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Abstract

This paper presents advantages of using techniques like principal component analysis (PCA), partial least square (PLS)

and some extensions called multiway PCA (MPCA) and multiway PLS (MPLS) for reducing dimensionality in damage

identification problem, in particular, detecting and locating impacts in a part of a commercial aircraft wing flap. It is shown

that applying MPCA and MPLS is convenient in systems which many sensors are monitoring the structures, because the

reciprocal relation between signals is considered. The methodology used for detecting and locating the impact uses the

philosophy of case-based reasoning, where single PCA and PLS are used also for organizing previous knowledge in

memory. Sixteen approaches combining those techniques have been performed. Results from all of them are presented,

compared and discussed.

r 2007 Elsevier Ltd. All rights reserved.
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Structural health monitoring
1. Introduction

Nowadays, laboratory instruments produce great quantities of data. This creates a data overload and
usually a big amount of these data are wasted. The problem is to compress and/or to extract relevant
information. Generally, there is a great deal of correlated or redundant information in procedure measures.
This information must be compressed in a manner that retains the essential information and is more easily
displayed than each of the variables individually. Also, essential information often lies not in any individual
variable but in how the variables change with respect to one another, i.e. how they co-vary.

Dimensionality reduction is a way to transform vectors X�Rd into new vector T�Rq, where qod. This way
must obey certain rules in order to be useful. Multivariate statistical process control (MPSC) can be
considered as a tool to reduce the dimension of a data set [1]. MPSC techniques are a comparatively recent
e front matter r 2007 Elsevier Ltd. All rights reserved.
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development in engineering. The strength of these techniques lies in the ability to transform highly correlated,
redundant and noisy data to a model whose components often offer insight into the underlying physical
phenomena and relationships involved in the system. MPSC is based on two techniques: principal component
analysis (PCA) [2] and partial least squares (PLS), also known as projection to latent structures [3].

In structural health monitoring (SHM), the data extracted are often unsuitable due to redundancy,
correlation or large feature space. Consequently, dimensionality reduction methodologies have been the why
and wherefore of some works [4]. Recently, techniques based on multivariate statistics [5,6] and statistical
process control (SPC) [7] have been applied in structural damage detection. On the other hand, PCA has been
used for performing data compression prior to the feature extraction process when data from multiple
measurement points are available in order to enhance the discrimination between features from the
undamaged and damaged structures [8]. This process transforms the time series from multiple measurement
points into a single time series. Visualization and dimension reduction were implemented using PCA for
damage detection [9]. PCA technique was used for condensing the frequency response functions data and their
projection onto the most significant principal components, which were used as the artificial neural network
input variables [10]. Moreover, PCA has also been used recently for several purposes including model
reduction [11], dynamic characterization [12], sensor validation [13,14], modal analysis [15], parameter
identification [16] or damage detection [17,18]. Some nonlinear extensions of PCA has been also used for SHM
purposes [19,20].

It is not uncommon for SHM to have tens of sensors measuring variables for a long time and any change in
the response of a single sensor is reproduced as well in the whole sensor response set. In order to study
the relationship among all variables at any one time and its history, extensions of PCA and PLS are used;
these extensions are known as multiway principal components (MPCA) and multiway partial least square
(MPLS) [21].

In the community of SHM, PCA has been used mainly to extract features or reduce the dimensionality. This
work proposes to use not only PCA to do that, but also to use PLS and its extensions (MPCA and MPLS)
studying the correlation between sensors. This analysis is performed applying these techniques in combination
with wavelet transform and case-based reasoning (CBR) [22] in order to detect and localizate impacts on an
aircraft composite structure.

In SHM is well known that try to identify what are happening in the structure directly from the time series
signal is not an easy task, for these reasons, researcher have studied many techniques which pretend extract
more information from these signals. Among these, transformation methods (as Fourier, Wavelet, Hilbert,
etc.) are considered good way for changing the point of view of the problem and see beyond [4,23]. In addition,
combinations of these transformations with other techniques provide better results. Here, the combination of
wavelet transform with MSPC is analysed to determine its usefulness.

On the other hand, CBR methodology demands the integration of another technique to classify and
organize in memory old cases in such a way that the retrieve step could be fast and reliable. From another
point of view, CBR has the need of reducing the dimension even more than the dimension obtained in the
previous step. Therefore, this work propose also to apply single PCA and PLS so as to get this purpose.

The objective of the paper is to illustrate several dimensionality reduction techniques for SHM applications.
Impact damage detection problem in an aircraft structure is used as an example. The structure, sensors, impact
method and the experimental setup are explained with details in Section 2. Basic definitions about MSPC are
presented in Section 3. Dimensionality reduction methodologies for locating impact identification are shown
in Section 4, which describes the damage identification approach, techniques to reduce dimensionality and
organization of the existing knowledge. Finally, results and conclusions are presented emphasizing the
advantages and drawbacks of using MSPC in SHM.

2. Experimental procedure: an aircraft structure

Invisible and barely visible impact damage is a serious problem in the aerospace industry which affects the
safety and service life of military and commercial aircrafts; it is considered to be the most common and
important damage form in aircraft structures [24]. The use of composite materials in engineering structures is
not only a great opportunity but also a major challenge to inspection and maintenance. Impacts with ground
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support equipment are one of the major causes of in-service damage to composite aerospace structures. Thus
impact detection on composite structures has direct relevance to the problem of damage detection in these
structures. Previous work in this area includes the following examples [25–29] among others.

This section describes the experimental setup which has been previously used showing that the problem of
identifying impact locations can be solved successfully using neural networks, regression techniques and CBR
locating impact positions to within a fairly accurate distance [30,31]. Figs. 1–4 are reproduced from [31].
Furthermore, the impact method and the data collecting way are presented in this section.

2.1. Wing flap structure

The structure used in this work is a section of a commercial aircraft wing flap with approximate dimensions
shown in Fig. 1. This structure can be regarded as a small-scale version of part of a wing span with the
corresponding features being a leading edge and trailing edge.

This structure is obviously more complex than a flat panel with a degree of curvature stretching over the
surface of the structure. To impart strength into important areas of the panel there exist various ribs, spars and
stringers running throughout the structure as well as the use of honeycomb cores at the leading and trailing
edges. The trailing edge is composed of aluminium skins with an aluminium honeycomb core, the leading edge
of composite skins with a light weight honeycomb core and the central section of thin composite material.
Unfortunately, due to the nature of the origin of the wing flap section (being from a commercial aircraft) little
is known about the specific materials and design parameters constituting the structure, such as the lay up of
the composite.

The thickness of the composite material, as measured, used for the central section and the skins of the
leading edge is 1.5mm and that of the aluminium skin on the trailing edge 1mm. The entire length of the panel
taking into account the curvature of the surface is 1015mm and its width 720mm. As well as the ribs and
stringers illustrated in Fig. 1 there is also a rib running along the middle of the central section of the panel. The
locations of the major ribs are indicated by the positioning of rows of rivets along their lengths placed at fairly
equally spaced intervals of 30mm.
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Fig. 3. Wing panel with superimposed impact grid.
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Nine low-profile, surface-bounded piezoceramic sensors (PIC 155, 10mm in diameter and 1mm thick) are
used to measure impact strain data. The sensors and connectors are distributed over the surface of the flap;
two on the leading edge, two on the trailing edge and five in the central section as shown in Fig. 2. They are
attached to each other using short (to reduce effects of unwanted noise superimposed on the signals) wires
soldered to the positive and negative elements of the sensors. The health of each sensor is monitored before
testing to check that all the connections are substantial and signals are being received.

2.2. Impact method

Using datum lines drawn in the x and y directions a grid of approximately 60mm �60mm is drawn on the
trailing edge and the central section of the panel. Due to the importance of the leading edge with regard
to a higher probability of impacts during flight from sources such as bird strikes, the grid is reduced in
size on this section to 40mm �60mm. The surface test area shown in Fig. 3 is impacted using a rubber tipped
PCB instrumented hammer that is chalked before impact to mark the exact position of the impacts.
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Two different sets of data are taken: on the grid intersections and in a random array way over the entire test
area. More impacts are repeated on the leading edge, again due to the greater interest in this area.
The response of all nine sensors on the structure is recorded for a total of 574 impacts, the positions of
which are measured from the x and y datum lines. Fig. 4 shows the distribution of the measured impacts over
the test area.

2.3. Data collecting

The signals obtained during testing contain a lot of undesirable information, including: noise, different
levels of unavoidable offset, trends, large amount of data-points, etc. (see Fig. 5a). The offsets are removed
using the mean value of each signal. Furthermore, signals are cut off, eliminating data-points which does not
contain any information (see Fig. 5b). Finally, the set of these signals is arranged in a three-dimension (3D) in
which j ¼ 1; 2; . . . ; J sensors are recorded at k ¼ 1; 2; . . . ;K time instants throughout a particular experiment.
Similar data are generated for a number of such experiment runs i ¼ 1; 2; . . . ; I . That generates a three-way

data array X �RIxJxK as is illustrated Fig. 6a, where the height gives the number of experiments I, the width
gives the number of time instants K, and the length gives the number of measurements (sensors) J. In this way,
each frontal slice is a two-dimensional (2D)-matrix X which represents all measurements in one sensor. On the
other hand, the position of the impact (x-location and y-location) is stored in a matrix Y as can be seen
from Fig. 6b.



ARTICLE IN PRESS

Experiments

(I)

Time

(K)

Sensors

(J)

X Experiments

x-location y-location

Y

Fig. 6. Collected data: (a) Signals (b) impact location.

L.E. Mujica et al. / Mechanical Systems and Signal Processing 22 (2008) 155–171160
3. Linear dimension reduction: multivariate statistical process control

MSPC is a set of mathematical tools that can be used to extract information from a large amount of
data [32]. The basis of MSPC schemes are the statistical projection techniques of PCA [33] and PLS [3]. In this
section, a brief description of these techniques and its extensions known as MPCA and MPLS [34] are
presented.
3.1. Principal component analysis

PCA is a standard tool for data compression and information extraction which finds combinations of
variables or factors that describe major trends in a data set [35]. PCA is concerned with explaining the
variance–covariance structure through a few linear combinations of the original variables. Its general
objectives are data reduction and interpretation. The multivariate data are organized in K variables
and I samples per variable. In this work, PCA is applied to each sensor separately (2D-matrix X ); on the
other hand, time is treated as independent variable which its dimension will be reduced.

The first step in applying PCA is to standardize the data matrix X, since PCA is scale variant [36]. Several
studies of scaling are presented in literature: continuous scaling (CS), group scaling (GS) and autoscaling (AS)
[37,38]. According to these studies, GS is selected for this work because it considers changes between variables
and does not process independently the variables. The mean trajectories are removed and all variables are
made to have equal variance. As a consequence, the experiment trajectories of the sensors and their standard
deviations, often non-linear in nature, are removed from the data.

Once the variables have been standardized, the covariance matrix S is calculated:

S ¼
1

l � 1
XTX . (1)

The matrix P̂ where columns are the eigenvectors of S and the diagonal matrix l with eigenvalues of S on the
main diagonal are found:

SP̂ ¼ P̂l. (2)

Each eigenvalue is associated to an eigenvector. The eigenvector with the highest eigenvalue represents the
most important pattern in the data, i.e. contains the largest quantity of information, therefore this vector is
called the principal component of the data set. Ordering the eigenvectors by eigenvalue, highest to lowest, gives
the components in order of significance. In order to reduce the dimensionality, the less important components
can be eliminated (information is lost, but if the eigenvalues are small, this information is not much), then
only the n first eigenvectors are chosen (loading vectors and denoted by P) and the final data set will be
n-dimensional. The projected matrix T (or score vectors) in the new space is defined by

T ¼ XP, (3)

and the projection of T back onto the K-dimensional observation space is

X̂ ¼ TPT. (4)
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The difference between X and X̂ is the residual matrix E [32]:

X ¼ X̂ þ E, (5)

X ¼ TPT þ E. (6)

3.2. Partial least square

PLS, also known as projection to latent structures [3], computes loading P and score vectors T that are
correlated with the predicted block Y while describing a large amount of the variation in the predictor matrix
X. Here, X �RI�K and it is defined as in PCA according to Fig. 6a and Y�RI�H where H is the number of
observations and I the number of samples. In this work, Y is defined by the impact location, it means (as can
be seen from Fig. 6b) that H ¼ 2 and I is the number of experiments. The PLS is achieved by decomposing X

and Y into a combination of loadings P and Q (formed by orthogonal vectors), scores T and U (the
projections of the loading vectors associated with the first singular values) and residual matrices E and F [39]:

X ¼ TPT þ E, (7)

Y ¼ UQT þ F . (8)

Firstly, the input and output variables are projected onto a subspace of orthogonal principal components,
giving the input and output scores T and U, before an ordinary least square regression is carried out between
each pair of corresponding input and output scores. The heart of PLS methodology is the nonlinear iterative
partial least square (NIPALS) algorithm [3].

3.3. Multiway principal component analysis

Although in SHM is not unusual to measure a lot of variables, this does not always mean that the same
quantity of independent things are taking place. The measured variables are autocorrelated in time and
extremely highly correlated with one another at any give time. Moreover, the relationship among all the
variables at any one time is not only important, but also the whole past history of these variables. MPCA is
used to compress such data to extract the information by projecting the data into a low-dimensional space
condensing both the variables and their time history [34]. MPCA is equivalent to performing ordinary PCA on
a large two-dimensional (2D) matrix constructed by unfolding the 3D matrix. Six possible ways of unfolding
have been suggested before [37]: they are indicated in Table 1, showing the structure of the unfolding matrix
and the direction that remains unaltered.

When aiming at PCA-based monitoring, B- and D- unfolding will lead to models that are equivalent to the
models constructed on the C- and E- unfolded matrices, respectively. In this article, the intention is to
summarize both sensor and time information, and to keep the experiments unaltered; therefore E-unfolding
will be applied. In Fig. 7 it can be seen how experiment unfolding is made. Each frontal slice represents all
measurements of one sensor. Slices are put next to each other; one row represents the data of one experiment.
Afterward, PCA is applied to this unfolded matrix.
Table 1

Ways of unfolding a three-way data matrix, according to [37]

Type Structure Direction

A IK � J Sensor

B JI � K Time

C IJ � K Time

D I � KJ Experiment

E I � JK Experiment

F J � IK Sensor
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The previous process allows decomposing the three-way array X into a series of principal components
consisting of score vectors T and loading matrices P, plus a residual 3D-matrix E, in this way and in
accordance with the principles of PCA, it separates the data in two parts:

X ¼ T
O

Pþ E , (9)

where the first part or systematic part consists in a Kronecker product or Tensor product between T (related to
the experiment) and P (related to the sensors and their time variation) [34].

3.4. Multiway partial least square

The same multivariate SPC monitoring ideas that were developed using MPCA can be extended directly
using MPLS when predicted data Y are available. Comparing MPCA and MPLS, MPCA only makes use of
the sensor measurements X , taken throughout the duration of the experiment and is focused in its variance,
while MPLS focuses on the variance of X and Y.

MPLS is an extension of PLS to handle data in 3D arrays. MPLS is equivalent of performing ordinary PLS
on a large 2D-matrix X formed by unfolding the three-way array X in one of the six possibilities cited in
Table 1 [40]. Due to the reasons previously explained, E-unfolding is chosen.

4. Dimensionality reduction for locating impact damage in structures

On the whole, the methodology applied in this work for locating impacts using CBR [41,42] consists of two
principal tasks: (i) Case defining or feature extraction which its goal is calculate indicators from the data that
can be used to represent the impacts and (ii) building the casebase, which means to recognize patterns of these
cases and classify them in order to improve the matching into the CBR system. In both tasks, the problem can
be considered as a dimensionality reduction problem. In this section, the employment of dimensionality
reduction techniques for locating impacts are studied and evaluated.

4.1. Impact location identification using case-based reasoning

In a ‘‘learning mode’’ the first group of data (grid impacts) is used to generate a set of cases. In principle,
each case is defined by the impact location and its dynamic response. Due to the large amount of data, the
dynamic response information should be compressed and extracted, therefore, its dimension is reduced. The
casebase is an array in memory organizing all the cases to facilitate the search for the cases most similar to the
current problem. These casebases are built using the first set of cases (322 grid impacts) which can be seen in
Fig. 4 and they will be used in diagnosing future situations by analogy (see Fig. 8).

When the system is in the ‘‘operation mode’’ the data group of random impacts shown in Fig. 4b are used to
test and verify the accuracy of the methodologies. In each new case, several cases are retrieved from the
casebase. In the adapting step, it is decided how many cases by sensors are used to estimate the location of the
impact. Finally, each new experience is retained once the damage has been detected. In order to evaluate its
accuracy, the radial error described by Eq. (10) and Fig. 9 is calculated by experiment

radialerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxreal � xdetectedÞ

2
þ ðyreal � ydetectedÞ

2
q

. (10)
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4.2. Cases defining

The cases defined by the minimal representation of the dynamic response to the impact are obtained
applying several combinations of MSPC techniques in order to reduce the dimensionality of the collected data
shown in Figs. 6 and 10a. The analysis is performed following the next steps (as can be seen from Fig. 10b):
�
 Either using directly the time signals or its wavelet coefficients.

�
 Either analysing each sensor separately (dividing the 3D matrix in several 2D matrices) or considering the

whole sensor response set (unfolding the 3D matrix data in one 2D matrix).

�
 Either applying PCA or PLS (using the impact position as predicted matrix Y).

In this way, eight methodologies are analysed:
1.
 Wavelet and PCA: PCA applied to wavelet coefficients.

2.
 Wavelet and PLS: PLS applied to wavelet coefficients.

3.
 PCA: PCA applied to time signal.

4.
 PLS: PLS applied to time signal.

5.
 Wavelet and MPCA: MPCA applied to wavelet coefficients.
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6.
 Wavelet and MPLS: MPLS applied to wavelet coefficients.

7.
 MPCA: MPCA applied to time signal.

8.
 MPLS: MPLS applied to time signal.
The first four methodologies, PCA and PLS are applied to each sensor separately and one casebase is built
for each configuration. On the last four, MPCA and MPLS are applied to the 3D matrix data in order to
consider reciprocal relations between sensors and to build only one casebase for all sensors.

Finally, the set of cases required to build the casebase in the impact location identification using CBR is
defined by the projected matrix T (or score vectors that in this instance are the minimal representation of the
impact response) and the location of this impact (Y).

4.3. Casebase building

The set of cases, which have been achieved using all previously described methodology, is classified and
organized in memory for recovering at the required time. Among other possibilities for organization,
projecting the cases to a low-dimension is an effective approach. In this way, the retrieve of the stored cases set
with similar characteristics is an easy task by mean of classical Euclidean distance. In order to compare and
evaluate the performance of the proposed linear methodologies to reduce dimensionality in impact location
identification, two kind of casebases have been built combining also PCA and PLS (see Fig. 10c). Thus, its
efficiency like pattern classifier tool is evaluated as well.

4.3.1. Using principal component analysis

Projecting again by means of PCA the set of cases to a new space 2D, every case can be represented by a
point as is shown in Fig. 11. In this way, a new impact is projected as well to this space and the level of
similarity with every stored case can be calculated. As can be seen from the figure, the mark of the every case is
different according to the position of the impact and it is fairly clear that a cluster between wing sections exists
regardless of these groups overlap. The same concept can be applied using not only projecting to 2D but also
to 3D or even 10D, but of course, with the disadvantage that it is difficult or impossible to show by mean
of a graphic.

4.3.2. Using partial least square

Following the procedure previously described but applying PLS to project to a new space 2D and using the
impact locations as predicted matrix Y, a casebase can be organized as well. Fig. 12 shows the stored cases and
its arrangement. Projections 3D or 10D are possible too.
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5. Analysis results and discussion

Since the objective of this work is to illustrate the application of the MSPC techniques in SHM, specifically
for reducing the dimensionality and the hybridization with CBR for organizing the previous knowledge in
memory, a combination of these techniques has been performed in both tasks. Therefore, in some cases, PCA
and partial PLS are applied twice. MPCA and MPLS are used for reducing the dimensionality, but not in the
second task.

A total of 16 approaches have been performed combining: (i) Eight methodologies for reducing
dimensionality: from 140 samples by signal to 10 and 20 datapoints by signal (described in Section 4.2) and (ii)
simple PCA and PLS for organizing casebases using 2; 3 and 10 principal components (detailed in Section 4.3).
In Table 2, the average radial error (see Fig. 9 and Eq. (10)) is shown for every approach.

Analysing firstly the casebases, it is clear that 2 or 3 principal components using PCA or PLS do not provide
an enough accuracy to identify the location of the impact, regardless of the methodology used for reducing
dimension.

Choosing casebase using PCA and PLS with 10 components, a graph shown in Fig. 13 is created. From this
figure, the average radial error in the selected approaches can be compared. At first sight, it is clear that
using the set of approaches which apply MSPC, the error is a little larger than with the other approaches.
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Table 2

Average radial error (mm) using all signals

No. Method PC Casebase

PCA PLS

2PC 3PC 10PC 2PC 3PC 10PC

1 Wavelet 10 97,71 69,89 52,61 96,39 66,32 50,87

and PCA 20 97,71 69,89 52,61 86,06 66,80 49,44

2 Wavelet 10 93,67 69,20 50,75 87,33 68,96 51,63

and PLS 20 93,64 69,20 49,66 86,49 68,98 51,49

3 PCA 10 97,98 70,58 52,56 97,84 66,17 50,41

20 97,98 70,58 52,56 85,69 67,63 49,43

4 PLS 10 93,16 69,08 50,68 86,18 68,53 51,68

20 93,16 69,08 49,56 85,38 68,27 50,86

5 Wavelet 10 172,88 106,54 59,92 186,83 142,08 58,64

and MPCA 20 172,88 106,54 59,92 153,35 109,73 64,01

6 Wavelet 10 146,49 104,66 61,03 126,39 96,48 63,04

and MPLS 20 146,49 104,66 61,03 116,55 95,02 64,86

7 MPCA 10 172,88 106,54 59,92 186,56 142,08 58,64

20 172,88 106,54 59,92 153,76 109,75 64,01

8 MPLS 10 155,22 106,93 61,28 133,63 101,57 62,88

20 155,22 106,93 61,28 124,36 99,96 65,34
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Fig. 13. Average error by methodology using the whole surface.
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Table 3

Average radial error (mm) separating signals by wing sector

No. Method PC Trailing edge Central section Leading edge

PCA PLS PCA PLS PCA PLS

1 Wavelet 10 55,36 51,91 61,78 65,77 39,68 36,20

and PCA 20 55,36 54,03 61,78 62,33 39,68 34,98

2 Wavelet 10 52,09 52,19 60,98 59,93 35,79 31,66

and PLS 20 51,43 51,99 60,98 53,94 35,55 32,28

3 PCA 10 55,36 51,91 61,53 65,29 39,65 36,16

20 55,36 53,79 61,53 62,61 39,65 35,16

4 PLS 10 51,85 52,30 60,50 60,22 35,94 31,06

20 51,32 51,80 61,52 55,28 35,67 32,21

5 Wavelet 10 60,41 60,74 72,28 77,24 40,97 39,22

and MPCA 20 60,41 56,13 72,28 68,82 40,97 38,13

6 Wavelet 10 53,85 50,80 63,40 64,90 37,90 35,15

and MPLS 20 52,77 47,52 63,11 62,25 37,57 35,26

7 MPCA 10 60,81 60,74 71,21 78,48 41,02 39,04

20 60,81 56,32 71,21 68,53 41,02 37,62

8 MPLS 10 53,82 50,36 62,59 65,54 37,44 35,37

20 52,68 48,89 62,24 61,63 37,41 34,18
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Fig. 14. Average error by methodology using the trailing edge section.
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Fig. 15. Average error by methodology using the central section.
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Fig. 16. Average error by methodology using the leading edge section.
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However, considering that with these methodologies only one casebase is trained (and not nine as in the first
four methodologies), the computational cost is very small. If the system has hundreds of sensors, there is a
clear advantage.

The experimental setup (wing flap) is a very complex structure and has three sections perfectly
distinguishable; they are entirely different in shape and materials, and the reciprocal relation between
dynamic responses caused by the impacts cannot exist or can be very small. The main idea of using MPCA and
MPLS is focused to consider that relation. For that reason, authors consider that the benefits of using any of
those methodologies (illustrated in Fig. 10) is not perceived. Therefore, the wing sections are analysed
separately. In other words, if the trailing edge is studied, impacts produced there and signals collected by
sensors 8 and 9 (located in this area) are analysed as a system, independently of the rest of the structure. In this
way, the relation between dynamic responses can be observed and studied.

As can be seen from the Table 3 and Figs. 14–16, the average radial error is nearly the same in every
approach. Given this, it may be inferred that advantages of using MPCA and MPLS in identification impact
location have been shown out. Those advantages can be expanded to SHM in general.

Another point important to highlight is to compare the average radial error in all the three sections. The
accuracy in the leading edge section is much better than the other ones. That is because more experiments have
been performed there due to the importance of the this section with regard to a higher probability of impacts
during flight from sources such as bird strikes. Therefore, the more experiments are carried out, the more
robustness.

6. Conclusions

This paper shows the advantages of using multivariate statistical process control (MSPC) for dimensionality
reduction in structural health monitoring (SHM); the example of detecting impacts in a part of wing aircraft is
studied. The surface of the wing is impacted and its response is measured by nine sensors. Grid impacts were
used to train the casebase into a CBR methodology and random impacts for testing it. MSPC techniques are
used to reduce the dimensionality of the problem. MSPC techniques include: principal component analysis
(PCA), partial least square (PLS), and extensions called multiway PCA (MPCA) and multiway PLS (MPLS).
On the other hand, PCA and PLS are also applied as tool to recognize patterns and classify cases.

A total of 16 approaches have been tested using several combinations of four techniques used to reduce
dimensionality including or not wavelet transform and two for organizing the casebases. Results show that the
system is accurate, and demonstrate the feasibility of using MSPC in SHM. Moreover, multiway extensions of
MSPC are very useful in systems that involves several sensors since it decreases drastically the computation
cost: a single casebase is built for the whole system instead of one by sensor. From the results can be seen also
that the contribution of the wavelet transform application is very few, almost nothing, in this way, it is shown
that MSPC is useful by applied directly to signals, and could be not necessary to use another transformations
(wavelet, FFT, Hilbert, etc.).
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