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Abstract.
The source separation problem is usually solved through a gradient descent on a cost function

C . However, C may have local minima that are irrelevant from the source separation point of view
in particular when the source distribution is multimodal. Cardoso explained the reason for such
spurious minima when a likelihood-based function is used as cost criterion, even when the source
distributions are a priori known.

This paper shows that such spurious minima may also appear when using the marginal entropy
cost function; it aims to draw an intuitive justification about the existence and the locations of
these minima when dealing with multimodal sources. This justification is based on a structural
modification (mainly the modality) analysis of the output distribution according to the mixing
coefficients.

INTRODUCTION

In order to solve the blind source separation (BSS) problem, independent component
analysis (ICA) can be used if some assumptions are met. ICA tries to find linear com-
binations of measured signals in order to produce output signals as independent as pos-
sible. Several cost functions C were derived to measure the dependence level between
outputs. This paper focusses on one of them: the sum of the marginal entropies of the
output signals [1]. The solution to the ICA problem (the optimal linear combinations of
the measured signals) is found through the minimization of a criterion measuring the
dependence between the output signals. The minimum is usually reached through a gra-
dient descent on C . However, this gradient descent process is meaningful if and only if
all local minima of C are relevant from the source separation viewpoint.

A well-known way to perform independent component analysis is to use as cost func-
tion C the Kullback-Leibler (KL) divergence between an assumed model for the original
source distribution (called target distribution) and the output distribution. In [2], Cardoso
shows that spurious minima in this measure appear when the marginal distributions of
the sources are multimodal. Recently, it was noted by several authors that the entropy
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cost function may also have spurious minima in this context [3, 4, 5]. However, since the
entropic approach does not suppose any model for the source distribution, the existence
of spurious minima cannot be understood by the same arguments as in the KL case.

This paper aims to explain how spurious minima may appear when the (sum of the)
output marginal entropy(ies) is used as cost function on a multimodal BSS problem. This
is done by looking to the effects of scaling and mixing independent random variables.
Furthermore, this analysis allows to understand the locations of the possible spurious
minima, i.e. for which mixture coefficients they appear.

The remaining of the paper is organized as follows. First, the mixing process of
two variables is recalled. Next, the blind source separation (BSS) problem and the
independent component analysis (ICA) method are detailed. Using a simple example,
we illustrate that spurious minima in the marginal entropy cost function may appear
if the source distributions are multimodal. Finally, we explain why and where spurious
minima appear in the entropy function, leading to bad solutions in the source separation
problem when using a gradient descent algorithm.

LINEAR MIXTURE OF RANDOM VARIABLES

In this section, we focus on the mixing process of independent, stationary, ergodic and
real variables, and study its effect on the distribution of the resulting variables.

The whitened mixture scheme

In many real-world applications involving signals, the sensor recordings correspond
to mixtures of original sources. For example, consider that m ≥ 2 speakers speak in a
room and that m microphones, located at different places, record the ambient noise. Each
microphone does not only record the speech of a single speaker, but the whole acoustic
signal emitted simultaneously by all the m acoustic sources (i.e. the m speakers). The
problem of separating the acoustic sources from the sensor signals is known in this case
as the ‘cocktail party’ problem. Before looking at the source separation process, it is
necessary to analyze the mixture scheme of independent random variables. We assume
that the m recorded signals X(t) = [X1(t), . . . ,Xm(t)]T resulting from a mixing process
can be modelled by a linear combination of m sources S(t) = [S1(t), . . . ,Sm(t)]T :

X(t) = AS(t) , (1)

where T denotes the transposition and A a real m×m mixing matrix, constant in time.
In the following, we will omit the temporal variable t, for the simplicity of presentation.

A useful preprocessing to ICA is to center and whiten the sensor signals X such that
they are zero-mean and have an identity covariance matrix: E{X} = 0 and E{XXT} =
Im, where E denotes the statistical expectation and Im the identity matrix of size m×m.
Without loss of generality, we also assume that the sources are zero-mean and have unit
variance. It can be shown that these constraints imply that ∑ j a2

i j = 1, where ai j denote
the elements of A.
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Weighting and summing variables

It is well known that the distribution fV of a variable V = αU (α ∈ R) is directly
linked to the distribution fU of U by the following relation:

fαU(v) =
1
|α|

fU
( v

α

)

. (2)

Since
∫

fU(u)du = 1, if the maximum value of fU increases (resp. decreases), the
support Ωu of fU is contracted (resp. extended). Of course, this seems to be a non-sense
if Ωu is infinite. Actually, this contraction/extension of the support should be understood
considering ‘the inter-distances’ between the elements of Ωu (see below). Multiplying
a variable by a real scaling coefficient smaller (resp. greater) than one contracts (resp.
extends) the support of the distribution.

Another interesting fact is that the distribution fZ of Z = U +V where U,V are two
independent variables is the convolution of fU and fV [6]:

fZ(z) = fU ∗ fV =

∫

fU(τ) fV (z− τ)dτ . (3)

BLIND SOURCE SEPARATION

The problem of source separation consists in recovering the original signals S know-
ing only X; the sources are recovered applying an unmixing matrix B on X. Under the
assumptions of the Darmois-Skitovich theorem (DST) [1], this can be done using in-
dependent component analysis (ICA). In 1994 [7], Comon has shown that we can only
recover Y = BX = BAS = PDS, where P and D are permutation and scaling matrices,
respectively. The global transfer matrix W, defined by Y = WS, is thus equal to BA.
In the following, the output signals Y are also supposed to have an identity covariance
matrix.

Under the DST assumptions, finding pairwise independent output signals is equivalent
to recover signals that are proportional to the original sources. In order to find such
independent outputs, ICA algorithms necessitate a measure of dependence. The latter
can be the ‘distance’ between the output (joint) distribution fY and the product of the
marginal ones ∏m

i=1 fYi . Using simple algebraic relations, it can be shown that under the
whitening constraint of Y, minimizing the Kullback-Leibler divergence (KL) between
fY and ∏m

i=1 fYi (also known as the mutual information between the fYi [8]) is equivalent
to minimizing the sum of the output marginal entropies H(Yi):

C (Y) = KL
(

fY||
m

∏
i=1

fYi

)

=
m

∑
i=1

H(Yi) , (4)

where H(Yi) denotes the Shannon entropy of variable Yi. This last quantity is defined as:

H(Yi) = −
∫

fYi log( fYi) , (5)
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(with 0 log(0)
.
= 0). The global minimum of C (Y) is known to be an acceptable solution

from the BSS point of view [9]. To reach the minimum value of C , most ICA algorithms
use a gradient descent on C (Y) in order to avoid an exhaustive search. Doing so, one
implicitly supposes that all (local) minima are also meaningful results from the source
separation point of view. Unfortunately, this is not the case in several situations, as it
will be shown in the following.

DEALING WITH MULTIMODAL SOURCES

Dealing with multimodal sources in BSS is known to be a difficult problem, when
achieved through a gradient descent on a cost function. Indeed, the usual cost functions
used in the ICA algorithms may have spurious minima in such situations; the only
alternative to gradient descent is the exhaustive search [4]. The following section recalls
the existence of spurious minima when the ‘maximum-likelihood’ approach is used.
Next, similar conclusions will be drawn regarding the entropic cost function.

Spurious minima in the negative likelihood cost function

The maximum-likelihood (ML) approach to BSS consists in finding an output distri-
bution that is as close as possible to a target distribution, which is supposed to be – very
close from – the unknown source distribution. The ML-based function has local minima
if the marginal source distributions are multimodal [2], even if the target distribution is
taken exactly equal to the (unknown) source distribution. These local minima are due to
a local optimal matching (in the KL divergence sense) between the output and the tar-
get distributions. However, this justification cannot be extended to the marginal entropy
criterion, since in this case there are no target distributions.

Spurious minima in the marginal entropy cost function

Assume that the sources Si are ordered with respect to their Shannon’s entropy:
H(S1) ≤ . . . ≤ H(Sm). The global minima of H(Yk) (1 ≤ k ≤ m) are known to be an
acceptable solutions: the output Yk corresponds to S1, the lowest entropic source [1].
Local minima appear when Yk corresponds to S j with j 6= 1, but spurious minima, that
are not relevant for BSS, may also appear. This is e.g. the case when dealing with
independent sources, linearly and simultaneously combined, without additive noise, but
having multimodal distributions. In this section, we will show a simple example of
spurious minima in C (Y).

Consider two independent sources S1 and S2 with multimodal distributions (see Fig.
1) and the following global transfer system, with wi j the transfer coefficients:

{
Y1 = w11S1 +w12S2
Y2 = w21S1 +w22S2

. (6)
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In the remaining of the paper, we will focus on the first entry of Y. It can be shown
that the w2

i1 +w2
i2 = 1 condition ensures that Yi is white if X is white [10]. For this reason,

under the whitening constraint, Y1 can be rewritten without loss of generality as follows:

Y1 = sin(θ)S1
︸ ︷︷ ︸

Sθ
1

+cos(θ)S2
︸ ︷︷ ︸

Sθ
2

, (7)

where sin(θ)
.
= w11 and Sθ

1 and Sθ
2 are defined in the equation. According to equation 3,

the distribution of Y1 is the convolution of the distributions of Sθ
1 and Sθ

2 :

fY1 = fSθ
1
∗ fSθ

2
. (8)

We will adopt the following notation. The distance between two modes i and j of fSk
will be noted ∆i, j(Sk). For example, we can see in Fig. 1 that ∆1,2(S1)' 2, ∆1,2(S2)' 1.1
and ∆2,3(S2) ' 1.6.

−2 −1 0 1
−2

−1

0

1

2

−2 −1 0 1
0

0.5

1

1.5

2

2.5

∆
1,2

 (S
1
)

−2 −1 0 1 2
0

0.4

0.8

1.2

1.6

∆
2,3

(S
2
) ∆

1,2
(S

2
) 

FIGURE 1. Characteristics of the source signals S1 and S2: scatter plot fS2 vs fS1(left), fS1 (center) and
fS2(right).

The entropy minima analysis is restricted to θ ∈ [0,π/2]; the extension to the other
quadrants is trivial. The solid curve on the left graph of Fig. 2 shows the evolution
of Y1 vs θ . The only minima relevant for source separation (see eq. 7) correspond
to w11w12 = 0, i.e. to θ ∈ {0,π/2}. As it can be seen on Fig. 2, spurious minimum
appear for θ 6= {0,π/2}; this is the case for several angles θ z ' {π/6,π/5,11π/36}.
These minima are thorny because in these cases, Y1 remains a mixture of the sources
(w11w12 6= 0); they correspond to spurious solutions. As previously explained, these
spurious minima are local; the global minimum of H(Y1) is reached when Y1 = S1, i.e.
for θ ? = argminθ H(Y1) = π/2 [9].

The distributions are estimated nonparametrically using a Parzen Window estimator
[11] with Gaussian isotropic kernels of standard deviation σK = 0.05. The standard
deviation σK of the kernels may influence the quality of the estimated distribution.
However, it seems that this is not the case (in a certain range) regarding the shape of the
entropy function; the latter is shown on the left panel of Fig. 2 where fY1(y1) is plotted
vs θ for σK=0.025, 0.05 and 0.1. In order to improve the readability of this function,
it has been plotted on a polar graph (right panel of Fig. 2). As the radius denotes the
entropy, negative entropies cannot be shown; for this reason, H(Y1) has been shifted to
H(Y1)+ ε , where
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ε =

{
0 if minθ H(Y1) ≥ 0
−minθ H(Y1) if minθ H(Y1) < 0 . (9)
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FIGURE 2. Left: Entropy H(Y1) vs θ for σK = 0.025 (dotted), 0.05 (solid) and 0.1 (dashed); Right:
H(Y1)+ ε vs θ (σK = 0.05).

In the next section, we justify why this phenomenon appears in the particular case of
multimodal source distributions. This justification allows also to understand, knowing
the source distributions, where these minima are located.

EFFECT OF MIXING VARIABLES ON THE RESULTING
DISTRIBUTION

As previously explained, minima in H(Y1) for θ ∈]0,π/2[ are spurious. In order to
understand why such spurious minima appear, it is useful to plot the evolution of fY1 , fSθ

1
and fSθ

2
vs θ . This is done in Fig. 3 for θ = {0,π/12,π/6,π/5,π/4,11π/36,13π/36,π/2}.

We can observe that the critical values θ z of θ , corresponding to the spurious minima
of H(Y1) also minimize locally the number N(Y1) of modes of fY1 . This fluctuation of
N(Y1) as a function of the angle θ (i.e. as a function of the transfer coefficients w1i) is
due to the joint effect of the scaling and the mixing of the independent sources S1 and S2.
Obviously, looking to equation 7, N(Y1) is equal to N(S1) (resp. N(S2)) if θ = π/2 (resp.
0). Mixing these independent sources (keeping the variance of the mixtures unitary) has
for effect to convolute the scaled densities. Intuitively, as N(S1) = 2 and N(S2) = 3,
when θ increases from 0 or decreases from π/2, N(Y1) should be equal to 6. However,
N(Y1) is not strictly increasing to a unique local maximum when θ moves apart from
kπ/2. The function N(Y1) has several local maxima for θ ∈ [0,π/2] and N ≡ {2,3,6}
is not the whole set of acceptable values for N(Y1); fY1 may have (locally) a particular
structure if the intermodal distances of distributions fSθ

1
and fSθ

2
become equal. In this

case, N(Y1) < 6 since two pairs of modes are superimposed during the convolution
process. This situation occurs for several scaling factors of S1 and S2.

As an illustration, consider the case of θ = π/5. This particular angle has the remark-
able property to contract the distributions fS1 and fS2 such that ∆1,2(S

π/5
1 ) ' ∆2,3(S

π/5
2 ).

594



0

1

2

f Z

θ = 0

0

10

20

f S
1θ

−2 −1 0 1 2
0

1

2

f S
2θ

0  

.5

1  

f Z

θ = pi/12

0

5

10

f S
1θ

−2 −1 0 1 2
0

1

2

f S
2θ

0  

.5

1  

f Z

θ = pi/6

0

5

f S
1θ

−2 −1 0 1 2
0

1

2

f S
2θ

0  

.5

1  

f Z

θ = pi/5

0

2

4

f S
1θ

−2 −1 0 1 2
0

1

2
f S

2θ

0  

.5

1  

f Z

θ = pi/4

0

2

4

f S
1θ

−2 −1 0 1 2
0

2

4

f S
2θ

0  

.5

1  

f Z

θ = 11pi/36

0

2

4

f S
1θ

−2 −1 0 1 2
0

2

4

f S
2θ

0  

.5

1  

f Z

θ = 13pi/36

0
1
2
3

f S
1θ

−2 −1 0 1 2
0

2

4

f S
2θ

0

2

4

f Z

θ = pi/2

0

2

4

f S
1θ

−2 −1 0 1 2
0

10

20

f S
2θ

FIGURE 3. Distributions fY1 , fSθ
1

and fSθ
2

for several values of θ .

595



The distribution of Y1 = Sπ/5
1 +Sπ/5

2 results from the convolution of f
Sπ/5

1
and f

Sπ/5
2

. Due

to the matching of the two modes of f
Sπ/5

1
and the two last modes of f

Sπ/5
2

, the number

of modes of Y1 decreases: N(Y1) = 5. The same phenomenon appears for other values of
θz : ∆1,2(S

π/6
1 ) ' ∆1,2(S

π/6
2 ), ∆1,2(S

11π/6
1 ) ' ∆1,3(S

11π/6
2 ). This structural modification

of fY1 (appearing locally around θ if θ ∈ θ z) implies a variation of the entropy.
Note that in general, the relation that links the entropy of a variable to the number

of modes of its distribution is not so simple: counter examples may be found easily,
adjusting the width of the modes. Nevertheless, it is emphasized in this paper that when
comparing normalized distributions fY resulting from the convolution of two scaled
versions of given distributions fS1 and fS2 , the modality of fY is related to the entropy of
Y : they vary similarly when modifying the mixture weights.

CONCLUSION

This paper focuses on the marginal entropy of a sphered linear mixture of two indepen-
dent source signals. The existence of spurious minima in this entropic function when the
sources have multimodal distributions is emphasized. The local minima are due to the
structural modifications of the mixture distribution fY . The paper shows that the number
of modes of fY is a function of i) the modality of the source signals and ii) the transfer
coefficients. Knowing the source distributions, it is possible to predict for which values
of the transfer coefficients local minima in the number of modes will appear. These local
minima correspond to the local minima of the entropic cost function, which are a con-
sequence of the convolution of the original source distributions. Therefore, using any
gradient-based method on entropy-based independence criteria may lead to false solu-
tions to the Independent Component Analysis problem. Future work should address this
problem for n > 2.
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