists, but for an unspecified reason is not known. Following the conven-
tions of Little and Rubin [20], the assumption here is that data is Missing-at-Random (MAR):
PðMjxobs; xmisÞ ¼ PðMjxobsÞ ð1Þ
i.e., the event of a measurement being missing is independent from the value it would take, conditional on the observed data.
The stronger assumption of Missing-Completely-at-Random (MCAR) is not necessary, as MAR is an ignorable missingness
mechanism in the sense that, for instance, maximum likelihood estimation still provides a consistent estimator [20].

3.1. The expected squared distance

In the following, we consider data vectors xi; xj 2 Rd with components denoted by xi,l, xj,l for 1 6 l 6 d, and focus on cal-
culating the expectation of the squared Euclidean (‘2) distance between them:
dðxi; xjÞ2‘2 ¼ kxi � xjk2 ¼
Xd

l¼1

ðxi;l � xj;lÞ2 ð2Þ
Estimating the ‘2-norm itself could be feasible, but due to the square-root, the expressions do not simplify and separate as
cleanly, meaning that any computer implementation would be considerably more computationally demanding. Another
motivation for directly estimating the squared distance is that many methods for further processing of the distance matrix
actually only make use of the squared distances (e.g., RBF and SVM), while others only consider the ranking of the distances
(nearest neighbours).

Given samples xi 2 Rd which may contain missing values, denote by Mi # {1, . . . , d} the set of indices of the missing com-
ponents for each sample xi. Partition the index set into four parts based on the missing components, and the expression for
the squared distance kxi � xjk2 can be split according to which attributes are missing for the two samples:
kxi � xjk2 ¼
X

lRMi[Mj

ðxi;l � xj;lÞ2 þ
X

l2MjnMi

ðxi;l � xj;lÞ2 þ
X

l2MinMj

ðxi;l � xj;lÞ2 þ
X

l2Mi\Mj

ðxi;l � xj;lÞ2 ð3Þ
The first term here (l R Mi [Mj) is a sum over those components which are known for both samples, and hence this part of the
sum can be calculated directly. The second term includes those components which are missing in xj, but not in xi. Corre-
spondingly, the third term covers those attributes which are missing for xi but not xj. Any components missing in both xi

and xj are in the final summation. Note that any of the sums may be empty, depending on the pattern of missing values.
Now the missing values can be modelled as random variables, Xi,l, l 2Mi. Taking the expected value of the above expression
with respect to these random variables, and using the linearity of expectation, the expression can be separated further:
E kxi � xjk2
h i

¼
X

lRMi[Mj

ðxi;l � xj;lÞ2 þ
X

l2MjnMi

E½ðxi;l � Xj;lÞ2� þ X
l2MinMj

E½ðXi;l � xj;lÞ2� þ X
l2Mi\Mj

E½ðXi;l � Xj;lÞ2�
¼

X
lRMi[Mj

ðxi;l � xj;lÞ2 þ
X

l2MjnMi

ðxi;l � E½Xj;l�Þ2 þ Var½Xj;l�
� �

þ
X

l2MinMj

ðE½Xi;l� � xj;lÞ2 þ Var½Xi;l�
� �

þ
X

l2Mi\Mj

ðE½Xi;l� � E½Xj;l�Þ2 þ Var½Xi;l� þ Var½Xj;l�
� �
To illustrate, we show the expansion of the second summation (l 2Mj nMi):
E½ðxi;l � Xj;lÞ2� ¼ E x2
i;l � 2xi;lXj;l þ X2

j;l

h i
¼ x2

i;l � 2xi;lE½Xj;l� þ E½X2
j;l� ¼ x2

i;l � 2xi;lE½Xj;l� þ E½Xj;l�2 � E½Xj;l�2 þ E½X2
j;l�

¼ ðxi;l � E½Xj;l�Þ2 þ E X2
j;l � E½Xj;l�2

h i
¼ ðxi;l � E½Xj;l�Þ2 þ Var½Xj;l�
The remaining cases are analogous, while in the final case, it is necessary to consider Xi,l and Xj,l to be uncorrelated, given the
known values of xi and xj.

It thus suffices to find the expectation and variance of each random variable separately, and it is not necessary to deter-
mine the full probability density.

If the original samples xi are thought to originate as independent draws from a multivariate distribution, the distributions
of the random variables Xi,l can be found as the conditional distribution when conditioning their joint distribution on the
observed values. By this argument, finding the expected squared distance between two samples reduces to finding the (con-
ditional on the observed values) expectation and variance of each missing component separately. Define x0i to be an imputed
version of xi where each missing value has been replaced by its conditional mean.
x0i;l ¼
E½Xi;ljxi;obs� if l 2 Mi;

xi;l otherwise

�
ð4Þ
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Define r2
i;l correspondingly as the conditional variance
r2
i;l ¼

Var½Xi;ljxi;obs� if l 2 Mi;

0 otherwise

�
ð5Þ
With these notations, the expectation of the squared distance can conveniently be expressed as:
E kxi � xjk2
h i

¼
Xd

l¼1

x0i;l � x0j;l
� �2

þ r2
i;l þ r2

j;l

� �
ð6Þ
or, equivalently,
E kxi � xjk2
h i

¼ kx0i � x0jk
2 þ s2

i þ s2
j ; where s2

i ¼
X
l2Mi

r2
i;l ð7Þ
This form of the expression particularly emphasises how the uncertainty of the missing values is accounted for. The first
term – the distance between imputed samples – already provides an estimate of the distance between xi and xj, but including
the variances of each imputed component is the deciding factor.

3.2. The conditional mean and variance

Lacking specific knowledge about the distributions of the random variables denoting the missing components, the rea-
sonable approach is to derive statistical estimates based on the available data. Assuming the samples are part of a collection
of data, it is often useful to proceed from the assumption that the samples are drawn – i.i.d. – from some multivariate prob-
ability distribution. Estimating the distribution enables the calculation of the required conditional means and variances.

For a general distribution, finding the conditional mean and variance requires estimating the joint probability distribu-
tion, which is not feasible to conduct with any kind of accuracy in a high-dimensional space when the number of samples
is limited, particularly when there is missing data.

To enable the following calculation, we consider the data to originate from a parametric distribution: the multivariate
normal distribution. The normal distribution is ubiquitous, and can be used as a crude approximation for nearly any contin-
uous distribution. By matching first and second moments, it can appreciably fit most distributions that are encountered in
practice. The multivariate normal distribution maximises the differential entropy for a given variance–covariance structure
[8, Thm. 8.6.5], and is hence a natural choice to model an unknown distribution in accordance with the maximum entropy
principle, as it maximises the uncertainty about the missing data. In other words, it minimises any assumptions of additional
structure in the distribution. The distribution is fully defined by the mean and covariance matrix, so estimating these quan-
tities is sufficient.

The conditional means and variances are straightforward to calculate in the case of the multivariate Gaussian. If the com-
ponents of a multivariate normal random variable X are partitioned to X(1) (the missing values) and X(2) (the known values),
and the mean l and covariance matrix R are similarly divided into l(1), l(2), R11, R12, R21, and R22:
X ¼ Xð1Þ

Xð2Þ

" #
; l ¼ lð1Þ

lð2Þ

" #
; R ¼

R11 R12

R21 R22

� �

then the conditional distribution of X(1) given X(2) = x(2) is normally distributed with mean
l01 ¼ lð1Þ þ R12R
�1
22 ðxð2Þ � lð2ÞÞ ð8Þ
and covariance matrix
R011 ¼ R11 � R12R
�1
22 R21 ð9Þ
as shown in [1, Thm. 2.5.1]. The conditional means and variances of each missing value are then found by extracting the
appropriate element from l01 or the diagonal of R011.

In the current scenario, it is not necessary to consider the full conditional joint distribution of the missing values, as only
the mean and covariance are required. The theorem above specifically deals with Gaussian distributions. However, the con-
ditional mean and covariance matrix given by Eqs. (8) and (9) are accurate for a somewhat larger class of distributions. In
particular, the equations clearly hold exactly whenever all the variables are all mutually independent since the covariance
matrix is diagonal – regardless of the distribution, as long as the variance of each variable is positive and finite. By extension,
the equations also hold exactly if one set of variables conform to a multivariate Gaussian distribution, and the remaining
variables are mutually independent, and independent of the variables in the Gaussian distribution. Furthermore, the equa-
tions appear to provide good approximations of the conditional mean and covariance for an even greater class of distribu-
tions. Hence, using these expressions as estimates of the conditional mean and covariance is justified and effective even if the
data at hand is decidedly non-Gaussian. The accuracy achieved with this strategy in the simulations in Section 4 further sup-
ports the use of this procedure.



E. Eirola et al. / Information Sciences 240 (2013) 115–128 119
If the data does not follow a Gaussian distribution, the estimated expectations may not be accurate. In such cases,
matching the mean and covariance will tend to lead to a Gaussian distribution which covers too large areas of the input
space. The effect of this is that the conditional variance terms for any missing vales will tend to be too large, and that
distances with high uncertainty (between samples with many missing values) will be overestimated rather than under-
estimated. In the context of a nearest neighbour search, this leads to a situation where errors are skewed towards min-
imising the number of false positives. This can be a desired effect of the estimation procedure, as small distances tend to
be more important in practical situations, particularly in pattern recognition where the focus is on samples with high
similarity. Often we are interested in finding samples which are most similar to other samples, and then false positives
are a bigger problem than false negatives. Hence we feel that it is safer to overestimate distances, if we cannot be accu-
rate. Overall, the method is naturally the most accurate for data which resemble a multivariate normal distribution, but
is still reasonably safe for any continuous distribution (in the sense of low false positives when identifying small
distances).

3.3. Estimating the covariance matrix

Estimating the covariance matrix from a data set with missing values is non-trivial. The two basic approaches [20] are
generally insufficient for the current purpose:

Available-case analysis (pairwise estimation of the covariances between variables) is not appropriate because even if the
individual covariances are rather accurate, the covariance matrix as a whole is not estimated consistently. In particular,
the resulting matrix is often not positive definite. When solving a linear system using such a matrix, errors are amplified
and the behaviour is not as expected. Estimating pairwise correlations instead of covariances, and rescaling by the individual
variance of each variable, can in some cases lead to a better estimate for the covariance matrix, but does not completely
avoid the problem.

Complete-case analysis (ignoring all samples with missing values) does provide a consistent estimate of the matrix as long
as there are enough samples with no missing data. However, the quality of the estimate deteriorates rapidly with an increas-
ing proportion of missing data.

On the other hand, maximum likelihood (ML)-estimation can provide accurate estimates of the covariance matrix, usable
even for more than 50% of missing data. In [20], it is described how the EM algorithm can be used to obtain the estimate. For
the experiments in the next section, we choose to use a standard referenced implementation. The ECM (expectation condi-
tional maximisation) method is applied as provided in the MATLAB Financial Toolbox [21], which implements the method of
Meng and Rubin [22] with some improvements by Sexton and Swensen [27]. Although the maximum likelihood framework
is based on a model of normally distributed data, non-normal data has been found to have a negligible impact on the accu-
racy of the estimated parameters [12].

3.4. Proposed algorithm

Based on the previous arguments, we propose an algorithm to calculate the Expected Squared Distances (ESD) pairwise
between samples.

Input: A data set fxigN
i¼1 of N samples in Rd, of which M samples contain missing values.

1. Estimate the mean l and covariance R of the data set with the ECM algorithm.
2. For each sample xi with missing values, do

3. Find the conditional mean by l01 ¼ lð1Þ þ R12R�1
22 xð2Þi � lð2Þ
� �

4. Create x0i from xi by replacing the missing values by values from l01
5. Find the conditional covariance matrix by R011 ¼ R11 � R12R�1

22 R21

6. Calculate the sum of the diagonal of R011 and set s2
i ¼

PjMi j
l¼1 ðR

0
11Þll

7. For each pair of samples xi, xj, do

8. Find the squared distance between x0i and x0j as Pij ¼
Pd

l¼1 x0i;l � x0j;l
� �2

9. Add the sum of the conditional variances of the missing values, Pij  Pij þ s2
i þ s2

j

Output: The matrix P with elements Pij of estimates of the pairwise expected squared distances.

The computational complexity of the first loop is at most OðMd3Þ, depending on the particular way of handling the inverse
of R22. The complexity of the second loop is OðN2dÞ, equivalent to finding the pairwise distances in a data set with no missing
values.

As the algorithm calculates the expected mean and variance of each missing value, as a side-effect the user obtains an
imputed version of the data set, which can be useful in some applications, for instance for initialising prototype patterns
in certain machine learning methods.
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The algorithm trivially extends to some other scenarios, such as finding the distances from a set of samples to a set of
prototypes.

3.5. Special case: independent variables

If the components are known to be independent (or can be assumed to be), the situation becomes much simpler as the
conditional means and variances of the missing data do not depend on the observed components of the samples. Hence it is
enough to separately estimate the mean and variance of each variable, and form x0i;l and r2

i;l using those:
x0i;l ¼
E½Xl� if l 2 Mi;

xi;l otherwise

�

and
r2
i;l ¼

Var½Xl� if l 2 Mi;

0 otherwise

�

and apply Eq. (7). Any other assumptions about the distributions of the variables are not necessary. No matrix inversion is
required, and as a result, this alternative method is computationally lighter and significantly faster, although generally inac-
curate in any interesting cases.

3.6. Extension to weighted distances

The procedure can be extended to any weighted Euclidean distance, such as the Mahalonobis distance, or any such dis-
tance weighted by a positive definite matrix S�1. First, find the Cholesky decomposition S�1 = LLT. Then:
kxi � xjk2
S ¼ ðxi � xjÞT S�1ðxi � xjÞ ¼ kLT xi � LT xjk2 ¼

Xd

l¼1

LT
l xi � LT

l xj

� �2
where Ll is the lth column of L. Then
E kLT xi � LT xjk2
h i

¼ kLT x0i � LT x0jk
2 þ

Xd

l¼1

Var LT
l xi

� �
þ
Xd

l¼1

Var LT
l xj

� �

Now, using the conditional covariance matrix R011 corresponding to the sample xi,
VarðLT
l xiÞ ¼ Var

Xd

j¼1

Ljlxi;j

" #
¼
X
j2Mi

X
k2Mi

LjlLklCovðXi;j;Xi;kÞ ¼ L0Tl R011L0l ¼ L0TR011L0
� �

ll
Here the conditional covariance matrix from Eq. (9) is used, and L0 is a matrix formed from L by retaining only those rows
corresponding to indices in Mi and L0l is the lth column of L0.

Hence for the Mahalonobis case, the expected squared distance can be written as
E kxi � xjk2
S

h i
¼ kx0i � x0jk

2
S þ s2

i þ s2
j where s2

i ¼
Xd

l¼1

L0TR011L0
� �

ll
ð10Þ
3.7. Using the estimated distances to form a kernel matrix

A common use of pairwise distances is for kernel methods, which can be formulated in terms of a suitable kernel matrix
representing the inner products between the samples in an unspecified higher-dimensional space. This is known as the ker-
nel trick, as the projection to the higher space does not need to be formulated explicitly. Several of these kernel matrices can
be formulated in terms of only the distances between samples, in particular the Gaussian radial basis function
K(x,y) = exp(�kx � yk2), which is one the most popular choices for a kernel function. These kernel methods include many
well known algorithms, such as support vector machines [6], Gaussian process [4], radial basis function neural networks
[3], kernel principal component analysis [26], kernel Fisher discriminant analysis [23], and kernel canonical correlation anal-
ysis [18]. A critical requirement is that the kernel matrix is positive definite. Hence it is of interest to show that using the
matrix of estimated pairwise distances indeed results in a positive definite kernel matrix.

The distances estimated by the algorithm can be seen as conventional Euclidean distances after embedding the data to a
higher-dimensional (d + N -dimensional) space in a specific way:

� The first d components as per x0i;l in Eq. (4).
� Each point xi is offset by si in a direction orthogonal to everything else.
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Calculating the squared Euclidean distance between points xi and xj in this space exactly leads to Eq. (7). As the matrix of
estimated pairwise distances is equal to a matrix of pairwise distances (in another space), the kernel matrix will be positive
definite for any appropriate kernel function.

This interpretation of the estimated distances also ensures that most other properties of distances, such as the triangle
inequality, also apply to the estimated distances.
4. Experimental results

To study the performance of the algorithm, some simulated experiments are conducted to compare the proposed algo-
rithm to alternate methods on several data sets with three different performance criteria. Starting with a complete data
set, values are removed at random with a fixed probability. As the true distances between samples are known, the methods
can then be compared on how well they estimate the distances after values have been removed. The probability of values
being missing is gradually increased from 1% to 70%.

4.1. Data

Nine different data sets are selected from the UCI Machine Learning Repository [2]. To make distances meaningful, the
variables in each data set are standardised to zero mean and unit variance. As the problem of pairwise distance estimation
is unsupervised, the labels for the samples are ignored. The data sets in order of increasing dimensionality:

Iris Iris Data Set. N = 150 (samples), d = 4 (variables).
Ecoli Ecoli Data Set (ignoring accession number). N = 336, d = 7.
Breast tissue Breast Tissue Data Set. N = 106, d = 9.
Glass Glass Identification Data Set (ignoring id). N = 214, d = 9.
Wine Wine Data Set. N = 178, d = 13.
Parkinsons Parkinsons Data Set. N = 195, d = 22.
Ionosphere Ionosphere Data Set (ignoring the second column, which is constant). N = 351, d = 33.
SPECTF SPECTF Heart Data Set. N = 267, d = 44.
Sonar Connectionist Bench (Sonar, Mines vs. Rocks) Data Set. N = 208, d = 60.

These data sets are chosen to be representative of common machine learning tasks, while being varied in terms of dimen-
sionality and structure. The samples in the data sets are distributed in different ways, but decidedly do not correspond to
multivariate Gaussian distributions.

4.2. Methods

A total of four different methods are compared:

PDS The Partial Distance Strategy [10,15]. Calculate the sum of squared differences of the mutually known components
and scale to the missing components:
d̂2
ij ¼

d
d� jMi [Mjj

X
lRMi[Mj

ðxi;l � xj;lÞ2 ð11Þ
For samples which have no common known components, the method is not defined. For such pairs, the average of the pair-
wise distances which were possible to estimate is returned instead.

ESD The Expected Squared Distances as calculated by the proposed algorithm presented in Section 3.4. The square root of
the result is used to get an estimate of the distance. In the notation of Eq. (7)
d̂2
ij ¼ kx0i � x0jk

2 þ s2
i þ s2

j ð12Þ

Regression imputation Imputation by the conditional expectation of Eq. (8). This is equivalent to least-squares linear
regression, if the covariance matrix and mean were exactly known.

d̂2
ij ¼ kx0i � x0jk

2 ð13Þ

ICkNNI Incomplete-case k-NN imputation [29]. An improvement of complete-case k-NN imputation, here any sample
with a valid missingness pattern is viable nearest neighbour. In accordance to the suggestions in [29], up to k = 5 neigh-
bours are considered (if there are enough). The imputation fails whenever there are no samples with valid missingness
patterns. For such cases, the missing value is imputed by the sample mean for that variable.
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The algorithm introduced in this paper outputs an estimate of the distance for any possible case of missing patterns, so no
fall-back is needed. The ECM algorithm in Matlab is run with its default parameters, meaning it does not always converge to
the strict tolerances in the maximum number of iterations, but the final result is still used.

4.3. Performance criteria

The methods are evaluated by three different performance criteria. First, the methods are compared by the root mean
squared error (RMSE) of all the estimated pairwise distances in the data set:
C1 ¼
1
k

X
i>j

ðd̂ij � dijÞ2
 !1

2

ð14Þ
Here, dij is the true Euclidean distance between samples i and j calculated without any missing data, and d̂ij is the estimate of
the distance provided by each method after removing data. The square root of the ESD result is used as an estimate of the
distance. The scaling factor k is determined so that the average is calculated only over those distances which are estimates,
discarding all the cases where the distance can be calculated exactly because neither sample has any missing components:
k ¼ MN �MðM þ 1Þ=2.

A common application for pairwise distances is a nearest neighbour search, and thus we also consider the average (true)
distance to the predicted nearest neighbour:
C2 ¼
1
N

XN

i¼1

d
i;cNNðiÞ

where dNNðiÞ ¼ arg min
j–i

d̂ij ð15Þ
Here, dNNðiÞ is the nearest neighbour of the ith sample as estimated by the method, and d
i;cNNðiÞ

is the true Euclidean distance

between the samples as calculated without any missing data. The criterion measures how well the method can identify
samples which actually are close in the real data. In particular, it answers the question of how close the estimated neigh-
bours in fact are, on average. The average distance to the nearest neighbour also represents how well the method is able
to estimate small distances, which are more important than large ones in several machine learning applications.

In order to evaluate the accuracy of each method for identifying nearest neighbours, we measure the average size of the
intersection between the estimated k nearest neighbours and the true k nearest neighbours for k = 10:
C3 ¼
1
N

XN

i¼1

jdNNði;10Þ \ NNði;10Þj; ð16Þ
where dNNði;10Þ is the estimated set of the 10 nearest neighbours, and NN (i,10) is the set of the 10 true nearest neighbours.

4.4. Procedure

Before values are removed, the data is standardised to zero mean and unit variance. This is conducted beforehand, to
make the scaling consistent for each repetition of the experiment, so that the mean performances can be reasonably esti-
mated as the averages of several randomised experiments. If the scaling for each realisation was slightly different, this would
introduce unnecessary variability in the average distances and errors. In terms of the accuracy of the methods, there is no
practical difference between standardising before or after the removal of data, as none of the methods assume standardised
data. Instead, the ESD method estimates the means and covariances by the ECM algorithm separately for each realisation.

Values are removed from the data set independently at a fixed probably p. For each value of p, 250 repetitions are con-
ducted for the Monte Carlo simulation, and the value of p is gradually increased from 0.01 to 0.70 in increments of 0.01.

Having 250 repetitions of the same set-up enables the use of statistical significance testing to assess the difference be-
tween the mean errors of different methods. The testing is conducted as a two-tailed paired t-test, with a significance level
of a = 0.01. Comparing the performance of the best method to that of every other method results in a multiple hypothesis
scenario, and thus the Bonferroni correction is used to control the error rate.

4.5. Results

The average RMSE values for each method are presented in Table 1 for four missingness levels (5%, 15%, 30%, and 60%) for
each data set. The most obviously visible trend is that the accuracy decreases with an increasing proportion of missing data
for all methods and data sets, as expected. However, it can be seen that in the majority of the cases, the proposed algorithm
(ESD) performs the best. The difference compared to regression imputation is not always large, but it is in most cases nev-
ertheless statistically significant. Only for the Ionosphere data are the roles notably reversed. For a high proportion of missing
data (60%), ESD obtains the lowest error in every data set tested. The PDS and ICkNNI provide clearly less accurate estimates
through most the experiments; only for the most low-dimensional data sets (Iris and Ecoli) with low levels of missing data is
the ICkNNI accuracy on par with ESD.



Table 1
Average RMSE of estimated pairwise distances, and standard deviations in parenthesis. The best result for each row is underlined, and any results which are not
statistically significantly different (two-tailed paired t-test, a = 0.01) from the best result are bolded.

ESD Regression imput. ICkNNI PDS

Iris. N = 150, d = 4 5% 0.244 (0.048) 0.246 (0.061) 0.242 (0.059) 0.435 (0.055)

15% 0.326 (0.040) 0.338 (0.052) 0.330 (0.059) 0.591 (0.043)

30% 0.495 (0.048) 0.536 (0.071) 0.525 (0.072) 0.840 (0.047)

60% 0.919 (0.046) 1.147 (0.093) 1.170 (0.091) 1.202 (0.031)

Ecoli. N = 336, d = 7 5% 0.482 (0.294) 0.480 (0.303) 0.464 (0.296) 0.750 (0.220)

15% 0.634 (0.210) 0.649 (0.220) 0.626 (0.221) 1.046 (0.126)

30% 0.964 (0.237) 1.028 (0.256) 0.989 (0.259) 1.637 (0.119)

60% 1.529 (0.203) 1.841 (0.245) 1.731 (0.241) 2.428 (0.082)

Breast Tissue. N = 106, d = 9 5% 0.216 (0.105) 0.215 (0.110) 0.246 (0.107) 0.425 (0.074)

15% 0.346 (0.110) 0.349 (0.114) 0.446 (0.133) 0.654 (0.065)

30% 0.574 (0.139) 0.580 (0.149) 0.904 (0.156) 1.086 (0.089)

60% 1.171 (0.155) 1.250 (0.187) 1.812 (0.247) 2.059 (0.117)

Glass. N = 214, d = 9 5% 0.223 (0.063) 0.221 (0.073) 0.335 (0.124) 0.521 (0.080)

15% 0.427 (0.087) 0.423 (0.101) 0.584 (0.131) 0.818 (0.070)

30% 0.761 (0.109) 0.760 (0.137) 0.972 (0.134) 1.326 (0.073)

60% 1.423 (0.076) 1.630 (0.146) 1.811 (0.133) 2.368 (0.076)

Wine. N = 178, d = 13 5% 0.249 (0.029) 0.264 (0.033) 0.268 (0.034) 0.364 (0.025)

15% 0.399 (0.030) 0.448 (0.040) 0.481 (0.043) 0.606 (0.029)

30% 0.607 (0.034) 0.736 (0.051) 0.980 (0.059) 1.024 (0.040)

60% 1.015 (0.033) 1.463 (0.078) 1.731 (0.075) 2.134 (0.043)

Parkinsons. N = 195, d = 22 5% 0.174 (0.041) 0.178 (0.045) 0.248 (0.050) 0.332 (0.032)

15% 0.306 (0.040) 0.322 (0.045) 0.660 (0.078) 0.597 (0.032)

30% 0.487 (0.035) 0.524 (0.044) 1.412 (0.404) 0.990 (0.038)

60% 0.904 (0.072) 1.090 (0.084) 2.633 (0.114) 2.328 (0.088)

Ionosphere. N = 351, d = 33 5% 0.243 (0.014) 0.223 (0.016) 0.255 (0.020) 0.275 (0.010)

15% 0.478 (0.017) 0.424 (0.023) 0.843 (0.083) 0.515 (0.013)

30% 0.772 (0.028) 0.680 (0.031) 1.529 (0.052) 0.860 (0.017)

60% 1.332 (0.035) 1.405 (0.063) 3.201 (0.055) 2.207 (0.053)

SPECTF. N = 267, d = 44 5% 0.201 (0.022) 0.203 (0.023) 0.326 (0.040) 0.332 (0.022)

15% 0.394 (0.036) 0.400 (0.039) 0.978 (0.259) 0.627 (0.026)

30% 0.680 (0.046) 0.680 (0.051) 1.735 (0.068) 1.047 (0.034)

60% 1.326 (0.092) 1.510 (0.109) 3.681 (0.104) 2.498 (0.069)

Sonar. N = 208, d = 60 5% 0.193 (0.030) 0.193 (0.031) 0.373 (0.039) 0.344 (0.025)

15% 0.433 (0.040) 0.420 (0.043) 1.025 (0.070) 0.653 (0.032)

30% 0.719 (0.048) 0.702 (0.051) 2.005 (0.070) 1.079 (0.034)

60% 1.331 (0.087) 1.498 (0.110) 4.271 (0.097) 2.501 (0.063)
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Table 2 shows the corresponding performances in terms of the true distance to the predicted nearest neighbour. While
this measure of quality emphasises the estimation of small distances, the relative performances between the methods are
nearly identical compared to Table 1. In particular, the ESD is for most data sets able to consistently identify nearest neigh-
bours which are, on average, closer to the query point than the other methods.

As the data sets are ordered according to dimensionality, looking at both Tables 1 and 2, one trend seems apparent. Com-
paring ESD to regression imputation, it appears that for low-dimensional (d up to around 10) problems, ESD consistently
tends to be more accurate, whereas for high-dimensional data the difference appears less pronounced (even if it is still sta-
tistically significant). For the lowest-dimensional data sets, ICkNNI is also competitive in terms or RMSE.

Comparing PDS to ICkNNI, it seems that for low-dimensional data, ICkNNI tends to be more accurate. However, as the
dimension is increased, along with missingness levels, eventually finding compatible missingness patterns for ICkNNI be-
comes exceedingly improbable, and the accuracy of the method suffers greatly. The weakness of PDS can to some extent
be attributed to discarding part of the data when estimating distances: any values for variables known for only one of the
samples are not used. Based on these experiments, the use of PDS cannot be recommended for nearly any task where the
accuracy of estimating distances from data with missing values is important. ICkNNI can provide effective results, but only
in cases where there are enough samples with suitable missingness patterns.

The average set intersection of the 10 nearest neighbours is presented in Table 3. The relative accuracies between meth-
ods are mostly in line with the previous tables, but interestingly, regression imputation now appears more accurate than the



Table 2
Average of the mean distance to the estimated nearest neighbour, and standard deviations in parenthesis. The best result for each row is underlined, and any
results which are not statistically significantly different (two-tailed paired t-test, a = 0.01) from the best result are bolded.

ESD Regression imput. ICkNNI PDS

Iris. N = 150, d = 4 5% 0.344 (0.013) 0.360 (0.021) 0.362 (0.023) 0.478 (0.064)

15% 0.429 (0.024) 0.476 (0.041) 0.482 (0.040) 0.848 (0.103)

30% 0.590 (0.038) 0.693 (0.061) 0.693 (0.061) 1.276 (0.125)

60% 1.040 (0.063) 1.281 (0.103) 1.315 (0.106) 1.588 (0.108)

Ecoli. N = 336, d = 7 5% 0.741 (0.019) 0.770 (0.033) 0.773 (0.035) 1.098 (0.088)

15% 0.939 (0.031) 1.013 (0.052) 1.024 (0.053) 1.983 (0.233)

30% 1.240 (0.057) 1.388 (0.077) 1.406 (0.077) 2.750 (0.193)

60% 1.858 (0.092) 2.111 (0.088) 2.229 (0.092) 2.771 (0.093)

Breast Tissue. N = 106, d = 9 5% 0.776 (0.017) 0.776 (0.020) 0.791 (0.025) 0.860 (0.052)

15% 0.854 (0.028) 0.861 (0.034) 0.932 (0.050) 1.086 (0.073)

30% 1.007 (0.048) 1.032 (0.064) 1.310 (0.108) 1.562 (0.128)

60% 1.521 (0.100) 1.640 (0.123) 2.209 (0.164) 2.307 (0.142)

Glass. N = 214, d = 9 5% 0.882 (0.014) 0.889 (0.019) 0.919 (0.032) 1.068 (0.054)

15% 1.019 (0.031) 1.040 (0.043) 1.129 (0.057) 1.468 (0.119)

30% 1.300 (0.062) 1.352 (0.079) 1.511 (0.088) 2.316 (0.215)

60% 2.001 (0.093) 2.199 (0.110) 2.475 (0.121) 2.877 (0.109)

Wine. N = 178, d = 13 5% 1.918 (0.016) 1.922 (0.019) 1.927 (0.021) 1.984 (0.033)

15% 2.080 (0.034) 2.104 (0.042) 2.142 (0.045) 2.297 (0.059)

30% 2.355 (0.049) 2.420 (0.062) 2.683 (0.097) 2.932 (0.115)

60% 3.037 (0.087) 3.196 (0.098) 3.640 (0.115) 4.188 (0.125)

Parkinsons. N = 195, d = 22 5% 1.640 (0.021) 1.638 (0.023) 1.661 (0.028) 1.682 (0.030)

15% 1.741 (0.032) 1.742 (0.037) 1.976 (0.075) 1.862 (0.046)

30% 1.941 (0.046) 1.951 (0.053) 2.684 (0.161) 2.240 (0.083)

60% 2.570 (0.080) 2.653 (0.090) 3.553 (0.117) 4.141 (0.155)

Ionosphere. N = 351, d = 33 5% 2.775 (0.010) 2.738 (0.008) 2.744 (0.012) 2.776 (0.013)

15% 2.899 (0.020) 2.830 (0.018) 3.148 (0.074) 2.914 (0.023)

30% 3.088 (0.031) 3.014 (0.031) 3.405 (0.067) 3.151 (0.036)

60% 3.596 (0.063) 3.571 (0.058) 4.148 (0.076) 5.501 (0.197)

SPECTF. N = 267, d = 44 5% 4.566 (0.007) 4.567 (0.007) 4.597 (0.012) 4.620 (0.015)

15% 4.660 (0.017) 4.663 (0.017) 4.912 (0.100) 4.820 (0.027)

30% 4.871 (0.031) 4.885 (0.034) 5.133 (0.041) 5.222 (0.050)

60% 5.485 (0.064) 5.551 (0.071) 5.943 (0.083) 6.825 (0.135)

Sonar. N = 208, d = 60 5% 5.293 (0.007) 5.294 (0.007) 5.340 (0.017) 5.332 (0.013)

15% 5.378 (0.020) 5.377 (0.019) 5.544 (0.067) 5.466 (0.029)

30% 5.565 (0.037) 5.567 (0.040) 5.922 (0.065) 5.749 (0.053)

60% 6.336 (0.091) 6.366 (0.096) 7.342 (0.120) 7.400 (0.155)
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ESD approach, which is the opposite of the situation Table 2. This apparent contradiction can be resolved by recalling that for
non-gaussian data, distances between samples with many missing values will tend to be overestimated by ESD and under-
estimated by regression imputation. The conclusion is that regression imputation is more likely to correctly identify the spe-
cific nearest neighbour – but when it is wrong, the wrong neighbours are further than with ESD (as evidenced by Table 2).
This criterion has a subtle bias in this regard, in that it only considers distances which are known to be small in the complete
data. Consequently it indirectly favours a method which would tend to report all uncertain distances as small.

Figs. 1–9 compare the errors for all percentages 1–70% for the various methods on all nine data sets, and the proposed
algorithm consistently provides competitive performance in terms of both of the considered criteria. The ESD appears to out-
perform the regression imputation version in most cases, suggesting that adding the variance terms accounting for the
uncertainties in the estimated distances provides notable additional value.

5. Conclusions

The algorithm presented in this paper enables the direct estimation of pairwise distances in a data set with missing data.
Estimating the distances is useful since there are many well-known and efficient methods to do further processing of the



Table 3
Average size of the mean set intersection of the 10 nearest neighbours, and standard deviations in parenthesis. The best result for each row is underlined, and
any results which are not statistically significantly different (two-tailed paired t-test, a = 0.01) from the best result are bolded.

ESD Regression imput. ICkNNI PDS

Iris. N = 150, d = 4 5% 8.795 (0.252) 8.896 (0.265) 8.883 (0.279) 8.481 (0.306)

15% 7.080 (0.337) 7.304 (0.349) 7.304 (0.347) 6.274 (0.367)

30% 5.147 (0.310) 5.341 (0.344) 5.385 (0.338) 4.168 (0.247)

60% 2.604 (0.231) 2.631 (0.235) 2.240 (0.264) 2.542 (0.172)

Ecoli. N = 336, d = 7 5% 7.389 (0.223) 8.186 (0.214) 8.228 (0.221) 7.362 (0.268)

15% 4.836 (0.220) 5.930 (0.249) 5.956 (0.247) 4.211 (0.287)

30% 3.118 (0.183) 3.755 (0.212) 3.691 (0.234) 1.449 (0.201)

60% 1.291 (0.134) 1.462 (0.106) 1.084 (0.108) 0.584 (0.046)

Breast Tissue. N = 106, d = 9 5% 9.180 (0.210) 9.322 (0.215) 9.180 (0.227) 8.778 (0.272)

15% 8.073 (0.246) 8.321 (0.275) 7.855 (0.335) 7.118 (0.342)

30% 6.749 (0.273) 7.015 (0.315) 5.260 (0.589) 5.156 (0.280)

60% 4.142 (0.288) 4.247 (0.294) 2.265 (0.252) 2.915 (0.167)

Glass. N = 214, d = 9 5% 8.876 (0.196) 8.980 (0.206) 8.709 (0.222) 7.833 (0.258)

15% 6.815 (0.248) 7.236 (0.256) 6.771 (0.282) 5.557 (0.231)

30% 4.658 (0.226) 5.172 (0.232) 4.420 (0.359) 3.348 (0.203)

60% 2.082 (0.195) 2.210 (0.189) 1.434 (0.147) 1.147 (0.089)

Wine. N = 178, d = 13 5% 8.561 (0.146) 8.612 (0.157) 8.573 (0.170) 8.247 (0.164)

15% 7.070 (0.164) 7.069 (0.182) 6.843 (0.212) 6.388 (0.166)

30% 5.433 (0.194) 5.391 (0.206) 4.020 (0.324) 4.478 (0.175)

60% 2.833 (0.178) 2.705 (0.186) 1.703 (0.144) 1.693 (0.115)

Parkinsons. N = 195, d = 22 5% 9.137 (0.112) 9.176 (0.122) 8.940 (0.150) 8.597 (0.144)

15% 8.149 (0.133) 8.170 (0.144) 6.868 (0.359) 7.139 (0.158)

30% 6.945 (0.157) 6.955 (0.163) 4.114 (0.404) 5.586 (0.148)

60% 4.469 (0.189) 4.424 (0.196) 2.165 (0.151) 2.553 (0.125)

Ionosphere. N = 351, d = 33 5% 8.176 (0.096) 9.014 (0.064) 8.970 (0.085) 8.384 (0.071)

15% 7.054 (0.110) 8.068 (0.084) 5.158 (0.502) 7.221 (0.066)

30% 5.890 (0.123) 6.927 (0.109) 4.231 (0.219) 6.106 (0.074)

60% 3.875 (0.151) 4.725 (0.132) 2.065 (0.087) 3.114 (0.120)

SPECTF. N = 267, d = 44 5% 8.756 (0.069) 8.772 (0.072) 8.426 (0.094) 8.190 (0.083)

15% 7.613 (0.089) 7.632 (0.092) 5.860 (0.569) 6.602 (0.095)

30% 6.071 (0.112) 6.085 (0.110) 4.802 (0.118) 4.818 (0.104)

60% 3.503 (0.143) 3.471 (0.140) 2.134 (0.115) 1.772 (0.089)

Sonar. N = 208, d = 60 5% 9.179 (0.060) 9.185 (0.060) 8.670 (0.111) 8.629 (0.064)

15% 8.254 (0.086) 8.260 (0.087) 7.309 (0.281) 7.511 (0.081)

30% 7.175 (0.105) 7.174 (0.105) 5.876 (0.117) 6.198 (0.099)

60% 4.985 (0.149) 4.972 (0.149) 2.861 (0.135) 3.365 (0.122)
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Fig. 1. Iris Data Set. N = 150, d = 4.
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Fig. 2. Ecoli Data Set. N = 336, d = 7.
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Fig. 3. Breast Tissue Data Set. N = 106, d = 9.
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Fig. 4. Glass Identification Data Set. N = 214, d = 9.
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Fig. 5. Wine Data Set. N = 178, d = 13.
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Fig. 9. Connectionist Bench (Sonar, Mines vs. Rocks) Data Set. N = 208, d = 60.
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Fig. 6. Parkinsons Data Set. N = 195, d = 22.
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Fig. 8. SPECTF Heart Data Set. N = 267, d = 44.
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Fig. 7. Ionosphere Data Set. N = 351, d = 33.
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data based only on the distance matrix. As the algorithm can accurately estimate the pairwise distances in a data set, the
distance matrix can be used to apply k-NN or other methods (MDS, SVM, RBF) which rely only on the distances between
samples or points, rather than considering the particular coordinates.

Given a data set with missing values, the method is based on using the EM algorithm for maximum likelihood estimation
of the mean and covariance. This enables the calculation of the expected squared distance between any two samples by
assuming a multivariate Gaussian distribution. The Gaussian distribution maximises the differential entropy, and thus cor-
responds to maximal uncertainty in the missing values. Hence, this scheme inherently accounts for the uncertainty, and has
a tendency to output large distances between samples with a large proportion of missing values. This can be a desirable ef-
fect in some processing chains, as it reduces the rate of false positives when searching for nearest neighbours.

Compared to standard methods for estimating distances (PDS or imputation), the proposed algorithm provides more
accurate results across the entire range of missingness of data, as evidenced by the experiments in Section 4. In all the tested
cases, the algorithm is the most accurate when more than 50% of the data missing, while other methods appear to reach seri-
ous difficulties at lower missingness levels. These experiments support the conclusion that accounting for the uncertainty in
imputation when estimating distances leads to a significant improvement in accuracy.

As this paper has clearly shown the efficiency of the proposed algorithm for distance estimation in the presence of miss-
ing data, future work should investigate its interest for machine learning and pattern recognition problems; these problems
could include clustering, regression, classification, projection, and feature selection.
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