
On the Kernel Widths in Radial-Basis Function

Networks

NABIL BENOUDJIT and MICHEL VERLEYSEN
Université Catholique de Louvain, Microelectronics Laboratoy, Place du Levant 3, B-1348
Louvain-la-Neuve, Belgium. e-mail: {benoudjit, verleysen}@dice.ucl.ac.be

Abstract. RBFN (Radial-Basis Function Networks) represent an attractive alternative to
other neural network models. Their learning is usually split into an unsupervised part, where

center and widths of the basis functions are set, and a linear supervised part for weight com-
putation. Although available literature on RBFN learning widely covers how basis function
centers and weights must be set, little effort has been devoted to the learning of basis func-

tion widths. This paper addresses this topic: it shows the importance of a proper choice of
basis function widths, and how inadequate values can dramatically influence the approxima-
tion performances of the RBFN. It also suggests a one-dimensional searching procedure as a

compromise between an exhaustive search on all basis function widths, and a non-optimal a
priori choice.

Key words. clusters, Gaussian kernels, radial basis function networks, width scaling factor

1. Introduction

Artificial Neural Networks (ANN) are largely used in applications involving classi-

fication or function approximation. It has been proved that several classes of ANN

such as Multilayer Perceptron (MLP) and Radial-Basis Function Networks (RBFN)

are universal function approximators [1–3]. Therefore, they are widely used for func-

tion approximation [3].

Radial-Basis Function Networks and Multilayer Perceptrons can be used for a

wide range of applications primarily because they can approximate any function

under mild conditions; however, the training of RBFN reveals faster than the train-

ing of multilayer perceptrons [4]. This fast learning speed comes from the fact that

RBFN has just two layers (Figure 1) of parameters (centersþwidths and weights)

and each layer can be determined sequentially. This paper deals with the training

of RBF networks.

MLP are trained by supervised techniques: the weights are computed by minimi-

zing a non-linear cost function. On the contrary the training of RBF networks can be

split into an unsupervised part and a linear supervised part. Unsupervised updating

techniques are straightforward and relatively fast. Moreover, the supervised part of

the learning consists in solving a linear problem, which is therefore also fast, with the

additional benefit of avoiding the problem of local minima usually encountered

Neural Processing Letters 18: 139–154, 2003. 139
2003 Kluwer Academic Publishers. Printed in the Netherlands.

when using multilayer perceptrons [5]. The training procedure for RBFN can be

decomposed naturally into three distinct stages: (i) RBF centers are determined by

some unsupervised/clustering techniques, (ii) widths of the Gaussian kernels that

are the subject of this paper are optimized, (iii) the network weights between the

radial functions layer and the output layer are calculated.

Several algorithms and heuristics are available in the literature regarding the com-

putation of the centers of the radial functions [6–8] and the weights [2, 9]. However,

very few papers only are dedicated to the optimization of the widths of the Gaussian

kernels. In this paper we show first that the problem of fixing the width is not evident

(largely data-dependent) and secondly that it certainly depends on the dimension of

the input space. When we are in the presence of a small number of samples (which is

always the case in large-dimensional spaces), there is no other choice than an exhaus-

tive search by computation in order to optimize the widths of the Gaussian kernels.

In this paper we suggest a one-dimensional searching procedure as a compromise

between an exhaustive search on all basis function widths, and a non-optimal a

priori choice. Note that gradient descent on all RBFN parameters is still possible,

but in this case the speed advantage of RBFN learning is at least partially lost.

The paper is organized as follows. Section 2 reviews the basic principles of a

RBFN and presents the width optimization procedure. Section 3 presents simula-

tions performed on simple examples. The simulation results obtained for different

dimensions of the input space and a comparison of our approach to three commonly

accepted rules are given in Section 4. Section 5 concludes the paper.

2. Radial Basis Function Network

A RBF network is a two-layers ANN. Consider an unknown function fðxÞ: <d ! <.

In a regression context, RBF networks approximate f(x) by a weighted sum of

d-dimensional radial activation functions (plus linear and independent terms, see

Figure 1. Architecture of a radial basis function network with scalar output.

140 NABIL BENOUDJIT AND MICHEL VERLEYSEN

below). The radial basis functions are centred on well-positioned data points, called

centroids; the centroids can be regarded as the nodes of the hidden layer. The posi-

tions of the centroids and the widths of the radial basis functions are obtained by an

unsupervised learning rule. The weights of the output layer are calculated by a super-

vised process using pseudo-inverse matrices or singular value decomposition (SVD)

[2]. However, it should be noted that other authors use the gradient descent algo-

rithm to optimize the parameters of RBF network [10]. The training strategies of

‘spherical’ RBF networks will be detailed in Subsection 2.1.

Suppose we want to approximate a function f(x) with a set ofM radial basis func-

tions fj(x), centred on the centroids cj and defined by:

fj: <
d ! <: fjðxÞ ¼ fjðkx� cjkÞ; ð1Þ

where k:k denotes the Euclidean distance, cj 2 <d and 14 j4M:

The approximation of the function f(x) may be expressed as a linear combination

of the radial basis functions [11]:

f̂ðxÞ ¼
XM
j¼1

ljfjðkx� cjkÞ þ
Xd
i¼1

aixi þ b; ð2Þ

where lj are weight factors, and ai, b are the weights for the linear and independent
terms respectively.

A typical choice for the radial basis functions is a set of multi-dimensional Gaus-

sian kernels:

fjðkx� cjkÞ ¼ exp �
1

2
ðx� cjÞ

T
X�1

j
ðx� cjÞ

� �
; ð3Þ

where
P

j is a covariance matrix.

Three cases can be considered:

1. Full covariance matrices
P

j are replaced by identical scalar widths sj ¼ s for all
Gaussian kernels. In the literature several authors used this option [3, 12–15].

2. Full covariance matrices
P

j are replaced by different scalars widths sj for
each Gaussian kernel j. For example, in [16–18], each scalar width sj is estimated
independently.

3. Full covariance matrices
P

j represent the general case. Musavi et al. [19] used the

covariance matrix to estimate the width of each Gaussian kernel.

In this paper we limit our discussion to the two first cases (1) and (2). One argu-

ment to avoid case (3) is that the number of parameters then grows drastically in

Equation 2; applications dealing with a small number of learning data are thus dif-

ficult to handle by this method. Note that also procedure (3) is very sensitive to out-

liers [20]. Of course in other situations the use of full covariance matrices may be

RADIAL-BASIS FUNCTION NETWORKS 141

interesting [2, 19]. Statistical algorithms used for the estimation of parameters in

mixture modelling (as the EM algorithm) could also be used (see for example [2]

for the estimation of centers and widths, and [21]). Nevertheless, the use of EM algo-

rithm is based on the maximization of likelihood, making this algorithm more often

used for classification and probability estimation problems. The EM algorithm is

also sensitive to outliers [22]. In fact, many authors (see for example [4]) suggest

to use solution (2) and the learning strategies described below for simplicity reasons.

In the following, we will thus concentrate on the study of so-called ‘spherical’ RBFN

covering cases (1) and (2).

2.1. SPHERICAL RBFN LEARNING STRATEGIES

Once the number and the general shape of the radial basis functions fj(x) are chosen,

the RBF network has to be trained properly. Given a training data set T of size NT,

T ¼ fðxp; ypÞ 2 <d �<; 14 p4NT : yp ¼ fðxpÞg; ð4Þ

the training algorithm consists of finding the parameters cj, sj and lj, such that f̂ðxÞ
fits the unknown function f(x) as close as possible. This is realised by minimising a

cost function (usually the mean square error between f̂ðxÞ and f(x) on the learning

points). Often, the training algorithm is decoupled into a three-stage procedure:

. determining the centers cj of the Gaussian kernels,

. computing the widths sj of the Gaussian kernels,

. computing the weights lj and independent terms ai and b.

Moody and Darken [16] proposed to use the k-means clustering algorithm to find

the location of the centroids cj. Other authors use a stochastic online process (Com-

petitive learning) method [7, 17], which leads to similar results, with the advantage of

being adaptive (continuous learning, even with evolving input data).

The computation of the Gaussian function widths sj is the subject of this paper; it
will be detailed at the end of this section.

Once the basis function parameters are determined, the transformation between

the input data and the corresponding outputs of the hidden units is fixed. The net-

work can thus be viewed as an equivalent single-layer network with linear output

units. Minimisation of the average mean square error yields the well-known least-

square solution for the weights.

l ¼ fþy ¼ ðfTfÞ�1fTy; ð5Þ

where l; y are the row vectors of lj weight factors and yp training data outputs (of

sizes M and NT respectively), f is the NT �M matrix of fij ¼ exp ð� xi � cj
�� ��2�2s2j Þ

values and fþ
¼ ðfTfÞ�1fT denotes the pseudo-inverse of f. In practice, to avoid

possible numerical difficulties due to an ill-conditioned matrix fTf, singular value
decomposition (SVD) is usually used to find the weights [2].

142 NABIL BENOUDJIT AND MICHEL VERLEYSEN

The second stage of the training process involves the computation of the Gaussian

function widths, while fixing the degree of overlapping between the Gaussian

kernels. This allows finding a compromise between locality and smoothness of the

function f̂ðxÞ. We consider here both cases (1) and (2) quoted in Section 2. Case

(1) consists in taking identical widths sj ¼ s for all Gaussian kernels [3, 12–15]. In
[15] for example, the widths are fixed as follows:

s ¼
dmaxffiffiffiffiffiffiffiffi
2M

p ; ð6Þ

where M is the number of centroids and dmax is the maximum distance between any

pair of them. This choice would be close to the optimal solution if the data were uni-

formly distributed in the input space, leading to a uniform distribution of centroids.

Unfortunately most real-life problems show non-uniform data distributions. The

method is thus inadequate in practice and an identical width for all Gaussian kernels

should be avoided.

If the distances between the centroids are not equal, it is better to assign a specific

width to each Gaussian kernel. For example, it would be reasonable to assign a lar-

ger width to centroids are widely separated from each other and a smaller width to

closer ones [4]. Case (2) therefore consists of estimating the width of each Gaussian

kernel independently. This can be done, for example, by splitting the learning points

xp into clusters according to the Voronoi region associated to each centroid
1, and

then computing the standard deviation scj of the distance between the learning points
in a cluster and the corresponding centroid; in reference [17] for example, it is sug-

gested to use an iterative procedure to estimate this standard deviation. Moody

and Darken [16], on the other hand, proposed to compute the width factors sj
(the radius of kernel j) by the p-nearest neighbours heuristic:

sj ¼
1

p

Xp
i¼1

��cj � ci��2
 !1

2

ð7Þ

where the cj are the p-nearest neighbours to centroid ci. A suggested value for p is

2 [16]. Saha and Keeler [18] proposed to compute the width factors sj by nearest
neighbour heuristic where sj (the radius of kernel j) is set to the Euclidean distance
between cj (the vector determining the centre for the jth RBF) and its nearest neigh-

bour ci, multiplied by an overlap constant r:

sj ¼ r:min
��cj � ci��� 	

: ð8Þ

This second class of methods offers the advantage of taking the distribution vari-

ations of the data into account. In practice, they are able to perform much better

1A Voronoi region is the part of the space nearest to a specific centroid than to any other one.

RADIAL-BASIS FUNCTION NETWORKS 143

than fixed-width methods, as they offer a greater adaptability to the data. Even

though, as we will show in Section 4, the width values given by the above rules

remain sub-optimal.

2.2. WIDTH SCALING FACTOR OPTIMIZATION

We suggest in this subsection a procedure for the computation of the Gaussian func-

tion widths based on an exhaustive search belonging the second class of algorithms

quoted in subsection 2.1; the purpose is to show the importance of the optimization

of Gaussian widths. Therefore we select the widths in such a way to guarantee a nat-

ural overlap between Gaussian kernels, preserving the local properties of RBFN,

and at the same time to maximize the generalization ability of the network.

First we compute the standard deviations scj of the learning data in each cluster in
a classical way.

DEFINITION. Sigma_cluster is the empirical standard deviation of the learning

data contained in a cluster or Voronoi region associated to a centroid.

Subsequently, we determine a width scaling factor WSF, common to all Gaussian

kernels. The widths of the kernels are then defined as:

8j; sj ¼WSFscj : ð9Þ

Although the EM algorithm (for example [22, 23]) could be used to optimize all sj
simultaneously, it appears that in practical situations it is sometimes difficult to

escape from local minima, leading to non-optimal solution. Equation (9) then offers

a compromise between the usual methods without optimization of sj and a
M-dimensional optimization of all sj together.
By inserting the width factor WSF, the approximation function f̂ðxÞ is smoothed

such that the generalization process is possibly improved, and an optimal overlap-

ping of the Gaussian kernels is allowed. Unfortunately, the optimal width factor

WSF depends on the function to approximate, the dimension of the input set, as well

as on the data distribution. The choice of the optimal WSF value is thus obtained by

extensive simulations (cross-validation): the optimal WSFopt value will be chosen as

the one minimizing the error criterion (mean square error on a validation set),

among a set Q of possible WSF values.

When several minima appear, it is recommended to choose the one corresponding

to the smallest width scaling factor. Indeed, large WSF have to be avoided for com-

plexity, reproducibility and/or numerical instability.

3. Simulations

We consider a simple example, i.e. we try to approximate the unity identity function

(yp ¼ 1) on a d-dimensional hypercube domain [0,10]
d.

144 NABIL BENOUDJIT AND MICHEL VERLEYSEN

It must be mentioned here that this problem is purely theoretical: there is no inter-

est to approximate such a linear (and even constant!) function by a RBFN. If the

RBFN model in Equation 2 is used to approximate this function, all weights lj mul-
tiplying the Gaussian kernels should be equal to zero. In order to reach the goal of

this paper, i.e. to have insights about the optimal values of the kernel widths, the lin-

ear and constant terms were removed from Equation 2 in the simulations. Neverthe-

less, the objective of this paper is to evaluate the variances of the Gaussian kernels

with respect to the dimension of the input space. In order to avoid the consequences

of the other parts of the RBFN training algorithm, we chose to work with a constant

target function, in order to remove the influence of its variations from our conclu-

sions. Simulations were performed for different dimensions d, in order to see the

influence of the dimension on the results.

For all simulations presented in this paper, the density of learning points is uni-

form in the d-dimensional input space. For this reason, the traditional vector quan-

tization (VQ) step in the RBFN learning process is skipped; the centroids are

attached to the nodes of a square grid in dimension d. The goal of this setting is

to eliminate the influence of the VQ results on the simulations. It is well known that

the placement of centroids on the nodes of a square grid is not the ideal result of a

vectorial quantization, when d5 2. For example, it has been demonstrated that in
dimension d ¼ 2, an ideal vector quantization on a uniform density gives a result

in a hive of bee, and not a result in a square grid, as shown it Figure 2 [7]. Never-

theless, it can be shown through a simple calculation that the quantization error

obtained with the square grid (Figure 2a) is only about 4% higher than the one

obtained with the ideal results (Figure 2b).

As this ideal result is not known in dimensions greater than 2 the assumption is

made that the results obtained by placing the centroids on a square grid is a good

approximation of those that would be obtained with a true vector quantization.

Once the centroids are placed on a regular grid, the next subsection shows a theo-

retical way to calculate the optimal width by considering that all the weights are

identical in Equation 2. Next, in Subsection 3.2, the optimal width will be estimated

by setting all weights lj free and calculated according to Equation 5.

Figure 2. a- scalar quantization (square grid), b- vector quantization (hive of bee).

RADIAL-BASIS FUNCTION NETWORKS 145

3.1. THEORETICAL VALUE OF THE OPTIMAL WIDTH OF THE GAUSSIAN KERNELS

As mentioned above, the centroids are placed on a regular grid, and the function to

be approximated is constant (y¼ constant); therefore it is expected that the weights

lj in Equation 2 will be identical for all centroids. For a theoretical calculation of the
optimal WSF coefficient, we will make this assumption and further suppose that

their values will be equal to 1. Then, we calculate by Equation 2 (without linear

and constant terms) the theoretical output function of the network, and this for vari-

ous values of sj; again, as the centroids are placed on a regular grid, we will suppose
that all sj values will be identical. The goal is to find the value of sj giving the ‘flat-
test’ possible output function f̂ðxÞ. This one will not be around 1 (there is no reason,

since we chose the lj equal to 1), but well around another average value m. Taking
lj ¼ 1 does not change anything to the problem: if the lj were set to lj ¼ 1=m, we
would have found an output function with an average value of 1, which was the

initial problem. Nevertheless, the two problems bring obviously the same conclu-

sions regarding the widths sj.
Note that, sc ¼ scj (8j 2 [1, . . . ,M]) being constant over all clusters, it is equivalent

by Equation 9 to find a optimal value of s or a optimal value of WSF. In the follow-
ing section, we will estimate optimal values of s, in order to make possible the
comparison with other methods from the literature (Section 4).

For each value of s, to find the mean value m we take simply the mean of the out-
put function f̂ðxÞ. To quantify the ‘flatness’ of the output function, we calculate its

standard deviation stdy around the mean value m. It should be mentioned here that,

in order to avoid as much as possible the border effects encountered when using

RBFN, the mean and the standard deviations of f̂ðxÞ are taken only in the middle

of the distribution, i.e. in the 3:85; 6:05½ �
d compact. For each dimension, the s giving

the flatter function f̂ðxÞ is called sigma_theo.

DEFINITION. Identical Gaussian kernels with unit weights (lj ¼ 1) are summed
for various s values

f̂ xð Þ ¼
XM
j¼1

exp �

��x� cj��2
2s2

 !
;

whereM is the number of centroids. Sigma_theo is the s value corresponding to the
smallest standard deviation of f̂ðxÞ.

As an example, Figure 3 gives the standard deviation stdy of f̂ðxÞ according to s in
dimension 1 and Figure 4 gives the same result in dimension 2.

3.2. EXPERIMENTAL VALUE OF THE OPTIMAL WIDTH OF THE GAUSSIAN KERNELS

In this second set of simulations, we still consider centroids placed on a regular grid,

but without the assumption that all lj weights will be identical. On the contrary, all
weights are set free and we calculate them according to Equation 5 (using Singular

146 NABIL BENOUDJIT AND MICHEL VERLEYSEN

Value Decomposition). As in the previous section, we repeat the experiment for a

large set of possible values s (identical for all Gaussian kernels), and for several
dimensions d of the input space. If the principle of ‘locality’ of the Gaussian Kernels

is respected and the border effects are neglected, we should expect identical lj. In
practice, this is not the case, mainly because of the border effects, as shown it

Figure 5a. As in Subsection 3.1, we only used the Gaussian kernels in the centre of

the distribution (see Figure 5b) in order to decrease the influence of the border effects.

After the best-fit function is calculated, the performance of the RBF network is

estimated by computing an error criterion. Consider a validation data set V, contain-

ing NV data points:

V ¼ ðxq; yqÞ 2 <d �<; 14 q4NV : yq ¼ fðxqÞ

 �

: ð10Þ

The error criterion can be chosen as the mean square error:

MSEV ¼
1

NV

XNV

q¼1

ðyq � f̂ ðxqÞÞ
2
; ð11Þ

Figure 4. stdy according to s in dimension 2.

Figure 3. stdy according to s in dimension 1.

RADIAL-BASIS FUNCTION NETWORKS 147

where yq are the desired outputs. The minimum of the mean square error (MSEv)

gives now another value of sigma, called sigma_exp.

DEFINITION. Identical Gaussian kernels are summed for various s values

f̂ xð Þ ¼
XM
j¼1

lj exp �
x� cj
�� ��2
2s2

 !
;

where M is the number of centroids. Sigma_exp is the s value corresponding to the
smallest MSEv.

Figure 6(a) gives MSEv according to s in dimension 1 and Figure 6(b) gives the
same result in dimension 3. Figure 6 shows the presence of two minimums. The first

one corresponds to a local decomposition of the function in a sum of Gaussian ker-

nels; this interpretation is consistent with the classical RBF approach. However, the

second one corresponds to a non-local decomposition of the function. As a conse-

quence, the weights lj turn out to be enormous in absolute value (positive or

Figure 6. (a) MSEv versus s in Dim 1. (b) MSEv according versus s in Dim 3.

Figure 5. a- with border effects, b- without border effects.

148 NABIL BENOUDJIT AND MICHEL VERLEYSEN

negative) in order to compensate for the non-flat slopes. This leads to a greater

complexity of the RBFN. In addition, large lj dramatically increases numerical
instability. The optimal value chosen for s is therefore the one related to the smal-
lest minimum.

4. Results

The simulations were made on databases of points distributed uniformly in a hyper-

cube of edge lengths equal to 10, in various dimensions d. The number of centroids is

chosen equal to 9d. Other simulations made with a different number of centroids

gave similar results. The number of training and test points is chosen sufficiently

large to avoid (as much as possible) falling into the difficulties due to the empty space

phenomenon (between 1000 and 50000 training points according to the dimension of

the input space). These restrictions have limited the simulations to a dimension of

input space equal to 5.

Table 1 gives the results. In order to obtain values independent from the number

of centroids, the ‘Width Scaling Factors’ WSF_theo and WSF_exp are defined, as

being the ratio between sigma_theo and sigma_cluster on one hand, and sigma_exp

and sigma_cluster on the other hand respectively. Indeed it is more appropriate to

compare results on the scale-independent WSF coefficient instead of the values of

s for two reasons:

. most results in the literature are based on the sigma_cluster value, making the
use of WSF easier for comparisons;

. the WSF values are independent from the number of centroids, while those of s
are not.

Several comments result from Table 1:

. sigma_cluster is proportional to the square root of dimension, as shown by a
simple analytical calculation:

scluster ¼
ffiffiffi
d

p a

2
ffiffiffi
3

p ; ð12Þ

Table 1. WSF_theo and WSF_exp according to the dimension of the input space.

Dim Sigma_cluster Sigma_theo Sigma_exp WSF_theo WSF_exp

1 0.3175 0.92 0.5715 2.897 1.8

2 0.4490 0.92 0.5837 2.048 1.30

3 0.5499 0.92 0.5506 1.673 1.01

4 0.6350 0.92 0.5676 1.448 0.89

5 0.7099 0.92 0.5471 1.2959 0.77

RADIAL-BASIS FUNCTION NETWORKS 149

Figure 7. MSEv according to sigma in Dim 1 with the various calculation methods of s.

Figure 8. MSEv according to sigma in Dim 2 with the various calculation methods of s.

Figure 9. MSEv according to sigma in Dim 3 with the various calculation methods of s.

150 NABIL BENOUDJIT AND MICHEL VERLEYSEN

where a is the length of an edge of the hypercube corresponding to the Vor-

onoi zone of a centroid. In the simulations, the 9d centroids are placed a priori

at the positions 0:55þ k �1:1 (with 14 k4 9) measured on each axis of input
space; a is thus equal to 1.1.

. We notice that sigma_theo does not depend on the dimension of the input
space. Therefore, WSF_theo is inversely proportional to the square root of

the dimension of the input space.

. We also notice that the sigma_exp values are systematically lower, about 30 to
35%, than the sigma_theo values. This is due to the increased freedom given to

the network coefficients by allowing weight variations rather than fixing them.

We also compared our method (Calculation of sigma_exp) to the three approaches

of Moody & Darken [16], S. Haykin [15] and A. Saha & J. D. Keeler [18], quoted in

Section 2. Figures 7, 8 and 9 illustrate the mean square error obtained according to

sigma for different dimension d ð14 d4 3Þ with the various calculation methods of

Figure 10. Local decomposition of y¼ 1 with sigma_exp¼ 0.5715.

Figure 11. Local decomposition of y¼ 1 with sigma_Moody¼ 0.7778.

RADIAL-BASIS FUNCTION NETWORKS 151

s. We notice here that whatever is the dimension of the input space, we always find
two minima. Figures 10, 11 and 12 clearly show that the choice of the sigma value

has a great influence on the local character of the decomposition in a sum of Gaus-

sian kernels of the function (in dimension 1) to approximate.

5. Conclusion

This paper gives some insights about the choice of Gaussian kernel widths, to use

during the training of spherical RBF networks. Indeed, a major part of the literature

in the field of RBFN covers the optimization of the positions of Gaussian kernels

and the multiplicative weights. On the other hand, the choice of their widths is often

based on heuristics, without real theoretical justification.

In this paper, we first show the importance of the choice of the kernel widths. In

many situations, a bad choice can lead to an approximation error definitely higher

than the optimum, sometimes by several orders of magnitude. Then, we show by

two types of simulations, that a classic choice (taking the width of Gaussian kernels

equal to the standard deviation of the points in a cluster) is certainly not optimal.

For example, in simulations in dimension 1, it appears that the width should be

twice this value. It is then suggested to optimize the widths; an example of one-

dimensional optimization procedure is presented in this paper, through the use of

a multiplying factor to the widths. Finally, we show that the dimension of the data

space has an important influence on the choice of s. In particular, that the multipli-
cative correction that must be applied to the standard deviation of points in a

cluster is shown to be inversely proportional to the square root of the dimension

of the input space.

Simulations on real databases (see for example [24]) show, similarly to the curves

illustrated in this paper, a strong dependency of the approximation error with respect

to the width (and Width Scaling Factor) of the Gaussian kernels. A similar methodo-

logy can thus be applied to choose optimum widths, despite the fact that their numer-

ical values depend on the function to approximate.

Figure 12. Non-local decomposition of y¼ 1 with sigma_Haykin¼ 2.0742.

152 NABIL BENOUDJIT AND MICHEL VERLEYSEN

The results show the need for a greater attention to be given to the optimization of

the widths of the Gaussian kernels in RBF networks, and to the development of

methods allowing to fix these widths according to the problem without using exhaus-

tive search.

Acknowledgements

Michel Verleysen is Senior Research Associate of the Belgian F.N.R.S. (National

Fund For Scientific Research).

References

1. Park, J. and Sandberg, I.: Approximation and radial basis function networks, Neural
Comput. 5 (1993), 305–316.

2. Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford university press, 1995.

3. Park, J. and Sandberg, I. W.: Universal approximation using radial-basis-function
networks, Neural Comput. 3 (1991), 246–257.

4. Young-Sup Hwang and Sung-Yang Bang.: An efficient method to construct a radial basis
function neural network classifier, Neural Networks, 10(8) (1997), 1495–1503.

5. Robert J. Howlett and Lakhmi C. Jain, Radial Basis Function Networks 2: New Advan-
ces in Design, Physica-Verlag: Heidelberg, 2001.

6. Ahalt, S. C. and Fowler, J. E.: Vector quantization using artificial neural networks mod-

els. In Proceedings of the International Workshop on Adaptive Methods and Emergent Tech-
niques for Signal Processing and Communications, June 1993, pp. 42–61.

7. Gresho, A. and Gray, R. M.: Vector Quanitzation and Signal Compression, Kluwer

International series in engineering and computer science, Norwell, Kluwer Academic
Publishers, 1992.

8. David Sanchez, V. A.: Second derivative dependent placement of RBF centers, Neurocom-
puting 7(3) (1995), 311–317.

9. Omohundro, S. M.: Efficient algorithms with neural networks behavior, Complex Systems
1 (1987), 273–347.

10. Verleysen, M. and Hlavá�cková, K.: An optimized RBF network for approximation of

functions, In: European Symposium on Artificial Neural Networks (ESANN 94), pp. 175–
180, Brussels, April 20-21-22, 1994.

11. Tomaso Poggio and Federico Girosi: Networks for approximation and learning, Proceed-

ings of the IEEE, 78(9) (1990), 1481–1497.
12. Orr, M. J.: Introduction to Radial Basis Functions Networks, Technical reports, April
1996, www.anc.ed.ac.uk/�mjo/papers/intro.ps.

13. David Sanchez, V. A.: On the number and the distribution of RBF centers, Neurocomput-
ing 7(2) (1995), 197–202.

14. Chen, S. and Billings, S. A.: Neural networks for nonlinear dynamic system modelling and
identification, Int. J. Control, 56(2) (1992), 319–346.

15. Haykin, S.: Neural Networks a Comprehensive Foundation, Prentice-Hall Inc, second
edition, 1999.

16. Moody, J. and Darken, C. J.: Fast learning in networks of locally-tuned processing units,

Neural Comput. 1 (1989), 281–294.
17. Verleysen, M. and Hlavá�cková, K.: Learning in RBF Networks, International Conference

on Neural Networks (ICNN), Washington, DC, June 3–9 (1996), pp. 199–204.

RADIAL-BASIS FUNCTION NETWORKS 153

18. Saha, A. and Keeler, J. D.: Algorithms for Better Representation and Faster Learning in

Radial Basis Function Networks, Advances in Neural Information Processing Systems 2,
Edited by David S. Touretzky, pp. 482–489, 1989.

19. Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B. and Hummels, D. M.: On the

Training of radial basis function classifiers, Neural Networks, 5 (1992), 595–603.
20. Ripley, B. D.: Pattern Recognition and Neural Network, Cambridge University Press, first
edition, 1996.

21. Lázaro, M., Santamarı́a, I. and Pantaleón, C.: A new EM-based training algorithm for
RBF networks, Neural Networks, 16 (2003), 69–77.

22. Archambeau, C., Lee, J. and Verleysen, M.: On convergence problems of the EM algo-
rithm for finite Gaussian mixtures, In: European Symposium on Artificial Neural Networks

(ESANN’2003), pp. 99–104, Bruges, April 23-24-25, 2003.
23. Xu, L. and Jordan, M. I.: On convergence properties of the EM algorithm for Gaussian
mixtures, Neural Computation, 8(1) (1996), 129–151.

24. Benoudjit, N., Archambeau, C., Lendasse, A., Lee, J. and Verleysen, M.: Width optimi-
zation of the Gaussian kernels in radial basis function networks, In: European Symposium
on Artificial Neural Networks (ESANN’2002), pp. 425–432, Bruges, April 24-25-26, 2002.

154 NABIL BENOUDJIT AND MICHEL VERLEYSEN

