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Abstract

A new variational Bayesian learning algorithm for Student-# mixture models is introduced. This algorithm leads to (i) robust density estimation,
(ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-
conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-¢ distribution
has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As
a consequence, the Student-7 distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-¢
mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian
mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized
approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not
neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore,
it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in

the mixture, can be inferred with a higher confidence.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Probability density estimation is a fundamental tool for
extracting the information embedded in raw data. For instance,
efficient and robust density estimators are the foundation for
Bayesian (i.e., optimal) classification and statistical pattern
recognition. Finite Gaussian mixture models (GMM) are
commonly used in this context (see, for example, McLachlan
and Peel (2000)). They provide an appealing alternative to
nonparametric density estimators (Parzen, 1962) as they do
not assume the overall shape of the underlying density either.
However, unlike nonparametric techniques, they are based on a
divide-and-conquer approach, meaning that subpopulations of
the observed data are modelled by parametric distributions, the
resulting density being often far from any standard parametric
form. Thus, unlike the nonparametric methods, the complexity
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of the model is fixed in advance, avoiding a prohibitive increase
of the number of parameters with the size of the data set.

The GMM has been successfully applied to a wide range
of applications. Its success is partly explained by the fact that
maximum likelihood (ML) estimates of the parameters can
be found by means of the popular expectation—maximization
(EM) algorithm, which was formalized by Dempster, Laird, and
Rubin (1977). The problem with ML is that it favours models
of ever increasing complexity. This is due to the undesirable
property of ML of being ill-posed since the likelihood
function is unbounded (see, for example, Archambeau, Lee,
and Verleysen (2003) and Yamazaki and Watanabe (2003)). In
order to determine the optimal model complexity, resampling
techniques such as cross-validation or the bootstrap Efron and
Tibshirani (1993), are therefore required. Yet, these techniques
are computationally intensive. An alternative is provided by
the Bayesian framework. In this approach, the parameters are
treated as unknown random variables and the predictions are
averaged over the ensemble of models they define. Let us
denote the set of observed data by X = {X,,}fl\’:l. The quantity
of interest is the evidence of the data given the model structure
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‘Hr of complexity M:

p(XIHm) =/0P(X|9,HM)17(0|HM)(10, )

where @ is the parameter vector and p(X|0, Hys) is the
data likelihood. In the case of mixture models, M is the
number of components in the mixture. Unfortunately, taking
the distribution of the parameters into account leads usually to
intractable integrals. Therefore, approximations are required.
Sampling techniques such as Markov Chain Monte-Carlo
are for example used for this purpose (see Richardson and
Green (1997) for its application to the GMM with unknown
M). However, these techniques are rather slow and it is
generally difficult to verify if they have converged properly.
More recently, Attias (1999) addressed this problem from a
variational Bayesian perspective. By assuming that the joint
posterior on the latent variables” and the parameters factorizes,
the integrals become tractable. As a result, a lower bound
on the log-evidence can be computed. This bound can be
maximized (thus made as tight as possible) by means of an
EM-like iterative procedure, called variational Bayes, which is
guaranteed to increase monotonically at each iteration.

Nonetheless, a major limitation of the GMM is its lack of
robustness to outliers. Providing robustness to outlying data is
essential in many practical problems, since the estimates of the
means and the precisions (i.e., the inverse covariance matrices)
can be severely affected by atypical observations. In addition,
in the case of the GMM, the presence of outliers or any other
departure of the empirical distribution from Gaussianity can
lead to selecting a false model complexity. More specifically,
additional components are used (and needed) to capture
the tails of the distribution. Robustness can be introduced
by embedding the Gaussian distribution in a wider class
of elliptically symmetric distributions, called the Student-¢
distributions. They provide a heavy-tailed alternative to the
Gaussian family. The Student-s distribution is defined as
follows:

I (4> 1
S(X“L,A,U) = (—2)d|A|7
L (3) (vm)?
1 4
X[HG(X‘”)TA(X—M)} )

where d is the dimension of the feature space, u and A are
respectively the component mean and the component precision
and I'(-) denotes the gamma function. Parameter v > 0 is the
degree of freedom, which can be viewed as a robustness tuning
parameter. The smaller v is, the heavier the tails are. When v
tends to infinity, the Gaussian distribution is recovered. A finite
Student-f mixture model (SMM) is then defined as a weighted

2Although latent variables cannot be observed, they may either interact
through the model parameters in the data generation process, or are just
mathematical artifacts that are introduced into the model in order to simplify
it in some way.

sum of multivariate Student-¢ distributions:

M
PXI05) =Y TSIty A, o), 3)

m=1

where 0s = (wy, ..., 7T, Iy oo os Bprs A1y ooy Apg, v, .o,
vyr). The mixing proportions {er}n"le are non-negative and
must sum to one.

In the context of mixture modelling, a crucial role is played
by the responsibilities. Each such quantity is simultaneously
associated to a data point and a mixture component. It
corresponds to the posterior probability that a particular data
point was generated by a particular mixture component. In other
words, the responsibilities are soft labels for the data. During
the training phase, these labels are used in order to estimate the
model parameters. Therefore, it is essential to estimate them
reliably, especially when considering robust approaches. In this
paper, we introduce an alternative robust Bayesian paradigm
to finite mixture models (in the exponential family), which
focuses on this specific problem. In general, one way to achieve
robustness is to avoid making unnecessary approximations. In
the Bayesian framework, it means that dependencies between
random variables should not be neglected as this leads
to underestimating the uncertainty. In previous attempts to
construct robust Bayesian mixture models, independency of
all the latent variables was assumed. However, we show that
this hypothesis is not necessary; removing it results in more
consistent estimates for the responsibilities.

This article is organized as follows. In Section 2, the
Bayesian Student-r mixture model is formalized as a latent
variable model, which enables us to use the variational
Bayesian framework to learn the model parameters as in the
conjugate-exponential family (Ghahramani & Beal, 2001). In
Section 3, the variational update rules are derived, as well as
the lower bound on the log-evidence. Finally in Section 4, the
approach is validated experimentally. It is shown empirically
that the proposed variational inference scheme for the SMM
leads to a model having a higher robustness to outliers than
previous approaches. The robustness has a positive impact on
the automatic model selection (based on the variational lower
bound), as well as the quality of the parameter estimates. These
properties are crucial when tackling real-life problems, which
might be very noisy.

2. The latent variable model

The SMM can be viewed as a latent variable model in the
sense that the component label associated with each data point
is unobserved. Let us denote the set of label indicator vectors by
Z = {z,)"V_,, with 2, € {0, 1} and such that "W _, z, = 1,
Vn. In contrast to the GMM, the observed data X augmented
by the indicator vectors Z is still incomplete, meaning there
are still random variables that are not observed. This can be
understood by noting that (2) can be rewritten as follows:

+00

Sx|, A, v) = N x|pt, uA)G (u ‘% %)du, (4)
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where u > 0. The Gaussian and the Gamma distribution are
respectively given by

—d 1 1 T
NX|p, A) = 2m)" 2|A|2 exp {_E(X —p) Ax— u)} . (5)
ﬁ(l
I (e)

Eq. (4) is easily verified by noting that the Gamma
distribution is conjugate to the Gaussian distribution. Under this
alternative representation, the Student-# distribution is thus an
infinite mixture of Gaussian distributions with the same mean,
but different precisions. The scaling factor u of the precisions
is following a Gamma distribution with parameters depending
only on v. In contrast to the Gaussian distribution, there is
no closed form solution for estimating the parameters of a
single Student-¢ distribution based on the maximum likelihood
principle. However, as discussed by Liu and Rubin (1995),
the EM algorithm can be used to find an approximate ML
solution by viewing u as an implicit latent variable on which a
Gamma prior is imposed. This result was extended to mixtures
of Student-¢ distributions by Peel and McLachlan (2000).

Based on (4), one can see that for each data point x,, and
for each component m, the scale variable u,, given z,, is
unobserved. For a fixed number of components M, the latent
variable model of the SMM can therefore be specified as
follows:

Gula, B) = u®~ " exp(—pu). (6)

M
pnlbs. Ha) = [ | wm™. (7)
m=1
M
V, V, Znm
Palza, 85, Han) = [T G (st |- 52-) ™" ®)
m=1
M
p(Xpluy, 2,05, Hy) = 1_[ N(Xn“l'ma Upm A ), )
m=1
where the set of scale vectors is denoted by U = {un}ff:l.

Marginalizing over the latent variables results in (3). At this
point, the Bayesian formulation of the SMM is complete
when imposing a particular prior on the parameters. As it
will become clear in the next section, it iS convenient to
choose the prior as being conjugate to the likelihood terms
(7)—(9). Therefore, the prior on the mixture proportions is
chosen to be jointly Dirichlet D(x|kp) and the joint prior
on the mean and the precision of each component is chosen
to be Gaussian—Wishart NW(u,,, A0 Arw,). The former is
conjugate to the multinomial distribution p(z,|0s, Hy) and
the latter to each factor of p(x,|u,, z,, 05, Har). Since there is
no conjugate prior for {v,}"'_; no prior is imposed on them.
Moreover, the hyperparameters are usually chosen such that
broad priors are obtained. The resulting joint prior on the model
parameters is given by

M
pOsIHm) = D(lico) [ [ NW it Anlb xwp)- (10)

m=1

Fig. 1. Graphical representation of the Bayesian Student-t mixture model.
The shaded node is observed. The arrows represent conditional dependencies
between the random variables. The plates indicate independent copies. Note
that the scale variables and the indicator variables are contained in both plates,
meaning that there is one such variable for each component and each data
point. It is important to see that the scale variables depend on the discrete
indicator variables. Similarly, the component means depend on the component
precisions.

The Gaussian—Wishart distribution is the product of a Gaus-
sian and a Wishart distribution: NW(u,,, Ay, |0 NW,) =
N (i, lmg, noA,)W(A 1Yo, So). The Dirichlet and the Wishart
distribution are respectively defined as follows:

M
D(xlie) = ep(ie) [ [ wn ™", (11)
m=1

WA, S) = ey (7, S) A2 exp (—%tr{SA}) .12

where ¢p (k) and cyy (¥, S) are normalizing constants. Fig. 1
shows the directed acyclic graph of the Bayesian SMM.
Each observation x, is conditionally dependent on the
indicator vector z, and the scale vector u,, which are both
unobserved. The scale vectors are also conditionally dependent
on the indicator variables. By contrast, Svensén and Bishop
(2005) assume that the scale variables are independent of
the indicator variables, therefore neglecting the correlations
between these random variables. Furthermore, they assume that
the component means are independent from the corresponding
precisions.

3. Variational Bayesian inference for the SMM

The aim in Bayesian learning is to compute (or approximate)
the evidence. This quantity is obtained by integrating out the
latent variables and the parameters. For a fixed model structure
‘H s of the SMM, the evidence is given by:

p(X|HM)=/ /Zp(X,U,Z,OSIHM)dUdHS. (13)
0s JU

This quantity is intractable. However, for any distribution
qU, Z,05s), the logarithm of the evidence can be lower-
bounded as follows:
log p(X|Hum) = log p (X|Hm)

(14)

The second term on the right-hand side is the Kullback—
Leibler divergence (KL) between the approximate posterior
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qU, Z,05s) and the true posterior p (U, Z,0s|X, Hyr). Be-
low, we show that when assuming that ¢(U, Z, 8 s) only fac-
torizes over the latent variables and the parameters, a tractable
lower bound on the log-evidence can be constructed. Perform-
ing a free-form maximization of the lower bound with respect to
q(U, Z) and g (0 s) leads to the following VBEM update rules:

VBE-step : ¢ (u,, z,)

exp (Bgg{log p(x. Wy, 24105, Har)}) . Vn. (15)
VBM-step : g(0s) x p(0s|Hm)
x exp (Ey, z{log Lc (051X, U, Z, Hum)}) . (16)

In the VBE-step we have used the fact that the data are i.i.d.
and in the VBM-step L. (0s|X, U, Z, Hr) is the complete data
likelihood. The expectations Ey, z{-} and Egg{-} are respec-
tively taken with respect to the variational posteriors g (U, Z)
and g(0s). From (14), it can be seen that maximizing the lower
bound is equivalent to minimizing the KL divergence between
the true and the variational posterior. Thus, the VBEM algo-
rithm consists in iteratively updating the variational posteriors
by making the bound as tight as possible. By construction, the
bound cannot decrease. Note also that for a given model com-
plexity, the only difference between the VBE- and VBM-steps
is the number of quantities to update. For the first one, this num-
ber scales with the size of the learning set, while for the second
one it is fixed.

Due to the factorized form of p(x,,u,,z,10s, Huy), it
is likely that g(z,) = H,’ZI:] q(zpm)®m and similarly that
qu,|z,) = ]_[,[;,4:1 q (upm)*mm . Furthermore, since the prior on
the parameters is chosen conjugate to the likelihood terms,
it can be seen from the VBM-step that the corresponding
variational posteriors have the same functional form:

M
q(05) =DGli) [ [ N Imm, nm A) WAV, Si)-

m=1

A7)

Given the form of the variational posteriors, the VBE-step can
be computed. Taking expectations with respect to the posterior
distribution of the parameters leads to the following identity:

M
Eb‘s {log p(Xy, up, 2, Hpy)} = Z Znm

m=1

- d d 1 ~
x {log 7,y — 3 log 2w + 3 log upm + > log Ay,

d
- M(Xn - mm)TSmil(Xn - mm) - fnm
2 20m
Vm Vm Vm
Imyog UM _jog T (—)
toplee, —leel
v, v
n (7” - 1) 108 tm — Tmunn} . (18)

The special quantities in (18) are logm, = Egg{logn,} =
Yen) = ¥ (Xi_y k) and log Ay = Eggllog |Anl)

Yy (%1_') +dlog2—1log|S,,|, where ¥ (-) denotes the
digamma function.

First, the VBE-step for the indicator variables is obtained by
substituting (18) in (15) and integrating out the scale variables:

r(&e)
TT,

Q(an == 1) X ﬁ m m2
L (%) ()
_ d+vm
Vim Tq -1 :
X[+ — X, —my) Sy~ (X —my,)+
Vm VmNm
(19)

This equation resembles a weighted Student-z distribution
(which is an infinite mixture of scaled Gaussian distributions).

The corresponding VBE-step obtained by Svensén and
Bishop (2005) has the form of a single weighted Gaussian
distribution with a scaled precision, the scale being the expected
value of the associated scale variable:

_d . o~ 4 d
q(SB)(an =1) x 2m) 27'L'm/1szU{]0g Upm )2

E

%Eos {(Xn - le)T Am (Xn - ”’m)}} . (20)
It is thus assumed that most of the probability mass of the
posterior distribution of each scale variable is located around
its mean. This is not necessarily true for all data points as the
Gamma prior might be highly skewed. In contrast, (19) results
from integrating out the scale variables, which are here nuisance
parameters:

xexp{—

_d . o~ % oo d Vm Vm
q@Znm =1) < Q)" 27, Ay unng(unm 77 7)
0

X exp {—W%Egs {(xn— ;Lm)TAm (xn— ;Lm)}}du,,m.
ey

This means that the uncertainty on the scale variables
is here properly taken into account when estimating the
responsibilities.

Since the distribution ¢(z,) must be normalized for each
data point x,,, we define the responsibilities as follows:
_ qznm = 1)

Pm = — " ¥n,Vm. (22)

> 4@ = 1)

m'=1
These quantities are similar in form to the responsibilities
computed in the E-step in ML learning (see, for example,
McLachlan and Peel (2000)).

Since the Gamma prior on the scale variables is conjugate
to the exponential family, the variational posterior on the scale
variables conditioned on the indicator variables has also the
form of a Gamma distribution. Substituting (18) in (15) and
rearranging leads to the VBE-step for the scale variables:

qUpm|znm = 1) = G (tnm|®pm, Bnm), (23)
where
d
g = T 24)
2
_ d v
ﬁnm = V_m(xn - mm)TSm l(xn - mm) +—+ _m. (25)
2 20, 2
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The VBE-step for the scale variables consists simply in
updating these hyperparameters. Again, there is a striking
similarity with the corresponding E-step in ML learning
(see Peel and McLachlan (2000)).

Next, let us compute the VBM-step. The expected complete
data log-likelihood is given by

N M
Ey,z{log LcOsIX. U. 2)} = "> " pum

n=1m=1

d d . 1
X {lognm - 510g27r + 5 log i, + 3 log |Am|

u V V,
=5 %0 = ) A (0 = ) + - log =
V V ~ Vm _
—logT (é") + (7'" - 1) log itpm — %unm} , (26)

where the special quantities are i, = Ey{unm} = %um/Bnm
and logu,,, = Ey{logu,m} = ¥ (@um) — log Bum, which are
both found using the properties of the Gamma distribution.
Substituting the expected complete data log-likelihood in
(16) and rearranging leads to the VBM update rules for the
hyperparameters:

Kkm = N7ty + Ko, 27
Nm = Nom + no, (28)
m,, — Nom i, + nomo ’ 29)
Mm
VYm = N7y + Y0 30)
Nwpyno

Sy = NowZm, + (i —mo) (R, — Hlo)T +So, (31)

m

where (most of) the auxiliary variables correspond to the
quantities computed in the M-step in ML learning:

Ko Na)m ;pnmunmxn, (32)
- — T
Xm == Z PrnmUnm (Xn - ﬂm) ( ”’m) ’ (33)
Nwm n=1
1 N
7_Tm = N /Snm’ (34)
n=1
1 N
On = N ;ﬁnmﬁnm. (35)

It is worth mentioning that the normalizing factor of the
covariance matrices, which is here obtained automatically, is
the one proposed by Kent, Tyler, and Vardi (1994) in order to
accelerate the convergence of the ordinary EM algorithm.

Finally, since no prior is imposed on the degrees of freedom,
we update them by maximizing the expected complete data log-
likelihood. This leads to the same M-step as the one obtained
by Peel and McLachlan (2000):

Vm

log 2 41 w( )+ !
0_ J— JE—
£ 2 )" N7,

N
X Y fum (108 i — fium} = 0. (36)
n=1
At each iteration and for each component, the fixed point can
be easily found by line search. By contrast, Shoham (2002)
proposed to use an approximate formula.
To end our discussion, we provide the expression of the
variational lower bound:

Ey,z,4s{log p(X|U, Z,05, Hu)}
+Eu,z9s{log p(U, Z|0s, Hm)} + Egs{log p(0.sIHum)}
—Ey, z{logq(U, 2)} — Egs{logq(0s)}. (37)

Note that the last two terms correspond to the entropies of
the variational distributions. Given the functional form of the
posteriors, each term of the bound can be computed (see
Appendix). Since the Bayesian approach takes the uncertainty
of the model parameters into account and since the lower bound
is made as tight as possible during learning, it can be used as a
model selection criterion.

4. Experimental results and discussion

In this section, the robustness of the variational Bayesian
learning algorithm for the SMM is investigated. First, we show
that this new algorithm enables us to perform robust automatic
model selection based on the variational lower bound. Second,
we focus on robust clustering and on the quality of the
parameter estimates. Finally, some empirical evidence is given
in order to explain why the proposed algorithm performs better
than previous approaches.

4.1. Robust automatic model selection

Before investigating the performance of the proposed
approach compared to previous approaches, let us first illustrate
the model selection procedure on a toy example. Consider a
mixture of three multivariate Gaussian distributions with the
following parameters:

=615 p=007" « p3=

-1 1
5 4 5 —4
S ] IR S AP I

-1
1.56 0
A3:[0 1.56i| '

One hundred and fifty data points are drawn from each
component (each component is thus equally likely). Two
training set examples are shown in Fig. 2. The first one contains
no outliers, while the second one is the same data augmented
by 25% of outliers. The outliers are drawn from a uniform
distribution on the interval [—20, 20], in each direction of
the feature space. Fig. 3 shows the variational lower bound
in presence and absence of outliers, for both the Bayesian
Gaussian mixture model (GMM) and Bayesian Student-¢
mixture model (SMM). The variational Bayesian algorithm is
run 10 times. The curves in Fig. 3 are thus averages. The model
complexity M ranges from one to five components. When there

= (6157,



134

C. Archambeau, M. Verleysen / Neural Networks 20 (2007) 129-138

Rl kS

wemb *8
7 S W 3 .
. 5 R - .
: G ETNE L
.g&' o R A
s o . 'hm et e
w ML TR
i

@)

(b)

Fig. 2. Training sets. The data shown in (a) are generated from a mixture of three Gaussian distributions with different mean and precision. In (b) the same data are

corrupted by 25% of atypical observations (uniform random noise).
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Fig. 3. Variational lower bound on the log-evidence versus the number of components M. The solid and the dashed lines correspond respectively to the lower
bounds obtained for the GMM and the SMM. The curves show the average on 10 trials, (a) in absence and (b) in presence of outliers. The model complexity is

selected according to the maximum of the lower bound.

are no outliers, the GMM and the SMM perform similarly. Both
methods select the correct number of components, which is
three. In contrast, when there are atypical observations only the
SMM selects the right number of components.

Next, let us consider the well-known Old Faithful Geyser
data. The data are recordings of the eruption duration and the
waiting time between successive eruptions. In the experiments,
the data are normalized and then corrupted by a certain amount
of outliers. The latter are generated uniformly on the interval
[—10, 10] in each direction of the feature space. Fig. 4(a)
shows the variational lower bound for the GMM, the type-
1 SMM, which assumes that the variational posterior on the
indicator variables and the scale variables factorizes (Svensén
& Bishop, 2005), and the type-2 SMM, which does not make
this assumption. The number of components is varied from
one to six. For each model complexity 20 runs are considered.
Note that in some cases components are automatically pruned
out when they do not have sufficient support. In the absence
of outliers, the bound of the three methods is maximal for
two components. In presence of 2% of outliers the bound of
the type-1 SMM has almost the same value for two and three
components. This was also observed by Svensén and Bishop
(2005). For the type-2 SMM, the bound is still maximal for two

components. The GMM however favours 3 components. When
the amount of noise further increases (25%), only the type-2
SMM selects two components. As a matter of fact, the value
of the bound seems almost not affected by a further increase
of the noise. Thus, not neglecting the correlation between the
indicator variables and the scale variables clearly increases the
robustness. A similar behaviour was observed on the Enzyme
data (Richardson & Green, 1997). The results are presented in
Fig. 4.

In practice, the type-2 SMM is less affected by the outliers
as expected. However, a tighter lower bound was not always
observed, but the bound appeared to be more stable from run
to run than for the type-1 SMM. This suggests that the type-2
SMM is less sensitive to local maxima in the objective function.

4.2. Robust clustering

In order to assess the robustness of the type-2 SMM, we
first consider the 3-component bivariate mixture of Gaussian
distributions from Ueda and Nakano (1998). The mixture
proportions are all equal to 1/3, the mean vectors are (0 —2)7T,
(00)T and (0 2)T, and the covariance matrix of each component
is equal to diag{2, 0.2}. The label assignment of the data
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Fig. 4. Variational lower bound for (a) the Old Faithful Geyser data and (b) the Enzyme data versus the number of components. An increasing number of outliers
is successively added to the training set. Results are reported for the Bayesian GMM, as well as the type-1 and type-2 Bayesian SMM. Twenty runs are considered
for all model complexities. The value of the bound obtained for each run is indicated by a cross. It is important to realize that the number of crosses for each model
complexity might differ from method to method. The reason is that mixture components are pruned out during the learning process when there is too little evidence
for them. Therefore, we did not use a standard representation such as box and whiskers plots to show the variability of the results but preferred this more intuitive

representation.

(a) Type-1 SMM, 2% of outliers.

(b) Type-2 SMM, 2% of outliers.
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(c) Type-1 SMM, 15% of outliers.

(d) Type-2 SMM, 15% of outliers.

Fig. 5. Reconstructed data labels by the Bayesian type-1 and type-2 SMMs. (a) and (b) are the models obtained when 2% of outliers is added to the training set,

while (c) and (d) are the ones obtained in presence of 15% of outliers.

points are presented in Fig. 5. Two situations are considered.
In presence of a small proportion of outliers (2%), the two
Bayesian SMMs perform similarly. However, note that the type-
2 SMM assigns the same label to all the outliers, while the type-
1 SMM partitions the feature space in three parts. In presence

of lots of outliers (15%) only the type-2 SMM provides a
satisfactory solution. Still all outliers are assigned the same
label, i.e. the label of the middle component. By contrast, the
type-1 SMM cannot make a distinction between the data clumps
and the outliers.
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(a) Type-1 SMM.

(b) Type-2 SMM.

Fig. 6. Old Faithful Geyser data. The markers ‘x’ and ‘4’ indicate respectively the means in absence and presence of outliers (25%). The dashed curves and the
solid curves correspond respectively to single standard deviation in absence and presence of outliers. The models are constructed with two components.

Next, we consider again the Old Faithful Geyser data. The
goal is to illustrate that the parameter estimates of the type-2
SMM are less sensitive to outliers. Fig. 6 shows the location of
the means of the two components in presence and in absence of
outliers. The ellipses correspond to a single standard deviation.
It can easily be observed that the estimates of the means and
the precisions are less affected by the outliers in the case of the
type-2 SMM.

4.3. Effect of the factorization of the latent variable posteriors

As already mentioned, the type-1 SMM assumes that the
variational posterior on the latent indicator variables and
the latent scale variables factorize, as well as the priors
on the component means and precisions. However, we have
demonstrated in Section 3 that these factorizations are not
necessary. In particular, taking into account the correlations
between the indicator and the scale variables leads to a model
with (i) an increased robustness to atypical observations and (ii)
to a tighter lower bound on the log-evidence.

From (32)—(35) it can be observed that the responsibilities
play an essential role in the estimation of the component
parameters. As a consequence, accurate estimates are
mandatory when considering robust mixture models. As shown
in Section 3, when we assume that the scale variables are
conditionally dependent on the indicator variables (type-2
SMM), we end up with responsibilities in the following form:

Pnm X 7T x Student-¢ distribution. 38)

The Student-z is an infinite mixture of scaled Gaussian
distribution and the prior on the scales is assumed to be
Gamma distributed. Clearly, the uncertainty on the scale
variable is explicitly taken into account when estimating the
responsibilities by (38), as the scale variables (which can be
here viewed as nuisance parameters) are integrated out.

By contrast, Svensén and Bishop (2005) neglect the
dependencies between the scale and the indicator variables
(type-1 SMM) and therefore find responsibilities of the
following form:

P58 o 7 x scaled Gaussian distribution, (39)
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Fig. 7. The typical joint variational posterior ¢ (uy, |z, ) of the indicator and the
scale variable for a single data point Xx,. The mixture has two components.
The data is the Old Faithful Geyser data. The solid curve does not neglect the
correlation between both latent variables (type-2 SMM), while the dashed curve
does (type-1 SMM).

where the scale is equal to iy,,,. Thus, in this approach we find
that each data point is assumed to be generated from a single
Gaussian distribution, its covariance matrix being scaled. In
other words, it is assumed that the posterior distribution of the
corresponding scale variable is highly peaked around its mean
and therefore that the mean is a good estimate for the scale. Of
course, this is not true for all data points.

In Fig. 7, the typical variational posterior of a single
data point x, is shown. It can be observed that the type-
1 SMM assigns the probability mass almost exclusively to
one component (here to component m = 2) and that the
posterior for that component is more peaked than the posterior
of the type-2 SMM. This suggests that the empirical variance
is (even more) underestimated when assuming that the scale
variables are independent from the indicator variables. Since
the uncertainty is underestimated, the robustness of the model
is reduced. This was also observed experimentally.

Obtaining a tighter and more reliable variatonal lower bound
is also important. When using the lower bound as a model
selection criterion, it is implicitly assumed that the gap between
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the log-evidence and the bound is identical after convergence
for models of different complexity. In general, this is not true.
Usually, variational Bayesian inference tends to overpenalize
complex models, as the factorized approximations lead to a
posterior that is more compact (i.e., less complex) than the true
posterior. This can be understood by seeing that maximizing the
lower bound is done by minimizing the KL divergence between
the variational posterior and the true posterior. However, the
KL divergence is taken with respect to the support of the
variational distribution and not with respect to the support of
the true posterior. Therefore, the optimal variational posterior
underestimates the correlations between the latent variables
and the parameters, and in turn leads to an approximation
of the joint posterior that is more peaked. Now, the type-1
SMM makes the additional assumption that the distribution on
latent variable factorizes as well. As a result, the type-1 SMM
makes additional approximations compared to the type-2 SMM,
such that the approximate posterior is even more compact. In
practice, this leads, for example depending on the initialization,
to a less reliable estimate of the lower bound (see Fig. 4).

5. Conclusion

In this article, we derive new variational update rules
for Bayesian mixtures of Student-r distributions. It was
demonstrated that it is not required to assume a factorized
variational posterior on the indicator and the scale variables.
Taking the correlation between these latent variables into
account leads to a variational posterior that is less compact
than the one obtained in previous approaches; therefore it
underestimates less the uncertainty in the latent variables.
Although the resulting lower bound is not always tighter, the
correct model complexity is selected in a more consistent way,
as it is less sensitive to local maxima of the objective function.
Finally, it was shown experimentally that the resulting model
is less sensitive to outliers, which leads to very robust mixture
modelling in practice.

Appendix

The following expressions are obtained for each term of the
variational lower bound (37):
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