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ABSTRACT

This paper describes a least absolute bound approach as a

way to solve the ICA problems proposed in the 2006 MSLP

competition. The least absolute bound is an ICA contrast

closely related to the support width measure, which has been

already studied for the blind extraction of bounded sources.

By comparison, the least absolute bound applies to a broader

class of sources, including those that are bounded on a sin-

gle side only. This precisely corresponds to the sources

involved in the competition. Practically, the minimization

of the least absolute bound relies on a specific deflation al-

gorithm with a loose orthogonality constraint. This allows

solving large-scale problems without accumulating errors.

1. INTRODUCTION

The goal of the MLSP 2006 competition proposed by An-

drzej Cichocki and Deniz Erdogmus consists in blindly re-

covering sources s(t) = [s1(t), . . . , sm(t)]T , knowing only

mixtures of them. The latter can be written as x(t) = As(t),
where x(t) = [x1(t), . . . , xn(t)]T are the observed mix-

tures and A is the unknown mixing matrix, which is as-

sumed to be square (m = n).

The competition rules bring some a priori information

about the sources. For all subproblems, sources are statisti-

cally independent and non-negative. Two kinds of sources

can be generated: they are either sparse (super-gaussian) or

uniformly distributed (sub-gaussian); see Fig. 1. More in-

formation regarding the sources and mixing matrices can be

found on the competition website (http://mlsp2006.

conwiz.dk/).

Practically, algorithms implementing Independent Com-

ponent Analysis (ICA, [1]) can blindly recover the indepen-

dent sources from the mixtures. In most algorithms, the sep-

aration is achieved iteratively by building a matrix B such

that y(t) = Bx(t) is a ‘good estimate’ of s(t). Typically,
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Fig. 1. Sources involved in the MLSP 2006 competition.

Sources are statistically independent, either uniformly dis-

tributed or sparse. All sources are thus non-negative.

algorithms process prewhitened mixtures z(t) = Vx(t),
where matrix V is such that E[z(t) zT(t)] = I and VA

is orthogonal. After prewhitening, ICA reduces to finding

an orthogonal matrix W and y(t) = Wz(t) yields an es-

timate of the sources up to a scaling and permutation. As

B = WV, the quality of both the whitening and ICA pro-

cedures are important, especially if the dimension is high.

In order to assess the quality of the source recovery,

the competition resorts to the Signal-to-Interference Ratio

(SIR), which involves the transfer matrix C = BA and can

be defined as follows:

SIR =
1

n

n∑
i=1

10 log10

maxj c2
ij∑

j c2
ij −maxj c2

ij

. (1)

Within the framework of the competition, the SIR is used

in a Monte Carlo-process. The SIR higher should be higher

than 15dB for at least 90% of the runs, i.e. P90 > 15dB,

where P90 is the 90th percentile. Four sub-problems must

be solved:

1. Large scale problem: fixed sample size (N = 5000),

increasing number of mixtures (n > 50), random

mixing matrix.

2. Small training set problem: fixed number of mixtures

(n = 50), decreasing sample size (N < 5000), ran-

dom mixing matrix.
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3. Highly ill-conditioned problem: N = 5000, n > 1;

for this subproblem, the mixing matrix is a Hilbert

matrix multiplied by a random Givens matrix.

4. Noisy mixtures problem: n = 50, N = 1000, white

noise with increasing variance corrupts the mixtures.

The remainder of this paper is organized as follows.

Section 2 presents the objective function used to solve the

competition problems. Next, Section 3 describes an opti-

mization procedure specifically tailored for this function.

Section 4 details the results obtained for the mixtures of the

competition. Finally, Section 5 draws the conclusions.

2. PROPOSED ICA CONTRAST FUNCTION

Many general-purpose ICA algorithms offer an appealing

tradeoff between performances and speed. However, avail-

able a priori knowledge about the sources often incites one

to design a specific contrast, fitted to the source properties.

For instance, objective functions exploiting sparsity, non-

negativity or finite measure support of the sources have been

proposed in the literature. Any a priori information about

sources may help to improve the separation algorithms, from

at least 4 viewpoints:

• Speed and convergence rate.

• Separation quality in terms of a performance index

such as the SIR.

• Relaxation of some assumption in the model (such as

the source independence or the condition m ≤ n).

• Derivation of a cost function with more interesting

properties (e.g. discriminacy).

For instance, if the sources are bounded, an algorithm based

on the Minimum Support Width measure (SWM) can ad-

dress the three last points, depending on the context [2, 3,

4, 5, 6]. The algorithm described in [7] can extract sources

one by one (using a deflation approach [8, 6]) by minimiz-

ing CΩ(yi)
.
= sup yi − inf yi.

2.1. Least absolute bound approach

A variant of the SWM contrast is proposed for extracting the

sources involved in the competition problems. About half

these sources are uniformly distributed (and thus double-

bounded: a < inf si < sup si < b, |a| < ∞, |b| < ∞),

whereas the other half is bounded only on one side (a <
inf si, sup si = ∞; here a = 0). In this second case, min-

imizing the SWM is meaningless and inappropriate. How-

ever, a similar reasoning can be derived, based on the milder

assumption that the sources are at least bounded on one side.

As sources can only be recovered up to a sign change, this
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Fig. 2. Graphical interpretation of the SWM (left, CΩ) and

LAB (right, CLAB); the minimum values of the contrasts are

labelled ‘�’. The solid lines represents the support bound-

aries and the bold solid arrows represent the current axes.

leaves two solutions: one can either maximize the infimum

of the whitened mixtures or minimize the supremum, what

can be related to Erdogan’s approach [9] (minimization of

the supremum for symmetric bounded signals). These two

possibilities can be merged into a single objective function,

namely the Least Absolute Bound (LAB):

CLAB(yi)
.
= min{− inf yi, sup yi} , (2)

which has to be minimized: w�
i = minwi

CLAB(wiz). Both

the SWM and LAB can be written as a weighted sum of

positive quantities only depending on the sources. In both

cases, the weights are the absolute values of the elements

of the transfer vector between s and yi, i.e. the elements of

the i-th row of C; the positive ‘source quantities’ are the

widths of the support convex hulls for the SWM approach,

and either the suprema or minus the infima of the sources

for the LAB approach. Then, both are equivalent and benefit

from similar contrast properties (see Fig. 2).

2.2. Practical estimation

In practice, the output infimum and supremum must be es-

timated; obviously, an estimator based on the minimum and

maximum observed values would be highly sensitive to ad-

ditive noise and outliers. Therefore averaged order statistics

are preferred, like advised in [2] for estimating the SWM.

Assuming that y′

i denotes the sorted ith output, the contrast

estimator can be written as

ĈLAB(yi)
.
= min

{
−

1

q

q∑
k=1

y′

i(k),
1

q

q∑
k=1

y′

i(N +1−k)

}
,

where y′

i(k) is the kth lowest value of yi(t), y′

i(N+1−k) the

kth highest one and q is an integer between 1 and �N/2�.
This requires that the sample size N is large enough so that
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the accuracy of the above estimator is sufficient. Indeed, it

can be observed that inf yi =
∑m

j=1
wij inf sj , and inf yi

has thus to be estimated from the sample by mint yi(t),
and likewise for the supremum. Clearly, as it holds that

yi(t) =
∑m

j=1
wijsj(t), the last estimation is reliable only

if it exists t� such that 1 ≤ t� ≤ N and sj(t
�) � inf sj

for all 1 ≤ j ≤ m, that is when the sample size is large

enough, because the sources are assumed to be statistically

independent. Under the same condition, 1

q

∑q

k=1
y′

i(k) �

mint yi(t) if y′

i(l) � mint yi(t) for all 1 ≤ l ≤ q, and

likewise for 1

q

∑q

k=1
y′

i(N + 1− k).

In the noise-free case, q can be taken close to one; other-

wise, q must be slightly increased (see [3] for a discussion of

q in the context of the minimum support approach). For all

competition problems, q takes on the value max{20, N/50},
except for the third one (q = N/200).

The estimation of ĈLAB involves a sort operation, whose

complexity (O(N log N)) is higher than for more traditional

contrasts such as the kurtosis (typicallyO(N)).

3. OPTIMIZATION SCHEME

As function ĈLAB is not everywhere differentiable [6], a spe-

cific optimization method is needed. A deflation algorithm

that is able to optimize non-differentiable contrasts has been

proposed in [7]. Instead of using the derivative of the con-

trast and a standard gradient ascent or a fixed-point update

rule, this algorithm relies on a trial-and-error geodesic search

on the manifold of orthogonal matrices. This amounts to

updating separation matrix W by rotating pairs of rows, us-

ing Givens matrices; this keeps W always orthogonal. Un-

fortunately, although this algorithm shows interesting prop-

erties (e.g. monotonic contrast increase), it is only suited

for small-sized problem. Indeed, it involves about 2n + 1
contrast evaluations per iteration and per source, in order

to explore thoroughly the contrast landscape. In compar-

ison, FastICA requires only a single evaluation of the con-

trast gradient. For the MLSP competition, a faster algorithm

was clearly required, as proposed hereafter.

Although the LAB and SWM are not differentiable con-

trasts, a direction that optimizes the contrast can easily be

guessed in order to replace the gradient vector. Assume for

the sake of simplicity that mixtures involve only bounded

sources, e.g. uniform ones, and are whitened. Under this

hypothesis, solving the ICA problem amounts to finding

an orthogonal matrix W, which can be interpreted geo-

metrically as a rotation. In other words, the joint support

of the whitened mixtures looks like a rotated rectangular

hyperparallelipiped. Then ICA precisely consists in find-

ing an orthonormal basis such that the hyperparallelipided

edges are parallel with the basis axes. Looking at row wi of

W, computing the infimum and supremum involves the ith
ICA output yi(t) = wiz(t), which is the projection of the

u

u
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w
2

w
2

w
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w
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Fig. 3. Principle of the proposed algorithm in the 2D

case: (left) LAB minimum; (middle) intermediate situation;

(right) LAB maximum. In those three examples, vector u

points towards sample points that determine the value of

ĈLAB(w1z) (bold black line or black triangle). This provides

information about how to update w1: if u �= w1, then rotate

w1 away from u.

whitened sample on the wi axis. If the infimum and supre-

mum are estimated using averaged order statistics, only q
projected observations are used to approximate both ends

of the marginal support. At this stage, let us focus on those

q observations at one end of the support and before projec-

tion on wi: averaging them and normalizing the resulting

vector gives us a direction u whose interpretation is as fol-

lows. If wi is a correct solution of the ICA problem, as on

the left of Fig. 3, then the q observations are located on (or

near) a face of the hyper-parallelipiped that is perpendicu-

lar to wi; in this setting, u ≈ wi. On the other hand, if

wi is not a correct solution of the ICA problem, as in the

middle of Fig. 3, then the q observations concentrate in a

corner of the hyperparallelipiped; consequently, u points to

that corner. Finally, the right plot of Fig. 3 shows a config-

uration for which wi ≈ u, though wi is not a good solu-

tion. These three configurations correspond respectively to

a minimum, an intermediate value and a maximum of the

infimum and suggest using u in a similar way as a gradient

vector. As long as the algorithm has not converged, vector

u indicates the direction of the closest corner of the sup-

port (w.r.t. direction wi). Hence u gives a good estimate

of the direction where wi may not go. Rotating wi ‘away’

from u proves to be experimentally a relatively good guess

towards the solution: doing so decreases the LAB, at least

while no other corner gains the upper hand. Indeed, when

approaching the solution, two or more corners struggle for

the upper hand from one iteration to the other and the di-

rection indicated by u might thus change accordingly, in a

‘chaotic’ way. This justifies the use of an update angle that

does not depend on (the angle between wi and) u. It is

scheduled to start from π/4 and ulterior increases/decreases

depend on the LAB changes (decreases/stagnation). A not

too fast decay of the update angle, though time consuming,

enables the algorithm to converge slowly but surely on the

best solution.

The previous ideas can be implemented through a sim-
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ple deflation procedure, listed in Fig. 4. As this algorithm

is intended to work on ‘difficult’ problems (large number of

mixtures, low number of observations, ill-conditioned mix-

ing matrix), it is expected that whitening results can be in-

accurate. In order to be robust against ill-conditioned mix-

tures, the whitening stage relies on a singular value decom-

position (SVD) of the centered mixtures instead of an eigen-

value decomposition (EVD) of the covariance matrix. Addi-

tionally, possible badly whitened signals zi (i.e. those hav-

ing a variance lower than one and/or nonzero covariances)

are discarded from vector z. These signals can perturb the

subsequent separation step (the infimum and/or supremum

abnormally vanishes in some directions) and jeopardize the

recovery of all sources. Hence, assuming without loss of

generality that those signals are the p last ones, z is updated

according to z(t)← [z1(t), · · · , zn−p(t)]
T . Next, the sepa-

ration algorithm is run on this reduced vector, yielding n−p
estimated sources. Finally, those imperfectly whitened mix-

tures are simply put back as they are in the ICA output:

y(t)← [y1(t), · · · , yn−p(t), zn−p+1(t), · · · , zn(t)]T .

Low sample sizes or large numbers of mixtures can also

impair the orthogonality property of W: whitening reduces

the sample covariance to the identity matrix. In difficult

problems, a small discrepancy between the sample covari-

ance and the true covariance can jeopardize the source ex-

traction after whitening. In such cases, small departures

from orthogonality allows W to reach better contrast values

and compensate for whitening errors. This justifies the loose

orthogonalization of W in the algorithm. The algorithm

merely checks that wi, the current row of W is not con-

verging on any previously found solution; if this happens,

wi is made orthogonal to all previous rows. This approx-

imate orthogonolization also prevents the accumulation of

errors, which is typically observed in deflation algorithms.

4. RESULTS

4.1. Large-scale problem

In this first subproblem, the sample size is fixed (N = 5000)

and the number of sources/mixtures is growing (n > 50).

The proposed algorithm solves it for a quite large num-

ber of mixtures. Graphical results in Fig. 5 show that out-

standing SIR values are attained for more than 400 mix-

tures (P90 is still higher than 30dB). Processing so many

mixtures obviously requires long computation times, even

with the fastest algorithms (e.g. FastICA), and justifies the

restriction to only 20 Monte-Carlo runs.

4.2. Small training set problem

In this second problem, the number of sources is kept con-

stant (n = 50) but the sample size N varies. The results are

shown in Fig. 6 for two algorithms: the proposed one and

[W,V] = LABICA(x(t))

1. Whiten the mixtures using a singular value decomposition:

(a) Center the sample X
.
= [x(t)] by removing its mean:

x(t)← x(t) − 1
N

Σtx(t).

(b) Compute the SVD of the centered sample: X
T = USV

T .

(c) Compute Z
.
= [z(t)] directly: Z =

√
N UT .

(Depending on the convention, U is either N×n or N×N ;

in the latter case, keep only the n first columns of U.)

2. Discard the p incorrectly whitened mixtures (i.e. rows zi(t) having

a variance lower than one and/or nonzero covariances).

3. Compute the radial projection of z on the unit sphere:

z◦(t) =
z(t)

‖z(t)‖
for 1 ≤ t ≤ N .

4. To extract the ith source, with 1 ≤ i ≤ n− p, do:

(a) Initialize wi to any random direction and the update angle

α to π/4.

(b) Check loose orthogonality: if for some j < i the inequality

|wiw
T
j | < cos(π/12) holds then make wi orthogonal to

all wj : wi ← wi −Σjwiw
T
j wj ; wi ← wi

‖wi‖
.

(c) Compute ith ICA output: yi(t) = wiz(t) for 1 ≤ t ≤ N .

(d) Estimate the LAB of yi(t) using mean order statistics:

• Determine the indexes of the q lowest and q highest

values of yi(t).

• Average the two corresponding sets of values to obtain

the infimum and supremum of yi(t); keep their mini-

mum absolute value as in (2.2) to obtain ĈLAB(yi).

• Use the same indexes to compute the direction u as

the average of the corresponding columns of Z◦.

• If u �= wi, make u orthogonal to wi and normalize

it: u← u− uwT
i wi; u← u

‖u‖
.

(e) Update wi and α:

• Compute w
′
i = cos(α)wi−sin(α)u and ĈLAB(w′

iz)
(see step (d) above).

• If ĈLAB(w′
iz) < ĈLAB(yi), then let α ← 1.01α and

wi ← w′
i, else α← α/1.2.

(f) Go back to step 4(b) if convergence is not attained.

5. Append the p incorrectly whitened mixtures to the extracted

sources: ∀i > n− p, yi(t)← zi(t).

Fig. 4. LABICA: ad hoc deflation procedure to minimize

ĈLAB. After robust SVD-based whitening, sources are ex-

tracted one-by-one, with a loose orthogonality constraint

preventing error accumulation. The gradient is replaced

with contrast-dependent information: the closest support

corner direction.
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Fig. 5. Results for subproblem 1: SIR performances vs

number of sources n for 20 Monte-Carlo runs of LABICA

and FastICA with 5000 sample points. P90 > 15dB holds

for more than 300 sources.
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Fig. 6. Results for subproblem 2: SIR performances vs

sample size N for 100 Monte-Carlo runs of LABICA and

FastICA with 50 sources. Less than 250 observations are

needed to achieve P90 > 15dB.

FastICA (official version 2.5, with ‘gaus’ nonlinearity and

fine tuning enabled). As can be seen, less than 250 sample

points are required to achieve a SIR greater than 15dB in

90% of the cases.

4.3. Highly ill-conditioned problem

In this third subproblem, the mixing matrix is the product

of a Hilbert matrix with a random Givens matrix. Hence, as

the number of mixtures is growing, the separation problem

gets more and more ill-conditioned. The results are shown

in Fig. 7 for three algorithms: the proposed one, FastICA

(as above) and a ‘hacked’ version of FastICA. The latter,

called MyfpICA, works with a SVD-based whitening stage

and a kurtosis-driven nonlinearity (either ‘kurt’ or ‘gaus’

depending on the kurtosis). In this subproblem, achieving

a correct whitening is the main difficulty. The proposed
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Fig. 7. Results for subproblem 3: SIR performances vs the

number of sources n for 100 Monte-Carlo runs of LABICA

(q = N/200), FastICA and MyfpICA with 5000 sample

points. P90 > 15dB holds up to 14 sources.
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Fig. 8. Results for subproblem 4: SIR performances vs the

noise standard deviation, for 100 Monte-Carlo runs of LAB-

ICA and FastICA with 5000 sample points and 50 sources;

the corresponding SNR curve is plotted alongside.

algorithm brings a significant performance gain by using

the SVD of the centered sample instead of the EVD of the

sample covariance matrix. However, beyond 10 mixtures in

this problem, the determinant of the mixing matrix A is so

close to zero that no more than 10 mixtures can be whitened

properly, even with the SVD. It has been experimentally ob-

served that additional mixtures after whitening are actually

not white; some of them may be correlated and/or have a

variance lower than one. In this situation, the trick consists

in temporarily discarding these still correlated mixtures af-

ter whitening, as proposed in Section 3, so that the separa-

tion algorithm can run in good conditions.

4.4. Noisy mixtures problem

The value of estimator ĈLAB(yi) relies on a few sample points

only, namely on q sample points with q 	 N . Conse-
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quently the proposed approach is expected not to be very

robust against noise and outliers, especially with low values

of q. As can be seen in Fig. 8, the quality of the results is

rapidly decreasing as the noise variance is growing.

5. CONCLUSION

This note has described an ICA algorithm able to perform

efficiently on at least three subproblems of 2006 MLSP com-

petition proposed by A. Cichocki and D. Erdogmus. The

algorithm relies on the support width measure, which has

been proved to be an efficient contrast for bounded sources.

SWM is not a ‘general purpose’ contrast, i.e. it can only

be used for recovering double-bounded sources. As a mat-

ter of fact, not all sources involved in the competition are

double-bounded: on average, half of them are. Neverthe-

less, it is noteworthy that all sources are non-negative. Un-

fortunately non-negativity does not hold for the estimated

sources, because mixing coefficients can be negative. In

this case however, non-negativity still reduces to an inter-

esting property, even after centering of the mixtures: the

marginal support of the estimated sources has at least either

an infimum or a supremum. This property can be used to

compute the least absolute bound of the estimated source

support, which proves to be a discriminant contrast for the

considered sources.

As this contrast is not differentiable, a specifically de-

signed optimization procedure is proposed. It works in a

similar way as a gradient descent, except that the contrast

gradient is replaced in the update rule with an ad hoc guess.

This allows the proposed algorithm to be quite competitive

in terms of speed: the computational cost of a single up-

date is low, as for a fixed-point algorithm, though the latter

requires less iterations and converges much faster.

Next, the proposed algorithm relaxes the orthogonality

constraint on the ICA separating matrix, though mixtures

are prewhitened. The algorithm only checks that all source

estimates are distinct. The main advantage of this milder

constraint is that a deflation approach can be used without

accumulating errors in the successive source estimates.

Finally, performance improvement can also stem from

optimizations in the prewhitening step. While this operation

generally involves an EVD of the sample covariance, better

results are obtained with an SVD of the centered sample.

Moreover, in the case of an ill-conditioned mixing matrix,

it is also advised to discard uncorrectly whitened signals;

these can jeopardize the subsequent ICA algorithm and are

simply appended as they are to the reduced ICA solution.
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