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Abstract. The bootstrap resampling method may be efficiently used to estimate 
the generalization error of nonlinear regression models, as artificial neural 
networks. Nevertheless, the use of the bootstrap implies a high computational 
load. In this paper we present a simple procedure to obtain a fast approximation 
of this generalization error with a reduced computation time. This proposal is 
based on empirical evidence and included in a suggested simulation procedure. 

1   Introduction 

A large variety of models may be used to describe processes: linear ones, nonlinear, 
artificial neural networks, and many others. It is thus necessary to compare the 
various models (for example with regards to their performances and complexity) and 
choose the best one. The ranking of the models is made according to some criterion 
like the generalization error, usually defined as the average error that a model would 
make on an infinite-size and unknown test set independent from the learning one. 

In practice the generalization error can only be estimated, but there exists some 
methods to provide such an estimation: the AIC or BIC criteria and the like [1], [2], 
[3] as well as other well-known statistical techniques: the cross-validation and k-fold 
[3, 6], the leave-one-out [3, 6], the bootstrap [4, 6] and its unbiased extension the .632 
bootstrap [4, 6]. The ideas presented in this paper can be applied both to the bootstrap 
and the .632 bootstrap. 

Although these methods are roughly asymptotically equivalent (see for example [5] 
and [6]), and despite the fact that the use of the bootstrap is not an irrefutable 
question, it seems that using the bootstrap can be advantageous in many “real world” 
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modeling cases (i.e. when the number of samples is limited, the dimension of the 
space is high, etc.) [6]. 

But the bootstrap main limitation in practice is the computation time required for 
assessing an approximation of sufficient reliability (or accuracy). A second limitation, 
in our context of model selection, is the fact that the selected best model is picked up 
from a set of a priori chosen models, leading to a restricted choice. 

In a previous work [7], we have proposed a fast approximation of the 
generalization error using the bootstrap, based on linear and exponential 
approximations of the optimism and apparent error (as defined by Efron [4]) 
respectively. In this paper, we prove experimentally the validity of the linear 
approximation of the optimism, and show how to use this approximation to perform 
efficient bootstrap simulations with reasonable computational complexity. 

2   Model Selection Using Bootstrap Technique 

The fundament of the bootstrap is the plug-in principle [4]. This general principle 
allows to obtain an estimator of a statistic according to an empirical distribution. In 
our context of model selection, our statistic of interest is the generalization error. We 
thus use the bootstrap to estimate the generalization error (or the prediction error in 
Efron’s vocabulary) in order to rank the models and choose the best one. 

The bootstrap estimator of the generalization error is computed according to the 
bootstrap resampling approach. Given an original sample (or data set) x, we generate 
B new samples, denoted xb, 1 ≤ b ≤ B. The new samples xb are obtained from the 
original sample x by drawing with replacement. For each bootstrap sample xb, we 
compute a bootstrap estimator of our statistic of interest. The final value is obtained 
by taking the mean of the estimators over the B bootstrap replications. In the 
following, we will use the notation eA,B for the error of a model built (learned) on a 
sample A and tested on a sample B. 

In model selection context, Efron defines in [4] the bootstrap estimator of the 
generalization (prediction) error: 

optimismee appgen +=ˆ , (1) 

where êgen is the estimate of the generalization error egen given by bootstrap, eapp  is 
the apparent error (computed on the learning set A), and optimism is an estimator of 
the correction term for the difference between a learning and a generalization error, 
which in fact aims to approximate the difference of errors obtained on the finite 
sample x and an (infinite) unknown ideal sample.  The optimism is computed 
according to: 

][ boptimismBEoptimism = , (2) 

where EB[ ] is the statistical expectation computed over the B bootstrap replications 
and:  
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bbb xxxx
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With our notation, (1) becomes:  

[ ]bbb xxxxgen eeBExxee
,,,ˆ −+=  (4) 

In order to approach the theoretical value of the final bootstrap estimation of the 
generalization error, we can increase the number B of bootstrap replications, but this 
increases considerably the computation time. We have proposed in [7] a way to 
reduce this computation load with a limited loss of accuracy. 

Note that the .632 bootstrap [4] aims to reduce the slight bias introduced by the 
optimism correction. This bias is due to bb xx

e
,

 where the error is computed on the 

same set than the one used for the learning stage. The linear approximation of the 
optimism term, presented in the following, is applicable to the bootstrap and the .632 
bootstrap. 

3   Framework 

Assuming a linear relation between the optimism and the number p of parameters in 
the model is probably an unexpected hypothesis. Nevertheless, this hypothesis is 
strengthened by the fact that the general formulation of a structure selection criterion 
can also be written as 

correctionee appprediction +=ˆ  (5) 

where the correction term is 2pσ/n for AIC and ln(n)pσ/n for BIC, with σ the 
estimated quadratic error on the learning set containing n elements.  In AIC, BIC 
criteria and the like, we can see that the correction term is directly proportional to the 
number of parameter p. Though the apparent error eapp is also a function of p, we will 
focus here on the second term, the correction. 

Although the correction term is computed by bootstrap, and therefore called the 
optimism, its value depends, as the apparent error, on the initialization conditions of 
the learning process.  In practice, a "good" local minimum of a learning error (either 
on x or on xb) is obtained by repeating the learning with different initial conditions.  
Nevertheless, when including this in a bootstrap procedure, the number of learnings is 
again multiplied by B, resulting in an excessive computation time. 

In comparison with the AIC and BIC criteria, we assume that the correction term is 
linearly increasing. Our first goal is then to show experimentally that the optimism 
term is a linear function of p, like a1p+a2. 

Under this hypothesis, if we compute the value of the optimism term for a limited 
number of models, we can determine (in mean square sense) constants a1 and a2. Our 
second goal is thus, under the linearity hypothesis, to propose a method to reduce the 
number of tested models and the number of bootstrap replications. 
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Since the values of a1 and a2 result from an experimental procedure, an obvious 
advantages of our proposal is these parameters are set specifically for each 
application, avoiding the use of asymptotic results. 

4   Methodology 

In the experimental results shown below, we used Radial Basis Function Networks 
(RBFNs) as approximation models. We would like to emphasize on the fact that this 
choice is made a priori and that the goal is not to compare the results with those that 
could be obtained with other approximators. The learning procedure to fit the 
parameters of the model is described in [8], [9]. 

For the RBFNs models, we consider p in expression a1p+a2 as the number of 
Gaussian units or Gaussian kernels (the total number of parameter in RBFNs is in fact 
proportional to the number of Gaussian kernels). To observe the linearity, we use the 
R² statistics, also called the square correlation coefficient. The R2 statistics is here 
computed between the optimism estimated for each model (different values of p) and 
the linear approximation (a1p+a2) of these values.  The more this R2 is close to 1, the 
most our linear approximation is valid. 

Remember that each optimismb, in the context of nonlinear models, is usually the 
result of several learnings (Q learnings) with different initial conditions.  To estimate 
one value of the optimism (i.e. the optimism for a specific model complexity p), we 
should therefore learn QB models, what could be excessive in our context.  Now 
notice that in practice we are not interested in a specific value of the optimism but 
only in the linear approximation a1p+a2.  A lower accuracy on each value of the 
optimism can thus be balanced by the number of different complexities p, i.e. the 
number of points (larger than 2) used for the linear approximation. 

5   Experimental Results 

5.1  Artificial Example 

We first illustrate the validity of the linear approximation of the optimism described in 
the previous sections on a toy example. We generate a set of 1000 datas (x, y), with x 
randomly drawn in [0, 1] and y defined by: 

noisexxxy +++= )25sin()15sin()5sin(  (6) 

where noise is a uniform random variable in [-0.5, 0.5]. 
We then use the bootstrap resampling method in a model selection procedure, 

observing the generalization error corresponding to a specific model characterized by 
its number p of Gaussian kernels. Figure 1 presents the evolution of our R² criterion 
versus the number B of bootstrap replications. We clearly see that R² is getting closer 
and closer to one while B increases. Fishers' test (with a p-value of 2.2584 10-11) leads 
to accept the linear hypothesis from B = 15. 
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Since we admit the linear approximation hypothesis, we can go one step further 
and address the reduction of computation time. We then look to the evolution of a1 
and a2 in function of B respectively in Figures 2.1 and 2.2. Here again, when B is 
greater or equal to 15, we have a roughly constant value. Figure 3 shows the graph of 
the optimism according to the number p of Gaussian kernels in the model. Figure 4 is 
the graph of the generalization error versus the number of bootstrap replications, 
where we can see that the “best” model for our toy example has 20 Gaussian kernels. 
Finally, Figure 5 shows the 1000 learning data and the predictions we got with the 
selected model. 
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Fig. 1. Toy example: evolution of R² versus B 
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Fig. 2.1 Toy example: evolution of coefficient 
a1 versus B 
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Fig. 2.2. Toy example: evolution of 
coefficient a2 versus B 

1 0 2 0 3 0 4 0 5 0 6 0
0

0 .0 0 2

0 .0 0 4

0 .0 0 6

0 .0 0 8

0 . 0 1

0 .0 1 2

N u m b e r  o f G a u s s ia n K e r n e l s

O
pt

im
is

m

1 0 2 0 3 0 4 0 5 0 6 0
0

0 .0 0 2

0 .0 0 4

0 .0 0 6

0 .0 0 8

0 . 0 1

0 .0 1 2

N u m b e r  o f G a u s s ia n K e r n e l s

O
pt

im
is

m

 

Fig. 3. Toy example: approximation of the optimism term (thin line) versus the number of 
Gaussian kernels with B = 20 (thick line : values obtained for the tested models) 
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Fig. 4. Toy example: Learning (thick) and generalization (thin) errors versus p 
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Fig. 5. Toy example: learning data (dots) and predictions (solid line) with the selected model 

5.2  Real Data Set (Abalone) 

We use the abalone dataset [10] as a second example to validate the linearity 
hypothesis, with a more realistic (and difficult) approximation problem. Here again, 
we use 1000 data for the learning. Figure 6 is the evolution of R² with respect to B. In 
this case, Fisher’s test p-value is rounded by the computer to 0. Figure 7.1 is the graph 
of a1 and figure 7.2 is the evolution of a2 in function of B. According to these graphs, 
we suggest to use B = 40. Figure 8 shows the reported optimism with respect to p. 
Figure 9 shows the learning and generalization errors versus B. The minimum 
corresponding to the “best” model for the Abalone data set has 62 Gaussian kernels.  
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Fig. 6. Abalone: evolution of R² versus B 
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Fig. 7.1 Abalone: evolution of coefficient a2 
versus B 
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Fig. 7.2 Abalone: evolution of coefficient a2 
versus B 
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Fig. 8. Abalone: approximation of the optimism term (thin) versus the number of Gaussian 
kernels with B = 40 (thick: values obtained for the tested models) 
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Fig. 9. Abalone: Learning (thick) and generalization (thin) errors versus the number p of 
Gaussian kernels 

6   Conclusion 

In this paper we have shown that the optimism term of the bootstrap estimator of the 
prediction error is a linear expression of the number of parameters p. 

Furthermore, we illustrate the time saving procedure proposed in [7], enhanced 
here with the early stop criterion based on the R² of the linear approximation. 
According to the two results shown here and to other ones not illustrated in this paper, 
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we recommend a conservative value of 50 for the number B of bootstrap replications 
before stopping the approximation computation.  

We would like to emphasize on the fact that the limited loss of accuracy is 
balanced by a considerable saving in computation load, this last fact being the main 
disadvantage of the bootstrap resampling procedure in practical situations. This 
saving is due to the reduced number of tested models and to the limited number of 
bootstrap replications. 

Although this procedure has only been tested in a neural network model selection 
context, this simple and time saving method could easily be extended to other 
contexts of nonlinear regression, classification, etc., where computation time and 
complexity play a role. It can also be applied to other resampling procedures, as the 
.632 bootstrap. 

References 

[1]  H. Akaike, “Information theory and an extension of the maximum likelihood 
principle”, 2nd Int. Symp. on information Theory, 267-81, Budapest, 1973 

[2]  G. Schwarz, “Estimating the dimension of a model”, Ann. Stat. 6, 461-464, 1978. 
[3]  L. Ljung, “System Identification - Theory for the user”, 2nd ed, Prentice Hall, 1999. 
[4]  B. Efron, R. J. Tibshirani, "An introduction to the bootstrap", Chapman & Hall, 1993. 
[5]  M. Stone, “An asymptotic equivalence of choice of model by cross-validation and 

Akaike’s criterion”, J. Royal. Statist. Soc., B39, 44-7, 1977.  
[6]  R. Kohavi, “A study of Cross-Validation and Bootstrap for Accuracy Estimation and 

Model Selection”, Proc. of the 14th Int. Joint Conf. on A.I., Vol. 2, Canada, 1995. 
[7]  G. Simon, A. Lendasse, V. Wertz, M. Verleysen, “Fast approximation of the 

bootstrap for model selection”, accepted for publication in Proc. of ESANN’2003, d-
side, Brussels, 2003. 

[8]  N. Benoudjit, C. Archambeau, A. Lendasse, J. Lee, M. Verleysen, “Width 
optimization of the Gaussian kernels in Radial Basis Function Networks”, Proc. of 
ESANN’2002, d-side, Brussels, 2002. 

[9]  M. J. Orr, "Optimising the Widths of Radial Basis Functions", in Proc. of Vth 
Brazilian Symposium on Neural Networks, Belo Horizonte, Brazil, december 1998 

[10]  W.J. Nash, T.L. Sellers, S.R. Talbot, A.J. Cawthorn and W.B. Ford, "The Population 
Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. 
rubra_) from the North Coast and Islands of Bass Strait", Sea Fisheries Division, 
Technical Report No. 48, 1994. 

189Bootstrap for Model Selection: Linear Approximation of the Optimism     


	Bootstrap for model selection: linear approximation of the optimism
	Introduction
	Model Selection Using Bootstrap Technique
	Framework
	Methodology
	Experimental Results
	Artificial Example
	Real Data Set (Abalone)

	Conclusion
	References


