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Abstract. When using ICA for image separation, a well-known prob-
lem is that most often a large correlation exists between the sources.
Because of this dependence, there is no more guarantee that the global
maximum of the ICA contrast matches the outputs to the sources. In or-
der to overcome this problem, some preprocessing can be used, like e.g.
band-pass filtering. However, those processings involve parameters, for
which the optimal values could be tedious to adjust. In this paper, it is
shown that a simple ICA algorithm can recover the sources, without any
other preprocessing than whitening, when they are correlated in a spe-
cific way. First, a single source is extracted, and next, a parameter-free
postprocessing is applied for optimizing the extraction of the remaining
sources.

1 Introduction

In the recent past years, Independent Component Analysis (ICA) has been a fast
growing research topic; many algorithms have been developed to solve the ICA
problem. Though they share the same goal, all algorithms approach the problem
differently and may have different performances on specific applications. This
explains why new ICA contrasts are still developed nowadays. For instance, the
support width measure (SWM) has been recently suggested as cost function for
ICA; its main advantages are its theoretical convexity for bounded sources, its
geometrical interpretation and its simplicity [1].

A particular application of ICA is the blind separation of mixed images.
This application does not entirely fulfill the assumptions of the canonical ICA
problem, since natural images can be highly correlated, i.e. the sources are not
independent anymore. Consequently, it can be expected that usual ICA algo-
rithms would fail to recover the source images given only linear mixtures of
them. Indeed, even if exceptions seem to exist [2], two mixed images can be
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more independent than the dependent sources. However, several tools have been
designed to address this issue. The most efficient one seems to be filtering. In
that case, it is assumed that a frequency band exists, for which the source im-
ages are statistically independent. By filtering the raw image mixtures outside
this frequency band, new mixtures are obtained and processed by a usual ICA
algorithm. Once the latter has converged, the computed unmixing matrix is used
for separating the initial (unfiltered) mixed images [3].

Even if the previous method looks very efficient, additional parameters ap-
pear, like the cutoff frequencies and the order of the filter, which may be difficult
to adjust. For instance, finding the frequency band that makes unknown images
fully independent, starting from mixtures of them may be a tedious task. To our
knowledge, no simple and automatic method exists to solve this problem.

In this work, we propose to use the SWICA algorithm [4] for optimizing
the SWM cost function and for solving image separation problems without any
other preprocessing than whitening. The method is tested on a simple example,
involving two correlated source images (landscapes). SWICA is first applied to
extract a single source image. Next, it is modified to optimize the separation of
the second source image. Paradoxically, it is an apparently weakness of the SWM
criterion that allows us to separate correlated images without any filtering.

The remainder of this paper is organized as follows. Section 2 introduces
the SWM contrast and the corresponding algorithm (SWICA). Section 3 deals
with additional theoretical issues, whereas experiments are detailed in Section 4.
Finally, conclusions are drawn in Section 5.

2 ICA by Support Width Minimization

In order to make this paper self-contained, this section summarizes the SWM
criterion [1] and the related ICA algorithm [4] (SWICA).

2.1 The SWM Cost Function

Consider the linear mixing model x = As, where s = [s1, . . . , sn]T is a source
vector made of n independent and zero-mean random variables, A is a square
mixing matrix and x = [x1, . . . , xn]T is the vector of the mixtures. In general,
the mixtures are dependent and correlated, but it is easy to find a decorrelation
transformation V such that z = Vx satisfies the whiteness condition E{zzT } =
In. Next, if the sources are white, then an ICA algorithm can be run on the
whitened mixtures z in order to recover the sources. More formally, the ICA
algorithm identifies the orthogonal matrix W in the unmixing model s ≈ y =
Wz. The symbol ‘≈’ means that the transfer matrix C � WVA is equal to PD,
where P and D are permutation and scaling matrices, respectively.

Several methods exist to find W. One of them consists in minimizing the sup-
port width Ω(yi) of each estimated source yi, provided the sources are bounded
(i.e. the support of the source distribution Ω(si) is finite). In this case, it has
been shown that if the number of sample points is large enough, the SWM crite-
rion is convex. In other words, each local minimum of Ω(yi) satisfies ci = ±ek,
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where ci is the i-th row of C and ek the k-th row of In. This can be understood
by looking at the theoretical expression of Ω(yi), expressed as a function of the
source supports:

Ω(yi) =
n∑

j=1

ci(j)Ω(sj) , (1)

where the source supports Ω(s1), . . . Ω(sn) are positive and finite. The function
Ω(yi) can have a minimum only if ci = ±ek, i.e. when yi is proportional to a
source sj .

The support minimization of the output is illustrated in Fig. 1. The first
angle φ correspond to the rotation of the source resulting from VA while angle
ϕ is associated with the unmixing matrix W. The width D is shown when W
has not converged yet to a satisfactory unmixing matrix, i.e. Ω(y1) = Ω(w1z) is
not minimized yet. After convergence of the algorithm, we observe Ω(y1) = D′,
which corresponds to y1 ∝ s1; this minimum is global since in this example,
Ω(s1) < Ω(s2). A local minimum of Ω(y1) would be obtained if y1 ∝ s2.

Fig. 1. SWM: principle of ICA by finding directions with minimum support width

2.2 The SWICA Algorithm

SWM is a single-unit ICA criterion. For this reason, when several sources have
to be extracted, an algorithm based on a deflation approach must be used. In
addition, it must be mentioned that the SWM contrast (−Ω) is not differentiable,
thus making all traditional optimization procedures (fixed point, gradient ascent,
etc.) unusable. The algorithm we propose takes as input the whitened mixtures
and extracts the sources one after the other, by determining the corresponding
row of W. In order to keep W orthogonal, rows of W are seen as directions and
are updated accordingly. For this purpose, angular variations of the current row
wi towards another row wj are defined and noted as

wi↑j = cos(α)wi + sin(α)wj and wi↓j = cos(α)wi − sin(α)wj . (2)
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Such angular variations allow comparing the current value of the contrast
(−Ω(wiz)) to surrounding values (−Ω(wi↑jz) or −Ω(wi↓jz)). As the contrast is
not differentiable, a very simple optimization procedure is proposed. Briefly put,
for each row wi, the algorithm looks at the contrast value in each perpendicular
direction (wj with i + 1 < j < n), for both positive and negative angular varia-
tions. Then it updates W by rotating both wi and wj according to the highest
contrast value. Consequently, the algorithm keeps W orthogonal.

The only parameters of the algorithm are the convergence rate and the num-
ber of iterations. By construction, the algorithm is monotonic: the contrast is
either increased or kept constant. Similar algorithms using more sophisticated
techniques, like discrete gradient approximations (based on a 2nd-order Taylor
expansion) have been tried too. Unfortunately, they lead to worse results than
the simple proposed algorithm. In addition, they involve a larger number of
parameters that are tedious to adjust. More details can be found in [4].

3 SWM: An Extreme Statistics Contrast

Maximizing the contrast requires an estimation of −Ω(yi). If the number of
observations is large enough, the following estimator measures the support width
of a random variable u:

Ω̂(u) = max(u) − min(u) . (3)

This estimator works best for abruptly bounded variables. When tails of the
distribution are longer and less dense, as for platykurtic variables, the estimator
may fail to give a good approximation of the support, as illustrated in Fig. 2(a),

−5  5 

−5

 

5 

(a) Essential points for the esti-
mation of Ω(y1) are missing: the
source extraction failed
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(b) Four points have been added
at the borders of the source JPDF
(located by the arrows); these ’ar-
tificial’ points allow SWICA to
extract the sources

Fig. 2. SWICA applied on super-Gaussian signals: scatter plots of the source signals

(dots) and of the outputs (circle)
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because there are not enough observations in ‘critical areas’ (the ‘corners of the
square’ in the figure). In this case, SWICA may be completely mislead: SWICA
has minimized the support of y1, but this output does not correspond to a
source. Of course, if four well-chosen observations are available (see arrows in
Fig. 2(b)), the problem disappears. This means that the SWM contrast may be
very sensitive to a small number of observations. Fortunately, the distributions of
the pixel intensities in an image are usually abruptly bounded, due to particular
implementation choices (small encoding range) and image properties (because
neighboring pixels often have similar values, there are usually few outliers).

4 Separation of Correlated Images

In this section, we show results of three ICA algorithms (FastICA [5], JADE
[6] and SWICA) used to separate two correlated images (correlation: 26%). The
source images are two gray-level landscapes (Fig. 3(a) and 3(d)); pixel intensi-
ties range from 0 to 255. A random linear mixing matrix and a decorrelation
transformation are then applied; mixed images are shown in Fig. 3(b) and 3(e)
(after translation and scaling to map the mixtures in the full range [0, 255], for
readability purposes).

When looking at the scatter plot of the source images in Fig. 5(a), it becomes
clear that they are not independent because the joint probability density function
cannot be factorized (for instance, look at several horizontal – or vertical –
conditional pdfs in the scatter plot: they are not equal to each other). As could be
feared, both JADE and FastICA fails to recover the source images (see Fig. 4(b)
and 4(c)).

In order to assess the extraction quality of the i-th source si, the ‘i-th per-

formance index’ is defined as PI(i) �
∑ n

j=1 ci(j)
2

maxj ci(j)2
− 1; a zero PI(i) indicates that

yi is proportional to a source, while a high PI(i) means that yi results from the
superimposition of several sources.

4.1 Extraction of the First Source

SWICA behaves rather differently than JADE and FastICA and recovers one
of the sources (Fig. 4(d)). The output scatter plot is a parallelogram and two
of its edges are parallel to the vertical axis: values of y1 computed by SWICA
nearly equal those of s1, since both marginal pdfs (initial sources and estimated
ones) along the horizontal axis coincide. Unfortunately, the two other edges of
the parallelogram are not parallel to the horizontal axis, meaning that y2 does
not correspond to the second source.

Understanding why both JADE and FastICA fail in this example is straight-
forward. Because source images are correlated, estimating independent sources
amounts to extracting their common but independent components. In the case
of two landscapes, these components are not the source images but new images
(e.g. comp. 1 could account for the shared soil/sky contrast whereas comp. 2
could account for varying trees, mountain and clouds).
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(a) Source 1 (b) Mixture 1 (c) Output 1

(d) Source 2 (e) Mixture 2 (f) Output 2

Fig. 3. Example of images separation using SWICA (cov=0.26); source images (a,d),

rescaled mixed images (b,e), rescaled extracted images (c,f)

Contrarily to other ICA contrasts, the SWM extracts a very limited piece of
information out of the marginal pdf of the currently estimated source y1: the
bounds. In our image application, bounds are particularly interesting parts of
the image distribution. Indeed, images may be assumed to involve three more
or less important parts: (i) a global shared shape, (ii) local independent details
and (iii) encoding techniques. The global shared shape leads to highly correlated
and dense spots in the scatter plot. On the other hand, local independent details
contributes to fill the scatter plot in a uniform but very sparse way. Finally, en-
coding technique generally produce saturation effects (towards full white and/or
black), which are independent (source images are independently encoded). Usual
ICA contrasts are especially sensitive to the global shape, which is dominating
in correlated images, and thus try to make the images independent. On the other
hand, SWM focuses on the bounds of the scatter plot: these bounds are generally
well drawn due to parts (ii) and/or (iii) of the images and contains most of the
independent features of the images. Of course, if parts (ii) and (iii) in the image
are negligible, the edge of the scatter plots disappear and SWICA is likely to
fail.

This explains why SWICA can match its first output y1 to one of the source
(see Figure 1). But why does SWICA fail to recover the second source image?
Actually, as for all ICA orthogonal contrasts, we whiten the mixtures before-
hand and then constrain the unmixing matrix W to be orthogonal. Unfortu-
nately, this constraint is too restrictive in our case and amounts to recover-
ing sources that are not correlated. More precisely, on one hand we know that
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(a) Normalized sources (b) FastICA (y1 vs y2); PI(1) =
0.246 and PI(2) = 0.449

(c) Jade (y1 vs y2); PI(1) = 0.497
and PI(2) = 0.687

(d) Swica (y1 vs y2); PI(1) =
1.3 × 10−4 and PI(2) = 0.063

Fig. 4. Scatter plots between normalized images. In (b)-(d), the plots of y1 vs y2 (dark)

are superimposed to the plot of the normalized sources (light gray)

E{yyT } = WE{zzT }WT = WWT = In because of the whiteness property. On
the other hand, we know that E{ssT } is not diagonal, which is contradictory.

4.2 Extraction of the Second Source

The above-mentioned arguments explain why one source can be recovered,
whereas the other ones cannot be recovered when the source images are cor-
related and W is constrained to be orthogonal.

In the easy case where n = 2, the second line of the W matrix given by
SWICA must be modified. Therefore, we minimize Ω̂(y′

2) = w′
2z, where w′

2 is
not constrained to be orthogonal to w1 anymore. In order to avoid converging
to y1, we take w2 as first guess for w′

2. This procedure is applied only on the
second output, without changing the first one, and allows separating the second
source, as shown in Fig. 5. This procedure can be extended for a larger number
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(a) Swica (y1 vs y′
2); PI(1) = 1.3×10−4

and PI(2) = 1.4 × 10−4
(b) Second output y′

2 after
mapping to (0, 255)

Fig. 5. Results after extraction of the second source image: the low PI(.) indicate that

both sources are recovered correctly

of source images, by deriving a deflation algorithm to correct the bias due to the
orthogonality constraint.

5 Conclusion and Future Work

In this paper, the SWM contrast is used to solve the ICA problem involving
correlated images. This approach is motivated by the unsatisfying results of
JADE and FastICA for the same problem, when no other preprocessing than
whitening, like filtering is used.

Regarding the separation of two correlated images, SWICA succeeds in re-
covering one of the images but prewhitening of the mixtures settles on W an
orthogonality constraint that jeopardizes the retrieval of the second source im-
age. To circumvent this problem, the orthogonality constraint is relaxed after
the first deflation step. In this case, both source images are recovered correctly.

Future work will compare the proposed approach to MSD ICA (multiresolu-
tion subband decomposition), a method that preprocesses the image mixtures
using filters. A second target is the development of a new version of SWICA,
without orthogonality constraint.
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