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a b s t r a c t

Feature selection is an important preprocessing step for many high-dimensional regression problems.
One of the most common strategies is to select a relevant feature subset based on themutual information
criterion. However, no connection has been established yet between the use of mutual information and
a regression error criterion in the machine learning literature. This is obviously an important lack, since
minimising such a criterion is eventually the objective one is interested in. This paper demonstrates that
under some reasonable assumptions, features selectedwith themutual information criterion are the ones
minimising themean squared error and themean absolute error. On the contrary, it is also shown that the
mutual information criterion can fail in selecting optimal features in some situations thatwe characterise.
The theoretical developments presented in this work are expected to lead in practice to a critical and
efficient use of the mutual information for feature selection.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In many regression problems, input data are originally high-
dimensional. As an example, in the field of near-infrared spec-
troscopy analysis, each sample is described by tens or hundreds
of features, corresponding to its spectrum components. Much of
these features are in practice either redundant or irrelevant to the
considered regression problem (Rossi, Lendasse, Francois, Wertz,
& Verleysen, 2006).

It is well known that learning with a huge number of features
and limited sample size is a hard task because of the so-called curse
of dimensionality (Bellman, 1961) and its consequences (Verleysen,
2003). In such settings, the risk of overfitting is high, especially
when complex models (with numerous parameters) have to be
inferred from the data.

In order to address the aforementioned issues, one of the most
popular methods is to perform feature selection before any further
learning step. The idea is to select a small subset of features which
are together highly relevant with the output to predict (see Guyon
& Elisseeff, 2003 for a nice introduction). Feature selection has the
advantage over projection methods (which project the features
onto a space of small dimension) that the original features are
not transformed, which allows one to subsequently build easy-to-
interpret models.
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The feature selection problem should be distinguished from
the one of sufficient dimension reduction (Globerson & Tishby,
2003), where the objective is to obtain a subspace of minimal
dimension containing the whole information about the output. On
the contrary, the goal of feature selection is to select only a few
of the original features, even if the price to pay is a small loss of
information. Feature selection allows one to considerably reduce
the dimension of the dataset, which can improve the performance
of the prediction model by reducing the effects of the curse of
dimensionality. It thus also speeds up the learning process and
leads to a better understanding of the considered problem.

An intuitive and appealing idea is to select the features based
on the performance of an inference model. This approach, called
wrapper in the literature (Kohavi & John, 1997), often leads to
good prediction performances but also suffers from two main
drawbacks. First, it can be very computationally demanding since
many prediction models with different feature subsets have to be
built. Then, the results of the wrapper strategy lack generality as
their use is limited to a specific regression model. To circumvent
both problems, filter methods are often used in practice. Such
methods are based on a relevance criterion measuring the quality
of feature subsets; this criterion is independent of any prediction
algorithm. Filters are traditionally much faster than wrappers and
can be used with any regression algorithm. Among the numerous
solutions proposed in the literature,mutual information (Shannon,
1948) is one of the most popular relevance criteria, due to many
advantages for the feature selection task which will be detailed in
the next section. It has therefore been used in a large number of
works (see e.g. Dijck & Hulle, 2006, Fleuret, 2004, Kojadinovic &
Wottka, 2000, Rossi, François, Wertz, Meurens, & Verleysen, 2007)
since the seminal paper Battiti (1994).
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The eventual objective in a regression problem is to reduce as
much as possible an error criterion; the most frequently used ones
are the mean squared error (MSE) and the mean absolute error
(MAE). However, to the best of our knowledge, no explicit con-
nection has been established in the machine learning literature
between the use of the mutual information as a feature selection
criterion and the MSE or the MAE. In information theory, the MSE
has been e.g. related to the derivative of mutual information with
respect to the signal to noise ratio (Guo, Shamai, & Verdú, 2005).
Moreover, there exists a relationship betweenMSE andmutual in-
formation (see Section 3.2 and e.g. Chen, Hu, Li, & Sun, 2008, Ihara,
1993), but this relation is only valid in the case of Gaussian estima-
tion errors. This paper addresses the previously discussed lack of
connection in machine learning by showing that, assuming some
realistic hypotheses on the estimation errors on the target, themu-
tual information criterion is actually optimal from a MSE or a MAE
point of view. This result confirms that the mutual information is
a criterion which is worth considering for feature selection. In ad-
dition, the paper also illustrates the fact that in some situations,
the features selected using the mutual information criterion are
not the ones minimising the considered error criterion. In such
cases,mutual information should not necessarily be the criterion of
choice, and the results of the feature selection procedure should be
carefully analysed. This work thus intends to present both theoret-
ical arguments and case studies of the potential interest of mutual
information for feature selection in regression problems; the final
goal is to better apprehend its behaviour in order to use it in the
most efficient and sensitiveway. It should be noted that the results
in this paper assume the knowledge of the distributions of the ran-
dom variables, and can thus be seen as infinite-sample arguments.
The variance of the mutual information, MSE and MAE estimators
are not considered here. A preliminary study on the adequation
between mutual information and misclassification probability for
classification problemswas published in Frénay, Doquire, and Ver-
leysen (2012, 2013). This paper extends the approach and focus on
regression tasks.

The remaining of the paper is organised as follows. Section 2
recalls basic notions about mutual information and entropy for
feature selection. The well known MSE and MAE error criteria
are presented and linked to the estimation error on the target
output in the context of feature selection. Section 3 theoretically
demonstrates the optimality of the mutual information for three
popular models of the estimation error. Section 4, on the contrary,
illustrates the potential inadequacy of mutual information and
characterises the situations where this criterion is likely to fail.
Section 5 briefly discusses the results while Section 6 concludes
the work.

2. Theory and notations

This section briefly gives basic definitions about mutual infor-
mation and entropy. The MSE and the MAE, the two error criteria
considered in this work, are then briefly reviewed. Next, Sections 3
and 4 will establish a connection between the use of mutual infor-
mation for feature selection and the two error criteria.

2.1. Mutual information and entropy

Mutual information (Shannon, 1948) is a quantity measuring
the dependency existing between two (groups of) random vari-
ables, assumed to be continuous in this work. Let X and Y be ran-
dom variables whose respective probability density functions are
fX and fY and whose domains are X and Y. Let us also define the
joint probability density function fX,Y . The mutual information be-
tween X and Y is defined as

I(X; Y ) = −


X


Y

fX,Y (x, y) log
fX,Y (x, y)
fX (x)fY (y)

dxdy. (1)
Eq. (1) can actually be rewritten in terms of entropy and condi-
tional entropy, respectively defined as

H(X) = −


X

fX (x) log fX (x) dx (2)

and

H(Y |X) = −


X


Y

fX,Y (x, y) log
fX (x)

fX,Y (x, y)
dxdy. (3)

Using Eqs. (1)–(3), it is possible to write

I(X; Y ) = H(Y ) − H(Y |X). (4)

Themutual information can thus be understood as the reduction of
uncertainty (measured by the entropy) on the values of Y once X is
known. If Y denotes the target output to predict and X a subset
of features, mutual information has a quite natural interpreta-
tion as a feature selection criterion. Indeed, a feature subset hav-
ing a high mutual information with the target output is likely to
reduce the uncertainty on the values taken by the output, what
is obviously desirable. Besides an intuitive interpretation, mu-
tual information also has the advantage of detecting non-linear
relationships between variables while some other popular criteria
(such as the correlation coefficient) are essentially limited to linear
dependencies. Eventually, mutual information can naturally be de-
fined for groups of variables, making it possible to evaluate subsets
of features; this last property is of crucial importance when jointly
redundant or relevant features make univariate criteria useless.

For a given regression problem between inputs X and output
Y ,H(Y ) is fixed and does not depend on the choice of features.
Therefore, from a feature selection point of view, Eq. (4) indicates
that selecting features X in order to maximise I(X; Y ) can be
achieved by selecting features which minimise H(Y |X). In the
remainder of the paper, the discussion will be about H(Y |X), while
the same conclusions can be drawn about I(X; Y ).

2.2. Regression error criteria

As mentioned in Section 1, the final objective in a regression
problem is to minimise an error criterion, measuring in some way
the difference between the predicted value and the actual value of
the output. In this section, two popular error criteria are reviewed
and linked to the estimation error on the target output.

Let us assume that for a given subset of d features, the output
Y ∈ ℜ depends probabilistically on the input X ∈ ℜ

d. Moreover,
the function f provides an estimate Ŷ = f (X) of Y given X . Then,
the estimation error is

ϵ = f (X) − Y , (5)

whose zero-mean distribution depends on the choice of features.
Two popular regression error criteria can be rewritten in terms of
ϵ, which are discussed below.

The mean square error (MSE) of the estimate f is defined as
the variance E


(f (X) − Y )2


= E


ϵ2


of ϵ, where E {·} denotes

the expected value. Another popular error criterion is the mean
absolute error (MAE), defined as the expected absolute value
E {|f (X) − Y |} = E {|ϵ|} of ϵ. In feature selection, one is typically
interested in feature subsets which allow one to obtain estimates
achieving low MSE or MAE values.

2.3. Error criteria and entropy of estimation error

For a given estimate f , it is well known (see e.g. Ash, 1990, Cover
& Thomas, 1991) that the conditional entropy of Y given X can be
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(a) Uniform noise U(µ = 0, ∆ = 1.105). (b) Laplacian noise L(µ = 0, λ = 0.203). (c) Gaussian noise N (µ = 0, σ = 0.267).

Fig. 1. Functional f (x) = sin(x) polluted by uniform, Laplacian or Gaussian target noise with identical conditional target entropy H(Y |X) = 0.1.
rewritten in terms of ϵ as

H(Y |X) = H(ϵ|X). (6)

To show this relationship, let us rewrite H(Y |X) as

H(Y |X) =


X

fX (x)H(Y |X = x)dx

=


X

fX (x)H(f (X) + ϵ|X = x)dx. (7)

Since f (X) is fixed when X is known and since the differential
entropy is translation invariant (H(X + k) = H(X) for a constant
k, see e.g. Emmert-Streib & Dehmer, 2008), Eq. (6) follows directly
from Eq. (7).

The rest of this paper considers the relationship between the
mutual information and the two error criteria in different set-
tings. Assuming f and the entropy or mutual information estima-
tor can be accurately estimated using the available data (see e.g.
Kozachenko & Leonenko, 1987, Kraskov, Stögbauer, & Grassberger,
2004 for mutual information estimation), the results obtained in
this paper show the interest of using mutual information as a fea-
ture selection criterion for real-world problems.

3. Mutual information adequacies

This section shows howmutual information can be an adequate
criterion for feature selection in regression. More specifically,
when the conditional distribution of the estimation error is
uniform, Laplacian or Gaussian, choosing the feature subset which
minimises the conditional target entropy H(Y |X) is equivalent
to minimising either the MSE or the MAE criterion. Here, X
corresponds to a specific subset of features andH(Y |X) depends on
the choice of this subset X . Moreover, it is assumed that when two
feature subsets are compared for a given dataset, the distributions
of the estimation error belong to the same parametric family
(uniform, Laplacian or Gaussian) in both cases. This hypothesis is
realistic when feature subsets which are not too different (in terms
of informative contain) are compared, like e.g. at a given step of a
forward or backward search.

3.1. Specification of regression examples

As explained in Section 2, mutual information is adequate for
feature selection in regression with respect to an error criterion
if minimising the conditional target entropy H(Y |X) always im-
proves the criterion. The choice of the criterion depends on the ap-
plication, so it could also be true for mutual information adequacy.

In this section, three realistic estimation error distributions are
considered: a uniform, a Laplacian and a Gaussian distribution. The
estimation error is assumed to be identically distributed for any
x ∈ X, which means that the conditional entropy H(Y |X) is equal
to the specific conditional entropy H(Y |X = x) for any x ∈ X.
Since themeans of the estimation error distributions are zero, they
only have one effective parameter: thewidth∆ for the uniform es-
timation error, the scale λ for the Laplacian estimation error and
the standard deviation σ for the Gaussian estimation error. The
value of the estimation error distribution parameter (∆, λ or σ )
depends on the feature subset which corresponds to X . Consid-
ering these estimation error distributions, the conditional target
entropies H(Y |X) are ln∆, ln [2eλ] and 1

2 ln

2πeσ 2


, respectively

(Cover & Thomas, 1991).
In order to visualise each type of estimation error, Fig. 1 shows

an example of functional f (x) = sin(x) which is polluted by three
types of noise, with identical conditional target entropy H(Y |X) =

0.1. Under uniform noise, the function values stay inside a tube
around the real function f . Under Laplacian or Gaussian noise, the
distribution of function values spreads around the real function f ,
with more or less thick tails.

3.2. Adequacy assessment for the MSE criterion

As shown in Section 2, the MSE can be interpreted as the ex-
pected variance of the estimation error. Since the estimation error
is assumed to be identically distributed for any x ∈ X, its vari-
ance is precisely equal to the MSE. For the uniform, Laplacian and
Gaussian estimation errors, the variance can be written in terms
of their only free parameter as ∆2

12 , 2λ2 and σ 2, respectively (Cover
& Thomas, 1991; Kotz, Kozubowski, & Podgórski, 2001). Using the
expressions for the conditional target entropies and these relation-
ships, it is possible to express the MSE in sole terms of H(Y |X).
For the uniform, Laplacian and Gaussian estimation error, the
MSE becomes 1

12 exp [2H(Y |X)] , 1
2e2

exp [2H(Y |X)] and 1
2πe exp

[2H(Y |X)], respectively. Notice that theMSE no longer depends ex-
plicitly on the parameter of the estimation error distribution. In the
Gaussian case, similar relationships between MSE and conditional
entropy have been reported e.g. in Chen et al. (2008), Guo et al.
(2005), Ihara (1993).

In the above relationships, the MSE is a monotonically increas-
ing function of the conditional target entropy, which depends on
the selected feature subset. It means that if different feature sub-
sets are compared and if the distribution of the estimation errors
belongs to the parametric family (uniform, Laplacian or Gaussian)
in each case, choosing the feature subset whichminimises the con-
ditional target entropy H(Y |X) necessarily corresponds to min-
imising the MSE. This is illustrated in Fig. 2 which shows the MSE
in terms of the conditional target entropy H(Y |X) for the uni-
form, Laplacian and Gaussian estimation errors. Since the Gaussian
distribution is the maximum entropy distribution for a given esti-
mation error variance σ 2 (Cover & Thomas, 1991), the curve cor-
responding to the Gaussian error gives a lower bound for the MSE
and defines an admissible region for the MSE as shown in Fig. 2.
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Fig. 2. MSE in terms of the conditional target entropy H(Y |X) for identically
distributed uniform (dotted line), Laplacian (dashed line) or Gaussian (plain line)
estimation error. The Gaussian curve gives a lower bound and defines an admissible
region (in white).

3.3. Adequacy assessment for the MAE criterion

Since the estimation error is assumed to be identically dis-
tributed, the MAE is by definition equal to the expected absolute
value of the estimation error for any x ∈ X. For the uniform,
Laplacian and Gaussian estimation errors, the expected absolute
value can be written in terms of their only free parameter as
∆

4 , λ and


2
π
σ , respectively (Kotz et al., 2001). Using the expres-

sions for the conditional target entropies and these relationships,
it is possible to express the MAE in sole terms of H(Y |X). For the
uniform, Laplacian and Gaussian estimation error, the MAE be-
comes 1

4 exp [H(Y |X)] , 1
2e exp [H(Y |X)] and 1

π
√
e exp [H(Y |X)], re-

spectively. Notice that theMAE no longer depends explicitly on the
estimation error distribution parameter.

In the above relationships, the MAE is a monotonically increas-
ing function of the sole conditional target entropy, which depends
on the selected feature subset. It means that if different feature
subsets are compared and if the distribution of the estimation er-
rors belongs to the parametric family (uniform, Laplacian or Gaus-
sian) in each case, choosing the feature subset which minimises
the conditional target entropy H(Y |X) necessarily corresponds to
minimising the MAE. This is illustrated in Fig. 3 which shows the
MAE in terms of the conditional target entropy H(Y |X) for the uni-
form, Laplacian and Gaussian estimation errors. Since the Lapla-
cian distribution is the maximum entropy distribution for a given
expected estimation error absolute value λ (Kotz et al., 2001), the
corresponding curve gives a lower bound for the MAE and defines
an admissible region.

3.4. Short discussion

This section shows that mutual information is an adequate
criterion for feature selection with respect to the MSE and the
MAE, when the estimation error is identically distributed for any
x ∈ X with a uniform, Laplacian or Gaussian distribution. Indeed,
maximising mutual information is equivalent to minimising the
conditional target entropyH(Y |X), which in the above settings also
corresponds to minimising either the MSE or the MAE.

4. Mutual information inadequacies

This section shows that mutual information is not always ad-
equate for feature selection in regression. In the proposed exam-
ple, the conditional distribution of the estimation error is assumed
Fig. 3. MAE in terms of the conditional target entropy H(Y |X) for identically
distributed uniform (dotted line), Laplacian (dashed line) or Gaussian (plain line)
estimation error. The Laplacian curve gives a lower bound and defines an admissible
region (in white).

to be a Student distribution. For this particular setting, it is shown
that choosing the feature subset which minimises the conditional
target entropy H(Y |X) is not necessarily equivalent to minimising
either the MSE or the MAE criterion.

4.1. Specification of regression examples

In this section, it is assumed that the estimation error follows
an identical Student distribution for any x ∈ X. This distribution
is often used for the robust modelling of random variables which
lookGaussian, butwhose distributionhas ticker tails (Archambeau,
Delannay, & Verleysen, 2008; Peel &McLachlan, 2000). The density
of the non-standardised Student distribution is

S (ϵ = e|µ, ν, σ ) =
1

B
 1
2 ,

ν
2

 √
νσ 2


1 +

(e − µ)2

νσ 2

−
ν+1
2

(8)

where B is the beta function. Since themean of the estimation error
is zero, so is the parameter µ and the Student distribution only
has two effective parameters: the number of degrees of freedom
ν and the scale σ . The value of the distribution parameters ν and
σ depend on the selected feature subset X . The conditional target
entropy H(Y |X) for a Student estimation error is

ν + 1
2

 
Ψ


ν + 1

2


− Ψ

ν

2


+ ln


√

νB

1
2
,
ν

2


+ ln σ (9)

where Ψ is the digamma function (Cover & Thomas, 1991). Fig. 4
shows an example of functional f (x) = sin(x) which is polluted by
Student noises with different numbers of degrees of freedom but
identical conditional target entropy H(Y |X) = 0.1. The spread of
the distribution and the thickness of its tail depend on ν.

4.2. Inadequacy assessment for the MSE criterion

For a Student estimation error which is identical for any x ∈ X,
the variance can be expressed in terms of its two free parameters
as ν

ν−2σ
2. Hence, using this relationship and the expression of the

conditional target entropy, the MSE can be rewritten in terms of
the number of degrees of freedom ν and H(Y |X) as

E

(Y − f (X))2


=

1

(ν − 2) B
 1
2 ,

ν
2

2 exp

2H(Y |X)

− (ν + 1)

Ψ


ν + 1

2


− Ψ

ν

2


. (10)
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(a) Student noise S(µ = 0, ν = 2.3, σ = 0.168). (b) Student noise S(µ = 0, ν = 5, σ = 0.217). (c) Student noise S(µ = 0, ν = 30, σ = 0.259).

Fig. 4. Functional f (x) = sin(x) polluted by Student noises with different parameters but identical conditional target entropy H(Y |X) = 0.1.
Fig. 5. MSE in terms of the conditional target entropy H(Y |X) for Student
estimation error with different numbers of degrees of freedom: ν = 2.3 (dotted
line), ν = 5 (dashed line) or ν = 30 (plain line). The admissible region defined by
the Gaussian curve appears in white.

It shows that theMSE cannot be written in sole terms of the condi-
tional target entropy. Indeed, theMSE still depends on the number
of degrees of freedom ν (one could alternatively use σ , but ν is
easier to understand intuitively). This is illustrated in Fig. 5 which
shows the MSE in terms of the conditional target entropy H(Y |X)
for different numbers of degrees of freedom. Since the numbers of
degrees of freedom of the Student estimation error distribution for
different feature subsets are not necessarily identical (for example,
data which are outliers with respect to some features can look nor-
mal with respect to other features), it is possible to decrease the
conditional target entropy while increasing the MSE. This means
that choosing the feature subset which minimises the conditional
target entropyH(Y |X)does not necessarily correspond tominimis-
ing the MSE.

Fig. 6 shows an example of mutual information failure with re-
spect to the MSE, where two candidate features subsets X1 and X2
are characterised by a Student estimation error with parameters
ν = 2.3 and ν = 5, respectively. Usingmutual information, X2 will
be chosen rather than X1, since H(Y |X2) is smaller than H(Y |X1).
However, because of the different degrees of freedom of the esti-
mation error affecting both feature subsets, theMSE is larger for X2
than for X1. Hence, selecting X2 based onmutual information leads
here to an increase in the criterion which should be minimised;
mutual information fails as feature selection criterion. Notice that,
in Fig. 6, X3 is characterised by the same degree of freedom than
X2, but mutual information does not fail when choosing between
X1 and X3. Indeed, selecting the feature subset X3 because H(Y |X3)
is smaller than H(Y |X1) effectively minimises the MSE.
Fig. 6. Example of mutual information failure for Student estimation error with
respect to the MSE. The candidate feature subsets correspond to different numbers
of degrees of freedom: ν = 2.3 (dotted line) and ν = 5 (dashed line). The curve
for ν = 30 (plain line) is also shown for discussion (see text). The symbols Xi are
feature subsets.

In practice, the case of mutual information failures discussed in
this section may be of little impact. Indeed, Fig. 6 also shows that
the curve for ν = 30 is quite close to the curve for ν = 5. Hence, it
is less dangerous to compare feature subsets with such estimation
error distributions, which are common in practice. Since ν = 2.3
is quite extreme as can be seen in Fig. 4, one can use mutual infor-
mation in most practical cases with a quite reasonable confidence.

4.3. Inadequacy assessment for the MAE criterion

For the Student estimation error, the expected absolute value
can be expressed in terms of its two free parameters (Psarakis &
Panaretos, 1990) as

E {|Y − f (X)|} =
2
√

νσ 2

B
 1
2 ,

ν
2


(ν − 1)

. (11)

Hence, in terms of the number of degrees of freedom ν and the
conditional target entropy H(Y |X), the MAE is

E {|Y − f (X)|} =
2

(ν − 1) B
 1
2 ,

ν
2

2 exp

H(Y |X)

−


ν + 1

2

 
Ψ


ν + 1

2


− Ψ

ν

2


. (12)

As for theMSE, theMAE still depends on the number of degrees
of freedom ν and cannot bewritten in sole terms of the conditional
target entropy. This is illustrated in Fig. 7 which shows the MAE in
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Fig. 7. MAE in terms of the conditional target entropy H(Y |X) for Student
estimation error with different numbers of degrees of freedom: ν = 2.3 (dotted
line), ν = 5 (dashed line) or ν = 30 (plain line). The admissible region defined by
the Laplacian curve appears in white.

terms of the conditional target entropy H(Y |X) for different num-
bers of degrees of freedom. The different curves are very close, yet
they do not coincide and it is possible to decrease the conditional
target entropy while increasing the MAE. Minimising the condi-
tional target entropy H(Y |X) does not necessarily correspond to
minimising the MAE, but the problem is less important than for
the MSE because the curves are very close from each other.

Fig. 8 shows an example of mutual information failure with
respect to the MAE, where two candidate features subsets X1 and
X2 are characterised by a Student estimation errorwith parameters
ν = 2.3 and ν = 5, respectively. Usingmutual information, X2 will
be chosen rather than X1, since H(Y |X2) is smaller than H(Y |X1).
However, selecting X2 leads here to an increase in the MAE, which
should rather be minimised. Fig. 8 also shows a counterexample:
mutual information does not fail when choosing between the
feature subsets X1 and X3, with two different Student estimation
errors.

4.4. Short discussion

This section shows thatmutual information is not always an ad-
equate criterion to perform feature selection in regression. Indeed,
when the estimation error has several parameters, it may be possi-
ble to obtain different values of the criterion for a given conditional
target entropy H(Y |X) (and vice versa). Intuitively, the knowledge
of the value of the conditional target entropyH(Y |X) only fixes one
degree of freedom of the estimation error distribution parameters.
Hence, problemsmay occurwhen the estimation error distribution
is characterised by several parameters. In such a case, it becomes
possible to select a feature subset which decreases the conditional
target entropy with respect to other feature subsets while simul-
taneously increasing the MSE or the MAE. However, the impact of
mutual information issues is likely to remain limited in terms of
MSE and MAE for Student estimation errors. This is the case when
the number of degrees of freedom is not too small, which is verified
unless there is a large number of outliers.

5. Discussion

The examples in Section 3 show that mutual information is of-
ten a valuable criterion for feature selection in regression. Indeed,
for realistic estimation errors with e.g. uniform, Laplacian or Gaus-
sian distribution, choosing a feature subset which minimises the
mutual information corresponds to minimising either the MSE or
Fig. 8. Example of mutual information failure for Student estimation error with
respect to the MAE. The candidate feature subsets correspond to different numbers
of degrees of freedom: ν = 2.3 (dotted line) and ν = 5 (dashed line). The symbols
Xi are feature subsets.

the MAE. Since it is often assumed (i) that the estimation error fol-
lows one of these distributions and (ii) that the MSE or the MAE is
a sensible criterion, mutual information can in most cases be used
safely. In fact, one can postulate that mutual information can be
used whenever the estimation error is identically distributed for
any x ∈ X and the estimation error distribution can be charac-
terised by only one parameter.

Unfortunately, mutual information is not always optimal.
Indeed, the example in Section 4 shows that when the estimation
error distribution is characterised by multiple parameters like e.g.
the Student distribution, it may be possible to obtain different
values of the MSE or the MAE for a given value of the mutual
information. Hence, minimising the mutual information does not
necessarily correspond to minimising either the MSE or the MAE.
However, it must be noticed that the impact of this issue may
be of various importance. Indeed, in Section 4, the MSE can be
quite different for a given conditional target entropy when the
number of degrees of freedom of the Student distribution changes,
whereas the difference remains quite small for the MAE. However,
since it is not common to observe very small degrees of freedom
(unless there is a large number of outliers), one can expect the
impact of mutual information failures to remain small in practice,
as discussed in Sections 4.2 and 4.4.

In Sections 3 and 4, the estimation error is assumed to be iden-
tically distributed for any x ∈ X. However, this is not necessar-
ily the case; the distribution of the estimation error may depend
on x. For example, let us consider a simple estimation error which
follows a Gaussian distribution N (0, σ1) for one half of the sam-
ples and N (0, σ2) for the other half. In terms of the standard de-
viations σ1 and σ2, the conditional target entropies H(Y |X) for
this non-identically distributed (n.i.d.) Gaussian estimation error
is 1

2 ln [2πeσ1σ2], whereas the MSE is 1
2


σ 2
1 + σ 2

2


and the MAE is

1
√
2π

(σ1 + σ2). Here, it is possible to rewrite the MSE and the MAE
by replacing e.g. σ2, what gives

1
2


σ 2
1 +

exp [4H(Y |X)]
4π2e2σ 2

1


(13)

for the MSE and

1
√
2π


σ1 +

exp [2H(Y |X)]
2πeσ1


(14)

for the MAE. Hence, for a given value of the conditional target en-
tropy, it is possible to obtain feature subsets with different MSE or
MAE values. In this setting, mutual information may therefore also
fail.
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6. Conclusion

The goal of this paper is to study the adequacy of mutual in-
formation for feature selection in regression. The conclusion is
that mutual information remains optimal in many cases, yet may
sometimes also give non-optimal results. On the one hand, mutual
information is optimal for commonly assumed estimation error
distributions like e.g. the uniform, Laplacian or Gaussian distribu-
tions. In such a case, if the estimation error is identically distributed
for any x ∈ X , the feature subset with the maximummutual infor-
mation is always the feature subset with the lowest MSE or MAE.
On the other hand, mutual information may select feature subsets
with non-optimalMSE orMAEwhen e.g. a Student distribution can
be assumed for the estimation error. In such a case, feature subsets
with identical mutual information values may correspond to dif-
ferent MSE or MAE values, even if the importance of the mutual
information failure remains limited in practice.

In practice, it seems that the nature of the estimation errors is
an important factor to determine whether mutual information is
optimal for feature selection in regression. Hence, any study using
mutual information in this context should assess the hypotheses
which can be made about the conditional estimation error.
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