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a b s t r a c t

Statistical inference using machine learning techniques may be difficult with small datasets because of
abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training
sample that they should be, with respect to their theoretical probability, and include e.g. outliers.
Estimates of parameters tend to be biased towards models which support such data. This paper
proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation
is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which
compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any
statistical inference method which can be formulated as a likelihood maximisation. Experiments show
that PPRs can be easily used to tackle regression, classification and projection: models are freed from the
influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained
for each observation.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In statistical inference andmachine learning, the goal is often to
learn a model from observed data in order to predict a given quan-
tity. In a training sample x = (x1, . . . , xn), the n observations xi ∈

X are typically assumed to be i.i.d. drawn from the distribution
p(x) of the random variable X, whereas themodel belongs to a cer-
tain parametric family with parameters θ ∈ Θ . In particular, many
machine learning techniques can be cast as maximum likelihood
methods. In this probabilistic framework, learning of themodel pa-
rameters can be achieved by maximising the data log-likelihood

L (θ; x) =

n
i=1

log p (xi|θ) (1)

where p(xi|θ) is the probability of the observation xi under parame-
ters θ. In order to penalise too complexmodels which could overfit
training data, regularisation methods or Bayesian priors can also
be used as a complement.

A common problem when the training sample size n is small
is that some data may be much more frequent in the training
sample that they should be, with respect to their theoretical
probability of occurrence p(xi). These abnormally frequent data
(AFDs) may pose a threat to statistical inference when maximum
likelihood or similar methods are used. Indeed, maximising the
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log-likelihood corresponds to minimising the Kullback–Leibler
divergence between the empirical distribution of observed data
and the considered parametric distribution (Barber, 2012), in the
hope that the empirical distribution is close to the real (unknown)
distribution. Since the empirical probability of AFDs is much larger
than their real probability, the parameter estimation is affected
and biased towards parameter values which support the AFDs.
For example, AFDs are well known to hurt Gaussian distribution
fitting. In this paper, a method is proposed to deal with AFDs by
considering that it is better to fit for instance 95% of the data well
than to fit 100% of the data incorrectly. Notice that outliers are a
subclass of AFDs. Indeed, outliers are observations which should
theoretically never appear in a training sample, with respect to
the parametric model being used (which reflect hypotheses being
made about the data generating process). This includes e.g. data
which are very far from the mean in Gaussian distribution fitting
or datawith incorrect labels in classification. Outliers are known to
noticeably affect statistical inference. This paper addresses AFDs in
general; experiments focus on the specific subclass of outliers.

In many applications, regularisation or Bayesian methods are
used to deal with data which are not correctly described by
the model, by penalising overly complex models and avoiding
overfitting. However, thesemethods are only suited for the control
of model complexity, not for the control of AFD effects. These
two problems should be dealt with different methods. Hence,
many approaches have been proposed to perform outlier detection
(Barnett & Lewis, 1994; Beckman & Cook, 1983; Daszykowski,
Kaczmarek, Heyden, & Walczak, 2007; Hawkins, 1980; Hodge
& Austin, 2004) and anomaly detection (Chandola, Banerjee, &
Kumar, 2009). It is well-known that many statistical inference
methods are quite sensitive to outliers, like e.g. linear regression
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(Beckman & Cook, 1983; Cook, 1979; Hadi & Simonoff, 1993),
logistic regression (Rousseeuw & Christmann, 2003) or principal
component analysis (Archambeau, Delannay, & Verleysen, 2006;
Daszykowski et al., 2007; Xu & Yuille, 1995). The approach
proposed in this paper relies in part on weighted log-likelihood
maximisation, which is often used in the literature to reduce the
impact of some of the data (Hu & Zidek, 2002). For example,
there exist such algorithms for kernel ridge regression (Jiyan,
Guan, & Qun, 2011; Liu, Li, Xu, & Shi, 2011; Suykens, De
Brabanter, Lukas, & Vandewalle, 2002; Wen, Hao, & Yang, 2010),
logistic regression (Rousseeuw & Christmann, 2003) and principal
component analysis (Fan, Liu, & Xu, 2011; Huber, 1981). The
main problem with these approaches is that the weights are
usually obtained through heuristics. Other methods for linear
regression include e.g. M-estimators (Huber, 1964), the trimmed
likelihood approach (Hadi & Luceo, 1997) and least trimmed
squares (Rousseeuw, 1984; Ruppert & Carroll, 1980). One of the
main advantages of the method proposed in this paper is that the
observation weights are automatically computed.

AFDs have been widely studied in the classification literature,
where labelling errors adversely impact the performances of
induced classifiers (Zhu &Wu, 2004). For example, the information
gain can be used to detect such AFDs (Guyon, Matic, & Vapnik,
1996). Similarly to the proposed approach, it has also been
proposed in the classification literature to limit the influence
of each observation during inference, in order to prevent the
model parameters to be biased by only a few incorrectly labelled
instances. However, each method relies on a different way to limit
the contribution of observations which is specific to a givenmodel.
For example, instances with large dual weights can be identified as
mislabelled for support vector machines (Ganapathiraju, Picone, &
State, 2000), on-line learning of perceptrons can be robustified by
preventing mislabelled instances to trigger updates too frequently
(Kowalczyk, Smola, & Williamson, 2001) and boosting algorithms
can impose an upper bound on instance weights (Domingo &
Watanabe, 2000). It has also been proposed to associate each
observation with a misclassification indicator variable which
follows a Bernoulli model (Rekaya, Weigel, & Gianola, 2001), what
is closer to the contribution of this paper; the indicators can
be used to identify mislabelled observations (Hernandez-Lobato,
Hernandez-Lobato, & Dupont, 2011; Zhang, Rekaya, & Bertrand,
2006). The approach proposed in this paper has the advantage of
being simple to adapt to specific statistical models and not limited
to classification problems.

This paper introduces pointwise probability reinforcements
(PPRs), which allow the learner to deal with AFDs in a specific way.
The probability of each observation is reinforced by a PPR and a
regularisation allows one to control the amount of reinforcement
which is awarded to compensate for AFDs. The proposed method
is very generic, for it can be applied to any statistical inference
method which is the solution of a maximum likelihood problem.
Moreover, classical regularisation methods can still be used to
further control the model complexity. Eventually, abnormality
degrees are obtained, which can be e.g. used to manually screen
outliers. In the literature, many outlier detection techniques
exist; see e.g. Barnett and Lewis (1994), Beckman and Cook
(1983), Hawkins (1980) and Hodge and Austin (2004) for a
survey. However, the primary goal of the method proposed
in this paper is not only to detect the outliers: the aim is
rather to make maximum likelihood estimates less sensitive to
observationswhich are abnormally frequent (including outliers) in
the training sample, with respect to their theoretical probability.
Consequently, common statistical inference methods like linear
regression, kernel ridge regression (a.k.a. least squares support
vector machines), logistic regression and principal component
analysis are shown to be easily robustified using the proposed
approach.
This paper is organised as follows. Section 2 introduces PPRs
and motivates their formulation. Section 3 proposes a generic al-
gorithm to compute PPRs and to use them during the statistical
inference of model parameters. The proposed algorithm is adapted
to several supervised and unsupervised problems in Section 4. It
is shown that PPRs allow one to efficiently deal with outliers and
Section 5 discusses how to choose the amount of reinforcement to
use. The resultingmethodology is assessed experimentally for ker-
nel ridge regression in Section 6. Eventually, Section 7 concludes
the paper.

2. Pointwise probability reinforcements: definition and con-
cepts

As explained in Section 1, the problem with AFDs is that their
empirical probability is much larger than their actual probability.
As a consequence, the parameters of models inferred from data
with AFDs are biased towards values which overestimate the
probability of AFDs. For small training samples, this can have
an important impact on the resulting model. For example, in
linear regression, outliers can significantly bias the slope and the
intercept of an estimated model.

In this paper, it is proposed to deal with AFDs by introducing
pointwise probability reinforcements (PPRs) ri ∈ ℜ

+. The log-
likelihood becomes

L (θ; x, r) =

n
i=1

log [p (xi|θ)+ ri] (2)

where each observation xi is given a PPR ri which acts as a re-
inforcement to the probability p (xi|θ), resulting in a reinforced
probability. The above log-likelihood is called here the reinforced
log-likelihood. The PPRs should remain small (or even zero), except
for AFDs forwhich theywill compensate for the difference between
their large empirical probability and their small probability under
a model with parameters θ. The spirit of the proposed method is
similar to the one of M-estimators (Huber, 1964) and related ap-
proaches (Chen & Jain, 1994; Chuang, Su, & Hsiao, 2000; Liano,
1996). In regression, instead of minimising the sum of the squared
residuals, the M-estimator approach consists in minimising an-
other function of the residuals which is less sensitive to extreme
residuals. Similarly, PPRs allow one to make maximum likelihood
less sensitive to extremely small probabilities. However, there ex-
ist many different M-estimators and it is not necessarily easy to
choose among them. Moreover, their use is limited to regression.
On the contrary, PPRs can be used to robustifymaximum likelihood
methods for e.g. regression, classification or projection, as shown
in Section 4.Moreover, Section 3 shows that PPRs can be easily con-
trolled using regularisation, for example by introducing a notion of
sparsity.

Eq. (2) can bemotivated by consideringmethodswhich are used
in the literature to deal with outliers. In classification, data consists
of pairs (xi, yi) ∈ X × Y where xi is a vector of observed feature
values and yi is the observed label. Label noise occurs when a few
data have incorrect labels (e.g. false positives inmedical diagnosis).
In such a case, Lawrence and Schölkopf (2001) introduce a labelling
error probability πe which can be used to write

L (θ, πe; x, y) =

n
i=1

log [(1 − πe) p (yi|xi, θ)

+πe (1 − p (yi|xi, θ))]

=

n
i=1

log

p (yi|xi, θ)+

πe

1 − 2πe


+ n log [1 − 2πe] . (3)
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Since πe is small (incorrect labels are not majority), it follows that
log [1 − 2πe] ≈ 0 and the log-likelihood (3) can be approximated
with (2).

Another possibility to deal with outliers (Aitkin &Wilson, 1980;
Eskin, 2000) consists in assuming that data actually come from
a mixture of two processes: the actual process of interest and a
garbage process generating outliers. The log-likelihood becomes

L

θ, πg , θg; x


=

n
i=1

log

1 − πg


p (xi|θ)+ πgp


xi|θg


=

n
i=1

log

p (xi|θ)+

πg

1 − πg
p

xi|θg


+ n log


1 − πg


(4)

where πg is the prior probability of garbage patterns and p

x|θg


is the probability of a garbage pattern x. Since garbage patterns
are assumed to be in minority, it follows that πg is small and that
log


1 − πg


≈ 0. Therefore, the above log-likelihood can be also

approximated with (2).
It should be stressed that PPRs are not probabilities. Indeed,

they can take any positive value, even if they should normally
remain small. PPRs are intended to reinforce the probability p (xi|θ)
of AFDs whose empirical probability is too large with respect to
their true probability p(xi). This way, the probability p (xi|θ) can
remain small for AFDs,what is natural since their true probability is
also small. Using PPRs, maximum likelihood parameter estimation
is expected to be less sensitive to AFDs and to provide more
accurate parameter estimates. The advantage of using PPRs over
the two above approaches discussed in Aitkin and Wilson (1980),
Eskin (2000) and Lawrence and Schölkopf (2001) is that it is no
longer necessary to modify the data generation model. In other
words, AFDs do not have to fit into the parametric model which is
learnt for prediction. Indeed, a non-parametricmethod is proposed
in Section 3 to compute PPRs using regularisation. Of course, there
is no such thing as a free lunch and it is necessary to control
the amount of reinforcement which is given. This point is further
discussed in detail in Section 5.

3. Statistical inference with pointwise probability reinforce-
ments

This section shows how to performmaximum likelihood statis-
tical inference with PPRs using a generic two-step iterative algo-
rithm. This algorithm is adapted to supervised and unsupervised
problems in Section 4.

3.1. Non-parametric pointwise probability reinforcements

Without restriction on the PPRs, the reinforced log-likelihood
(2) is unbounded. Indeed, one can simply choose large PPR values
and obtain an arbitrary large reinforced log-likelihood, whatever
the choice of the model parameters θ. A first solution to this
problem is to assume a parametric form ri = r (xi|θr) for the PPRs,
where θr are fixed parameters. However, this solution requires
prior knowledge on the reinforcement r (xi|θr)which is necessary
for a given observation xi. This may depend on the problem which
is addressed and the model which is used to solve it. Such prior
knowledge is not necessarily available and it is not trivial to define
meaningful distributions for PPRs.

In this paper, it is rather proposed to use a regularisation
scheme to control the PPRs. In such a case, for a given family of
models indexed by parameters θ ∈ Θ , the parameter estimation
consists in maximising

LΩ (θ; x, r) =

n
i=1

log [p (xi|θ)+ ri] − αΩ(r) (5)
where r is the vector or PPRs, α is a reinforcementmeta-parameter
and Ω is a penalisation function. The meta-parameter α controls
the compromise between (i) fitting data using the model (large α
values) and (ii) using large reinforcements to deal with data as if
they were AFDs (small α values).

Using regularisation to control PPRs has several advantages:
this approach remains very generic and almost no prior knowledge
is required. As shown in Section 3.3, the choice of the penalisation
function Ω determines the properties of the vector of PPRs, like
e.g. its sparseness. Hence, it is only necessary to specify e.g. if data
are expected to contain only a few strongly AFDs or if a lot of
weaklyAFDs are expected. This paper shows that existing statistical
inferencemethods inmachine learning canbe easily adapted to use
PPRs.

3.2. Generic algorithm for using pointwise probability reinforcements

In the regularised reinforced log-likelihood (5), the penalisation
functionΩ only depends on the PPRs in order to avoid overfitting,
which could occur if Ω was also depending on the probabilities
p (xi|θ). It also allows one to separate the optimisation of (5) in two
independent steps. During the first step, the model parameters θ
are fixed to θold and (5) is maximised only with respect to the PPRs.
IfΩ can be written as a sum of independent terms

Ω(r) =

n
i=1

Ω (ri) , (6)

then each PPR can be optimised independently. The above condi-
tion on Ω is assumed to hold in the rest of the paper. During the
second step, the PPRs are kept fixed and (5) ismaximised onlywith
respect to the model parameters θ. Since the penalisation function
does not depend on the parametric probabilities, the regularisation
term has no influence. The second step only works with reinforced
probabilities and simply becomes

θnew
= argmax

θ

n
i=1

log [p (xi|θ)+ ri] . (7)

The two steps are further detailed in the two following subsections.
Before starting the above alternate optimisation procedure, θ has
to be initialised. This can be achieved by using a method maximis-
ing the classical log-likelihood (1): the parameter estimate will be
sensitive to AFDs, yet it will provide a satisfying starting point. No-
tice that it is important to choose a suitable value of the reinforce-
ment meta-parameter α. A solution to this question is proposed in
Section 5.

3.3. Optimisation of pointwise probability reinforcements

The expression and properties of the PPRs obtained during the
first step only depend on the form of the penalisation function
Ω (and not on the parametric model). Indeed, the probabilities
p (xi|θ) are treated as fixed quantities p


xi|θold andΩ is assumed

to be independent of the model parameters. In this section, L1
and L2 PPR regularisations are considered, which lead to sparse
and non-sparse PPRs, respectively. The properties of PPRs and
reinforced probabilities are also considered for a general class of
penalisation functions.

3.3.1. Sparse pointwise probability reinforcements using L1 regulari-
sation

In linear regression, it is well known that a L1 regularisation on
the weights can be used to obtain sparse weight vectors (Efron,
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Fig. 1. PPR ri (left) and reinforced probability p

xi|θold

+ ri (right) in terms of the probability p

xi|θold obtained using L1 regularisation on PPRs. The reinforcement

meta-parameter is α = 102 (plain line), α = 103 (dashed line) and α = 104 (dotted line).
Hastie, Johnstone, & Tibshirani, 2004). Similarly, one can regularise
PPRs using the penalisation function

Ω (r) =

n
i=1

ri (8)

which forces PPRs to shrink towards zero (remember that ri ≥

0). The maximisation of the regularised reinforced log-likelihood
leads to the Lagrangian

n
i=1

log

p

xi|θold

+ ri

− α

n
i=1

ri +
n

i=1

βiri, (9)

what gives the optimality condition

1

p

xi|θold

+ ri
− α + βi = 0 (10)

for each PPR ri. When ri > 0, the Lagrange multiplier βi becomes
zero and

ri =
1
α

− p

xi|θold . (11)

Otherwise, when p

xi|θold > 1

α
, βi has to be non-zero, what

causes ri to become zero. Hence, the PPR for the ith instance is

ri = max

1
α

− p

xi|θold , 0 , (12)

whereas the corresponding reinforced probability is

p

xi|θold

+ ri = max

p

xi|θold , 1

α


. (13)

Fig. 1 shows the PPR and reinforced probability in terms of
the probability for different values of the reinforcement meta-
parameterα. As long as p


xi|θold remains small, the PPR is approx-

imately equal to 1
α
and the reinforced probability is exactly equal

to 1
α
. Such observations are considered as potential AFDs. However,

as soon as p

xi|θold

≥
1
α
, the PPR becomes zero and the reinforced

probability becomes exactly equal to p

xi|θold. In such a case, the

observation is no longer considered as an AFD. Interestingly, for
fixed parameters θold, using a L1 PPR regularisation is equivalent to
clipping the penalised probabilities which are below 1

α
.

In conclusion, using a L1 regularisation leads to a very simple
optimisation step for the PPRs. Moreover, the resulting PPRs are
sparse and only a few of them are non-zero. Indeed, only the
observations for which the probability p


xi|θold is smaller than 1

α
are considered as potential AFDs and reinforced accordingly. The
inverse of the reinforcementmeta-parameterα corresponds to the
threshold applied to the reinforced probabilities.
3.3.2. Smooth non-sparse pointwise probability reinforcements using
L2 regularisation

A drawback of L1 regularisation is that discontinuities may
occur during the optimisation: probabilities which are reinforced
at a given iterationmay become unreinforced at the next iteration.
Similarly to linear regression, the L2 regularisation provides similar
but smoother solutions than the L1 regularisation. In that case, the
penalisation function is

Ω (r) =
1
2

n
i=1

r2i (14)

and has the advantage of having a zero derivative with respect to ri
when ri = 0, what leads to a smoother solution. The maximisation
of the regularised reinforced log-likelihood leads to the Lagrangian

n
i=1

log

p

xi|θold

+ ri

−
α

2

n
i=1

r2i +

n
i=1

βiri, (15)

what gives for each PPR ri the optimality condition
1

p

xi|θold

+ ri
− αri + βi = 0. (16)

Since p

xi|θold

≥ 0 and βi ≥ 0, it is impossible to have ri = 0 and
the Lagrange multiplier βi is therefore always zero. Hence, the PPR
is

ri =
−p


xi|θold

+


p

xi|θold2

+
4
α

2
, (17)

whereas the corresponding reinforced probability is

p

xi|θold

+ ri =
p

xi|θold

+


p

xi|θold2

+
4
α

2
. (18)

Fig. 2 shows the PPR and reinforced probability in terms of the
probability p


xi|θold for different values of the reinforcement

meta-parameter α. As long as p

xi|θold remains small, the PPR

and the reinforced probability are approximately equal to
√
α−1.

However, as soon as p

xi|θold gets close to

√
α−1, the PPR starts

decreasing towards zero and the reinforced probability tends to
p

xi|θold. A comparison with Fig. 1 shows that L2 regularisation is

similar to L1 regularisation, with smoother results and a threshold
√
α−1 instead of 1

α
.

In conclusion, using L2 regularisation seems to give similar
results than L1 regularisation, except that the PPRs cannot be
sparse and that all observations are considered as AFDs to a certain
degree. Also, the PPRs and the reinforced probabilities changemore
smoothly when p


xi|θold increases.
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Fig. 2. PPR ri (left) and reinforced probability p

xi|θold

+ ri (right) in terms of the probability p

xi|θold obtained using L2 regularisation on PPRs. The reinforcement

meta-parameter is α = 104 (plain line), α = 106 (dashed line) and α = 108 (dotted line).
3.3.3. Properties of pointwise probability reinforcements and rein-
forced probabilities

The above derivations show that a simple expression for PPRs
can be obtained using L1 or L2 penalisation. General results can be
obtained for PPRs under reasonable requirements, e.g. thatΩ is an
increasing convex penalisation function which can be written as

Ω (r) =

n
i=1

Ω (ri) (19)

and that the quantity log

p

xi|θold

+ ri


− αΩ (ri) achieves a
maximum value for a finite PPR ri ≥ 0 (which means that the PPR
optimisation admits a solution).

In the following theorems, penalisation functions are assumed
to comply with the above requirements. Also, the notation pi =

p

xi|θold is used in order to make the developments easier to

follow.

Theorem 1. Let Ω be an increasing penalisation function of the
form (19), θold be a fixed parameter value and r1 and r2 be the
finite optimal PPRs with respect to θold for the observations x1 and
x2, respectively. Then one has r2 ≤ r1 if the probabilities satisfy
p

x2|θold > p


x1|θold.

Proof. Let us prove the theorem by showing that any PPR r > r1
is suboptimal for the observation x2. Since p2 > p1, it follows that
p2 + r > p2 + r1 > p1 + r1 and that p2 + r > p1 + r > p1 + r1.
Because the logarithm is a strictly concave function, one therefore
obtains the inequalities

log [p2 + r1] >
log [p2 + r] − log [p1 + r1]
(p2 + r)− (p1 + r1)

(p2 − p1)

+ log [p1 + r1] (20)

and

log [p1 + r] >
log [p2 + r] − log [p1 + r1]
(p2 + r)− (p1 + r1)

(r − r1)

+ log [p1 + r1] . (21)

Since r1 is the optimal PPR for p1, it also follows that

log [p1 + r1] − αΩ (r1) ≥ log [p1 + r] − αΩ (r) (22)

for any PPR r . Summing (20)–(22) eventually gives

log [p2 + r1] − αΩ (r1) > log [p2 + r] − αΩ (r) , (23)

which means that any PPR r > r1 is necessarily suboptimal
with respect to the probability p2, since the PPR r2 satisfies by
definition

log [p2 + r2] − αΩ (r2) ≥ log [p2 + r1] − αΩ (r1) . � (24)

The above theorem means that data which are more probable
with respect to the parametric model are going to be less rein-
forced, what seems natural. Indeed, reinforcements are supposed
to support unlikely observations. Notice that if there is an obser-
vation with a zero reinforcement, the reinforcements for observa-
tions with larger probabilities are also zero.

Theorem 2. Let Ω be an increasing convex penalisation function
of the form (19), θold be a fixed parameter value and r1 and r2
be the finite optimal PPRs with respect to θold for the observations
x1 and x2, respectively. Then the reinforced probabilities are such
that p


x2|θold

+ r2 ≥ p

x1|θold

+ r1 if the probabilities satisfy
p

x2|θold > p


x1|θold.

Proof. Let us prove the theorem by considering two cases: r1 −

(p2 − p1) ≤ 0 and r1 − (p2 − p1) > 0. In the first case, since r2
must be positive, it necessarily follows that r1 − (p2 − p1) ≤ r2
or, by rearranging terms, that p2 + r2 ≥ p1 + r1. In the second
case, it follows from the condition p2 > p1 that r1 > 0. Since
r1 is the optimal PPR for p1, this implies that the derivative of
log [p1 + r] − αΩ (r)with respect to r is zero at r = r1, i.e.

1
p1 + r1

− αΩ ′(r1) = 0. (25)

Moreover, the derivative of log [p2 + r] − αΩ (r2) at r = r1 −

(p2 − p1) is

1
p1 + r1

− αΩ ′ (r1 − (p2 − p1)) (26)

and, since r1 − (p2 − p1) < r1 and Ω is a convex function, it also
follows that

Ω ′ (r1 − (p2 − p1)) ≤ Ω ′ (r1) . (27)

Using the three above results, one can show that

1
p1 + r1

− αΩ ′ (r1 − (p2 − p1)) ≥ 0, (28)

i.e. that the derivative of log [p2 + r] − αΩ (r) at r1 − (p2 − p1) is
positive. Since this function is strictly concave in terms of r , it has
only onemaximumand the optimal PPR r2 must therefore be larger
or equal to this value, i.e. r2 ≥ r1 − (p2 − p1) or, by rearranging
terms, p2 + r2 ≥ p1 + r1. �
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Fig. 3. PPR ri (left) and reinforced probability p

xi|θold

+ ri (right) in terms of the probability p

xi|θold obtained using L 1

2
regularisation on PPRs. The reinforcement

meta-parameter is α = 4 (plain line), α = 12 (dashed line) and α = 40 (dotted line). Discontinuities occur at p

xi|θold

≈ 10−4, p

xi|θold

≈ 10−3 and p

xi|θold

≈ 10−2 ,
respectively.
The above theorem means that observations which are more
probable with respect to the parametric model also correspond
to larger reinforced probabilities. All other things being equal,
the opposite would mean that the ordering of observations with
respect to their parameterised and reinforced probabilities could
be different, what seems counter-intuitive.

To illustrate the above results, let us again consider L1 and L2
regularisation, which use increasing and convex penalisation func-
tions. It can be seen in Figs. 1 and 2 that the resulting PPRs and
reinforced probabilities behave according to Theorems 1 and 2. A
simple counter-example is L 1

2
regularisation, where the increas-

ing but concave penalisation function is Ω (r) = 2
n

i=1
√
ri.

Fig. 3 shows the PPR and reinforced probability in terms of the
probability p


xi|θold for different values of the reinforcement

meta-parameter α. In particular, for small values of p

xi|θold, the

reinforced probability p

xi|θold

+ ri decreases when the prob-
ability p


xi|θold increases, what is a rather counter-intuitive

behaviour. The PPR and the reinforced probability present a dis-
continuity when p


xi|θold

≈ 0.65/4α2.

3.4. Learning model parameters with pointwise probability reinforce-
ments

The reinforced log-likelihood may be hard to maximise with
respect to the model parameters. For example, if a member of the
exponential family

p (xi|θ) = h(xi) exp

η (θ)T T(xi)− ψ (θ)


(29)

is used to model data (what includes e.g. Gaussian, exponential,
gamma, beta or Poisson distributions Bernardo & Smith, 2007;
Bishop, 2006; DasGupta, 2011; Duda & Hart, 1973), the optimality
condition becomes

n
i=1

p

xi|θnew

p

xi|θnew

+ ri


η′


θnewT T(xi)− ψ ′(θnew)


= 0 (30)

where h, η, T and ψ depend on the distribution. Obviously, it
will in general not be trivial to find a solution satisfying the
above condition. For example, in the particular case of a univariate
Gaussian distribution with unknown mean µ and known width σ ,
one can e.g. obtain the parameterisation (DasGupta, 2011)

h(xi) =
1

√
2πσ 2

e−
x2i
2σ2 ; η (θ) =

 µ
σ 2


; (31)

T(xi) =

xi

; ψ (θ) =

µ2

2σ 2
(32)
and eventually obtain the optimality condition

n
i=1

N (xi|µnew, σ )

N (xi|µnew, σ )+ ri


xi − µnew

= 0 (33)

where µnew cannot be isolated.
Rather than directly optimising the reinforced log-likelihood,

this paper proposes to indirectly maximise it by iteratively (i)
finding a close lower bound to the reinforced log-likelihood and (ii)
maximising this bound with respect to θ. This procedure is similar
to the widely used expectation maximisation (EM) algorithm
(Dempster, Laird, & Rubin, 1977). The following theorem shows
that it is easily possible to find such a lower bound for any
parametric model.

Theorem 3. Let θold be the current estimate of the model parameters
and, for each observation xi, let ri be the optimal PPR with respect to
θold. If one defines the observation weight

wi =
p

xi|θold

p

xi|θold

+ ri
, (34)

then the functional

n
i=1


wi log

p (xi|θ)

p

xi|θold + log


p

xi|θold

+ ri


(35)

is a lower bound to the reinforced log-likelihood

n
i=1

log [p (xi|θ)+ ri] . (36)

Moreover, (36) and (35) are tangent at θ = θold.

Proof. When θ = θold, the value of (35) and (36) is

n
i=1

log

p

xi|θold

+ ri

, (37)

whereas their derivative with respect to model parameters is

n
i=1

1

p

xi|θold

+ ri

δp

xi|θold
δθ

. (38)

Since their value and derivative are identical in θ = θold, it follows
that (35) and (36) are tangent at that point. Let us now prove that
(35) is a lower bound to (36) by considering their terms. Indeed,



130 B. Frénay, M. Verleysen / Neural Networks 50 (2014) 124–141
if each ith term of (36) is lower bounded by the ith term of (35),
(35) is necessarily a lower bound to (36). Let us first rewrite the
inequality

log [p (xi|θ)+ ri] ≥ wi log
p (xi|θ)

p

xi|θold + log


p

xi|θold

+ ri


(39)

as
p

xi|θold

+ ri

log


p (xi|θ)+ ri

p

xi|θold

+ ri



≥ p

xi|θold log p (xi|θ)

p

xi|θold . (40)

When ri = 0, it is easily shown that both sides of the inequality are
equal, what is natural since wi = 1 in such a case. Hence, since ri
is always positive, it is sufficient to show that the derivative of the
left side with respect to ri is always larger than the derivative of
the right side to ensure that the inequality (39) is verified for any
ri ≥ 0. This condition can be written as

log


p (xi|θ)+ ri

p

xi|θold

+ ri


+

p

xi|θold

+ ri
p (xi|θ)+ ri

− 1 ≥ 0. (41)

Using the standard logarithm inequality log x ≥
x−1
x , one can show

that

log


p (xi|θ)+ ri

p

xi|θold

+ ri


≥

p (xi|θ)− p

xi|θold

p (xi|θ)+ ri
(42)

and it follows that

log


p (xi|θ)+ ri

p

xi|θold

+ ri


+

p

xi|θold

+ ri
p (xi|θ)+ ri

− 1

≥
p (xi|θ)+ ri
p (xi|θ)+ ri

− 1 = 0, (43)

what proves the inequality (41) and concludes the proof. �

Based on the above theorem, a maximisation step can easily
be found. Indeed, since (35) is a lower bound to the reinforced
log-likelihood and both are tangent at θ = θold, maximising the
former will necessarily increase the latter with respect to its value
in θold. Hence, the approximate maximisation step (with respect
to the model parameters θ) of the proposed algorithm consists in
maximising the weighted log-likelihood

Lw (θ; x) =

n
i=1

wi log p (xi|θ) (44)

where weights are computed using (34) and the current estimate
of the model parameters θold. The advantage of this maximisation
step is that weighted log-likelihoods are typically much easier
to maximise than reinforced log-likelihoods. For example, in the
case of the above Gaussian distribution with known width σ , one
obtains the optimality condition

n
i=1

wi

xi − µnew

= 0 (45)

where

wi =
N


xi|µold, σ


N


xi|µold, σ


+ ri

. (46)
Hence, the mean of the Gaussian is estimated by the weighed
sample mean

µnew
=

n
i=1
wixi

n
i=1
wi

. (47)

Interestingly, the weighted log-likelihood is often used in the
literature to reduce the impact of some of the data (Hu & Zidek,
2002). Using L1 regularisation, the proposed approach is similar to
the trimmed likelihood approach (Cheng & Biswas, 2008; Hadi &
Luceo, 1997;Neykov, Filzmoser, Dimova, &Neytchev, 2007),where
only a subset of the observations are used to compute the log-
likelihood.

As discussed in Section 3.2, the maximisation step does not
depend on the penalisation function Ω . Fig. 4 shows examples
of lower-bounded reinforced log-likelihoods for 50 observations
drawn from a univariate Gaussian distribution with mean µ = 0
and width σ = 1. The PPRs ri are computed using the current
estimates µold

= 0.2 and σ old
= 1.3. L1 regularisation is used

in Fig. 4(a) and (b), whereas L2 regularisation is used in Fig. 4(c)
and (d). The log-likelihoods are computed for different values of
themeanµ in Fig. 4(a) and (c) and different values of thewidthσ in
Fig. 4(b) and (d). Reinforced log-likelihoods and lower bounds are
tangent at µ = µold and σ = σ old, in accordance with Theorem 3.

Notice that at optimum, the solution θ∗ of existing weighted
maximum likelihood approaches can be seen as reinforced
maximum likelihood solutions where the equivalent PPR for the
ith observation would be

ri =
1 − wi

wi
p

xi|θ∗


, (48)

which follows from the inversion of (34) defining weights.

3.5. Weights and degrees of abnormality

Aside from its interesting properties for the optimisation of
the model parameters, the weighted log-likelihood (44) also pro-
vides us a useful tool to analyse data. Indeed, when an optimum
is reached, the weighted log-likelihood and the reinforced log-
likelihood are equal. In such a case, the weight wi ∈ [0, 1] mea-
sures the contribution of the likelihood of the ith observation to
these quantities. The quantity ai = 1 − wi ∈ [0, 1] can be inter-
preted as an abnormality degree and may be easier to handle than
the PPR ri that belongs to [0,∞[. When the PPR of an instance gets
close to zero, its weight approaches one and its abnormality de-
gree becomes zero. On the contrary, when the PPR increases, the
weight tends to zero and the abnormality degree tends to one. In
other words, data whose probability is highly reinforced (because
they appear to be AFDs) are characterised by small weights and
large abnormality degrees.

Fig. 5 shows the weightwi in terms of the parametric probabil-
ity p (xi|θ) for L1 and L2 regularisation. The weight is close to one
for large probabilities, but it decreases quickly as the probability
decreases. On the contrary, notice that the abnormality degree ai
would be close to one for small probabilities, then decrease quickly
as the probability increases.

4. Supervised and unsupervised inference using pointwise
probability reinforcements

This section adapts several standard statistical inference meth-
ods to reinforce them with PPRs: linear regression, kernel ridge
regression (a.k.a. least-square support vector machines), logistic
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Fig. 4. Examples of tangent lower bounds (dashed line) for the reinforced log-likelihood (plain line) in a Gaussian case. The reinforced probabilities are N

xi|µ, σ old


+ ri

(left) and N

xi|µold, σ


+ ri (right), where PPRs are computed using either L1 (up) or L2 (down) regularisation. Vertical lines indicate the position of the maximum for the

reinforced log-likelihood (plain line) and its lower bound (dashed line). Dots indicate points of tangency.
Fig. 5. Observation weight wi in terms of the probability p (xi|θ) for L1 (left) and L2 (right) regularisation. The L1 reinforcement meta-parameter is α = 102 (plain line),
α = 103 (dashed line) and α = 104 (dotted line). The L2 reinforcement meta-parameter is α = 104 (plain line), α = 106 (dashed line) and α = 108 (dotted line).
regression and principal component analysis. These four tech-
niques tackle regression, classification and projection problems,
what shows that PPRs allow one to easily deal with AFDs in vari-
ous supervised or unsupervised contexts. For each method, exper-
iments target outliers, since outliers are commonly recognised as
harmful in the above applications.

4.1. Reinforced linear regression

Linear regression consists in fitting a linear prediction model
f (xi) =

d
j=1 βjxij + β0 to observed target values, where xij is

the value of the jth feature for the ith observation and d is the
dimensionality of data. Under the assumption that a Gaussian
noise pollutes the observations, the maximum likelihood solution
is given by the well-known ordinary least squares (OLS) estimator

βOLS =


X̃T X̃

−1
X̃Ty (49)

where X̃ is the n×(1+d)matrix of data with an additional column
of ones and y is the vector of target values. For small datasets,
the above estimator is quite sensitive to outliers (Beckman &
Cook, 1983; Cook, 1979; Hadi & Simonoff, 1993), but it can easily
be reinforced using PPRs. As discussed in Section 3.4, the model
parameters optimisation step can be achieved by maximising a
weighted log-likelihood Lw (β, σ ; x, y), which becomes

1
2
log


2πσ 2 n

i=1

wi +
1

2σ 2


X̃β − y

T
W


X̃β − y


(50)

where σ is the Gaussian noise variance and W is a diagonal
weightingmatrix whose diagonal terms areWii = wi. The solution
maximising the above log-likelihood is similar to weighted least
squares (WLS) estimator, except that the noise variance has to
be also estimated. Indeed, the probabilities p(yi|xi,β, σ ) must be
estimated in order to obtain PPRs. The estimates are

βPPR =


X̃TWX̃

−1
X̃TWy (51)

and

σ 2
PPR =

n
i=1
wi (f (xi)− yi)2

n
i=1
wi

. (52)

When L1 regularisation is used, reinforced linear regression is simi-
lar to least trimmed squares (Rousseeuw, 1984; Ruppert & Carroll,
1980), which may be expensive for large datasets (Rousseeuw &
Van Driessen, 2006).
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(a) α = 10−2 . (b) α = 102 . (c) α = 1010 .

(d) α = 10−4 . (e) α = 104 . (f) α = 1020 .

Fig. 6. Results obtained by standard linear regression (grey line) and reinforced linear regression (black line). The 95% confidence interval associated with the true function
(white line) is shown by the grey-shaded area. PPRs are computed using L1 (upper row) and L2 (lower row) regularisation. The reinforcement meta-parameter values are
indicated below each subfigure. The 30 data are shown by circles whose darkness is proportional to their respective weights. Dashed lines delimit 95% confidence intervals
for prediction of each model.
Fig. 7. Comparison of the probability N (ϵi|0, 0.2) (plain line) and the reinforced probability N (ϵi|0, 0.2)+ ri (dashed line) of the residual ϵi = yi − f (xi) obtained using
L1 (left) and L2 (right) regularisation. The reinforcement meta-parameter values are α1 = 25 and α2 = 625, respectively.
Fig. 6 shows results obtained using reinforced linear regression
with L1 and L2 regularisation on the PPRs. Notice that the reinforced
linear regression estimates an almost zero noise variance in
Fig. 6(d). Standard and reinforced solutions are superimposed in
Fig. 6(c) and (f). 29 data are generated from a unidimensional linear
model with β = [2, 1]T and σ = 0.2. Moreover, one outlier is
added in order to interfere with inference. As a result, Fig. 6 shows
that standard linear regression is biased and that its confidence
interval for prediction is quite wide. On the one hand, Fig. 6(a)
and (d) show that when the reinforcement meta-parameter α
is too small, the outlier is not detected. For L1 penalisation, all
weights are identical, whereas they seem quite arbitrary for L2
regularisation.Moreover, the confidence interval for the prediction
of the reinforced linear regression is very narrow in that latter case.
On the other hand, Fig. 6(c) and (f) show that when α is very large,
the reinforced linear regression obtains results which are similar
to standard linear regression results, since PPRs are forced to take
very small values. A good compromise is obtained in Fig. 6(b) and
(e) where the intermediate value of α allows PPRs to detect the
outlier. Hence, the model is freed from its influence, what results
in a more reliable model and improved 95% confidence intervals
for predictions. Section 5 shows how to find an intermediate value
of α corresponding to this compromise.
In order to illustrate the effect of the reinforcement of probabili-
ties, let us consider the probabilityN (ϵi|0, 0.2) of the residual ϵi =

yi − f (xi). Fig. 7 shows the reinforced probability N (ϵi|0, 0.2)+ ri
obtained using L1 and L2 regularisation; the effect of the probabil-
ity reinforcement is to clip the Gaussian distribution in the tails.
Indeed, when N (ϵi|0, 0.2) gets too small, it is replaced by 1

α
for L1

regularisation and
√
α−1 for L2 regularisation. The reinforced prob-

ability tends to 1
α1

= 0.04 and

α−1
2 = 0.04 in the tails.

The reinforced linear regression allows us to deal with outliers,
but it can also easily be adapted to penalise large feature weights
βj. Indeed, if a penalisation γ

2 ∥β∥
2 with a regularisation meta-

parameter γ is added to the reinforced log-likelihood, one obtains
a reinforced ridge regression (Hoerl & Kennard, 1970) where the
weights are estimated by

βPPR =


X̃TWX̃ + γ Id

−1
X̃TWy (53)

where Id is the d × d identity matrix. Interestingly, it can be
seen that both regularisations coexist without problem in the
above solution. Each regularisation takes independently care of
one problem, what allows to readily separate outlier control and
complexity control in a theoretically sound way.
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(a) α = 10−3 . (b) α = 20. (c) α = 1010 .

(d) α = 10−6 . (e) α = 40. (f) α = 1020 .

Fig. 8. Results obtained by standard kernel ridge regression (grey line) and reinforced kernel ridge regression (black line). The 95% confidence interval associated with the
true function (white line) is shown by the grey-shaded area. PPRs are computed using L1 (upper row) and L2 (lower row) regularisation. The reinforcement meta-parameter
values are indicated below each subfigure. The 30 data are shown by circles whose darkness is proportional to their respective weights. Dashed lines delimit 95% confidence
intervals.
4.2. Reinforced kernel ridge regression

Kernel ridge regression (Saunders, Gammerman, & Vovk, 1998)
(also called least squares support vector machine (Suykens, Van
Gestel, De Brabanter, De Moor, & Vandewalle, 2002)) is an
extension of ridge regression where data are first mapped in a
feature space. This kernel-based non-linear regressionmethod can
be formulated as a maximum likelihood problem. Indeed, ridge
regression corresponds to assuming that the n errors ϵi = yi−f (xi)
follow a Gaussian distribution N


0, σ 2

ϵ In

and that themweights

in the feature space have a Gaussian prior N

0, σ 2

β Im

, excluding

the bias β0. In such a case, it turns out that the prediction function
is

f (xi) =

n
j=1

αjk(xi, xj)+ β0 (54)

where αj > 0 are dual weights and the kernel function k computes
the dot product between two observations in the feature space
(Muller, Mika, Ratsch, Tsuda, & Scholkopf, 2001). If one introduces
the meta-parameter γ = σ 2

β/σ
2
ϵ which controls the compromise

between errors and model complexity and whose value is chosen
using e.g. cross-validation, the parameter estimate of α and β0 is
the solution of the linear system 0 1T

n

1n K +
1
γ
In

 
β0
α


=


0
y


(55)

where K is the Gram matrix such that Kij = k(xi, xj) and 1n is a n-
element vector of 1’s. Moreover, the standard deviation σϵ can be
estimated as

σ 2
ϵ =

1
n

n
i=1

ϵ2i . (56)

The above kernel ridge regression can easily be reinforced.
Indeed, the weighted maximum likelihood problem solved in the
parameter optimisation step is equivalent to a weighted kernel
ridge regression (Jiyan et al., 2011; Liu et al., 2011; Suykens,
De Brabanter et al., 2002; Wen et al., 2010). It follows that the
parameter estimate of α and β0 is the solution of the linear system 0 1T

n

1n K +
1
γ
W−1

 
β0
α


=


0
y


, (57)

whereas the standard deviation σϵ can be estimated as

σ 2
ϵ =

n
i=1
wiϵ

2
i

n
i=1
wi

. (58)

The solutions in (55) and (57) are almost identical. The only dif-
ference is that the identity matrix In in (55) is replaced by the in-
verse of the weighting matrixW in (57). Since outliers correspond
to large diagonal entries in W−1, the complexity control is less af-
fected by them. Hence, the outlier control allows reducing the im-
pact of outliers on complexity control.

Fig. 8 shows results obtained using reinforced kernel ridge re-
gression with L1 and L2 regularisation on the PPRs. Standard and
reinforced solutions are superimposed in Fig. 8(c) and (f). 29 data
are generated from a unidimensional sinus polluted by a Gaussian
noise with σ = 0.1. Moreover, one outlier is added in order to
interfere with inference. For both the standard and the reinforced
kernel ridge regression, the value of themeta-parameter is γ = 10
and the Gaussian kernel k (x, z) = exp ∥x − z∥2/0.1 is used. The
result of standard kernel ridge regression appears to be biased by
the outlier. For small α values, Fig. 8(a) and (d) show that irrele-
vant models are obtained, because the Kα term is negligible with
respect to the term 1

γ
W−1α in the linear system (57). Fig. 8(c) and

(f) show that reinforced kernel ridge regression performs similarly
to standard kernel ridge regression when α is very large. A good
compromise is obtained in Fig. 8(b) and (e) where the intermedi-
ate value of α allows PPRs to detect outliers. Indeed, the outlier
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(a) α = 10−5 . (b) α = 20. (c) α = 1010 .

(d) α = 10−5 . (e) α = 400. (f) α = 1010 .

Fig. 9. Results obtained by standard logistic regression (grey dashed line) and reinforced logistic regression (black dashed line) from polluted data, with respect to the result
obtained by standard logistic regression from clean data (black plain line). PPRs are computed using L1 (upper row) and L2 (lower row) regularisation. The reinforcement
meta-parameter values are indicated below each subfigure. The 30 data are shown by circles whose darkness is proportional to their weights. The observed (noisy) labels
are indicated by the y-value of each point (0 or 1).
is clearly detected and the resulting non-linear regression model
is freed from its influence. Moreover, 95% confidence intervals for
predictions are alsomore reliable using PPRs. Section 5 shows how
to find an intermediate value of α for a good compromise.

4.3. Reinforced logistic regression

Logistic regression is a standard classification model which lin-
early discriminates between two classes (0 and1here). Conditional
class probabilities for this model are obtained using

p (Yi = 1|Xi = xi) = 1 − p (Yi = 0|Xi = xi)

=
1

1 + e−
d

j=1 βjxij−β0
(59)

where Yi is the class of the ith observation. Using the iterative
reweighted least squares (IRLS) algorithm (Bishop, 2006), logis-
tic regression can be efficiently performed. This quasi-Newton ap-
proach method consists in using the estimate

βIRLS =


X̃TRX̃

−1
X̃TRz (60)

iteratively, where X̃ is the n× (1+ d)matrix of data with an addi-
tional column of ones, R is a diagonal matrix whose diagonal terms
are Rii = σi (1 − σi) with σi = p (Yi = 1|Xi = xi) and z is a vector
of altered targets

z = X̃β − R−1 (σ − y) . (61)

Logistic regression is sensitive to outliers (Rousseeuw & Christ-
mann, 2003), but it can be reinforced using PPRs. Since the model
parameter optimisation step is in fact a weighted logistic regres-
sion (Rousseeuw&Christmann, 2003; Simeckova, 2005), it can also
be performed by an IRLS-like algorithm. The only modification is
that the iterative update becomes

βIRLS =


X̃TWRX̃

−1
X̃TWRz. (62)
Fig. 9 shows results obtained using reinforced logistic regres-
sion with L1 and L2 regularisation on the PPRs. The reinforced
solution and the standard solution obtained from clean data are
superimposed in Fig. 9(b) and (e). The standard solution obtained
from polluted data and the reinforced solution are superimposed
in Fig. 9(c) and (f). 30 data are generated from two classes with
Gaussian distributions N (µ = ±2, σ = 1.7). In order to intro-
duce an outlier, the label of one observation from class 1 is flipped,
i.e. a labelling error is introduced which alters the result of stan-
dard logistic regression. On the one hand, Fig. 9(a) and (d) show
that when the reinforcement meta-parameter α is too small, the
outlier is not detected. On the other hand, Fig. 9(c) and (f) show
that when α is very large, the reinforced logistic regression ob-
tains results which are similar to standard logistic regression re-
sults with polluted data, since PPRs are forced to take very small
values. A good compromise is obtained in Fig. 9(b) and (e) where
the reinforced logistic regression produces a model which is very
close to themodel obtained by standard logistic regressionwith no
labelling error. Section 5 shows how to find an intermediate value
of α which allows a good compromise.

4.4. Reinforced principal component analysis

Principal component analysis (PCA) finds the q principal (or
maximum variance) axes of a data cloud. This unsupervised
procedure projects data onto a smaller dimensional space, while
keeping the most of the feature variance. PCA can be cast as a
probabilistic method (Tipping & Bishop, 1999) by assuming that
(i) data are generated by q hidden independent Gaussian sources Z
with distributionN (0, Iq) and (ii) that one only observes d features
X whose conditional distribution is

p (X = x|Z = z,µ, σ ) = N

x|Az + µ, σ 2Id


(63)

where A is d×q linear transformationmatrix,µ is a d-dimensional
translation vector and σ is the noise standard deviation. Tipping
and Bishop (1999) show that the observed features have amarginal
distribution
p (X = x|µ, σ ) = N (x|µ, C) (64)
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(a) α = 10−3 . (b) α = 104 . (c) α = 1020 .

(d) α = 10−3 . (e) α = 104 . (f) α = 1020 .

Fig. 10. Axes obtained by standard PCA (grey lines) and reinforced PCA (black lines), with respect to the true axes of the hidden data model (white lines) for which the
grey-shaded area shows the true 95% confidence region. PPRs are computed using L1 (upper row) and L2 (lower row) regularisation. The reinforcement meta-parameter
values are indicated below each subfigure. The 50 data are shown by circles whose darkness is proportional to their respective weights. Dashed lines are level curves of
the Gaussian distribution which delimit the 95% confidence region for each model, except in (d) where the reinforced PCA estimates an almost zero variance in the second
principal axis direction. In (c) and (f), standard and reinforced solutions are superimposed.
where C = AAT
+ σ 2Id. Hence, the data log-likelihood is

L (A, σ ; x) = −
n
2


d log [2π ] + log |C| + tr


C−1S


(65)

where the sample covariancematrix S =
1
n

n
i=1 (xi − µ) (xi − µ)T

is computed using the samplemeanµ =
1
n

n
i=1 xi. Themaximum

likelihood solution is

AML = Uq

3q − σ 2Iq

 1
2 (66)

whereUq contains the q principal eigenvectors of S as columns and
3q is a diagonalmatrix containing the q corresponding eigenvalues
(Tipping & Bishop, 1999). Moreover, the maximum likelihood
estimator of σ when A = AML is given for d > q by

σ 2
ML =

1
d − q

d
i=q+1

λi. (67)

When d = q, data are reconstructed with no error and σML is zero.
PCA is known to be sensitive to outliers (Archambeau et al., 2006;
Daszykowski et al., 2007; Filzmoser, Maronna, & Werner, 2008;
Hubert, Rousseeuw, & Verdonck, 2009; Stanimirova, Walczak,
Massart, & Simeonov, 2004; Xu & Yuille, 1995), but this method
can be easily reinforced. Indeed, it turns out that the parameter
optimisation step is aweighted PCA (Fan et al., 2011; Huber, 1981),
which simply consists in using (66) and (67) with the eigenvectors
and eigenvalues of the weighted sample covariance matrix

S =

n
i=1
wi (xi − µ) (xi − µ)T

n
i=1
wi

(68)

where µ is the weighted sample mean

µ =

n
i=1
wixi

n
i=1
wi

. (69)
Similarly to the other reinforcedmethods, theweights are obtained
using the definition (34) and the marginal probabilities given by
(64).

Fig. 10 shows the results obtained using reinforced PCA with
L1 and L2 regularisation on the PPRs. 49 data are (i) generated
froma two-dimensional isotropic Gaussian distributionwithmean
[0, 0]T and covariance matrix I2 and (ii) transformed using the
linear transformation matrix

A =

cos
π

6
− sin

π

6
sin

π

6
cos

π

6

 
1 0
0 0.2


=


0.87 −0.1
0.5 0.87


(70)

and the translationmatrixµ = [−0.5, 0.5]T . Moreover, one outlier
is added in order to interfere with inference. As a result, the axes
given by standard PCA are slightly rotated and stretched. On the
one hand, Fig. 10(a) and (d) show that when the reinforcement
meta-parameter α is too small, unconvincing results are obtained
because PPRs are free to take large values. On the other hand,
Fig. 10(c) and (f) show that when α is very large, our approach
obtains results which are similar to standard PCA results, since
PPRs are forced to take very small values. A good compromise is
obtained in Fig. 10(b) and (e) with an intermediate value of α.
Section 5 shows how to find such an intermediate value of α.

5. Choice of the reinforcement meta-parameter

Asmentioned in Section3.2, the reinforcementmeta-parameter
α determines the amount of reinforcement which is allowed. As
illustrated by the results of the various reinforced methods pre-
sented in Section 4, small values of α lead to large PPRs, whereas
large values of α lead to small PPRs. In the former case, the para-
metric model is insensitive to AFDs but may poorly fit data, since
all of them are seen as AFDswith large PPRs. In the latter case, none
of the data can be seen as an AFD and the parametricmodel is given
by the standardmaximum likelihood solution,which is sensitive to
AFDs. In conclusion, it is important to choose a good intermediate
value of α where only a few data can be considered as AFDs with
large PPRs, what results in model parameters which make sense



136 B. Frénay, M. Verleysen / Neural Networks 50 (2014) 124–141
Fig. 11. Reinforcement meta-parameter selection for linear regression with L1 regularisation on PPRs. The left panel shows the mean of weights in terms of α for optimal
model parameters. The right panel shows the linear regression which is obtained with α = 10.19 (black line), with respect to the true function (white line). The 30 data
are shown by circles whose darkness is proportional to their respective weights. The estimated and true 95% confidence intervals are shown by dashed lines and the shaded
region, respectively.
and are less sensitive to e.g. outliers. This important problem is dis-
cussed in this section.

5.1. Meta-parameter optimisation schemes

Two common approaches to deal with meta-parameters are
validation and Bayesian priors. Validation consists in choosing the
best meta-parameter with respect to the performances obtained
by themodel on test data. This approach includes cross-validation,
leave-one-out validation, bootstrap, etc. However, it is in practice
impossible to obtain test data which are guaranteed to be clean
from outliers. Hence, since using PPRs produces models which are
less sensitive to AFDs and may therefore give them very small
probabilities, a validation approach would probably choose a very
large α value, what is undesirable. It is not easy either to define a
sensible Bayesian prior for the α parameter. This paper proposes
an alternative way to optimise α. As discussed in Section 3.5, the
instance weights measure the contribution of each observation
to the parameter estimation and their mean can be seen as
the percentage of the training sample which is actually used.
Equivalently, the mean of the abnormality degrees ai can be seen
as the percentage of observations which are considered as AFDs.
Hence, a simple solution to the α optimisation problem consists in
using the α value which correspond to a plausible percentage of
data supporting the model and a plausible percentage of outliers.
A good choice is for example 95% for the former quantity or,
equivalently, 5% for the latter. Several works suggest that it is more
harmful to keep toomany outliers than to remove toomany correct
data (Brodley & Friedl, 1999). Moreover, in the literature, real-
world databases are estimated to contain around 5% of encoding
errors (Maletic & Marcus, 2000; Redman, 1998). Of course, if prior
knowledge suggests that more or less outliers are present in data,
another percentage could be used.

Along this idea, meta-parameter α can be adapted as follows.
Model parameters are initialised using a maximum likelihood
approach, what corresponds to an infiniteα value. Then, in the first
iteration, an α value is searched (see Sections 5.2 and 5.3) in order
to produce PPRs which are consistent with the constraint

w(α) =
1
n

n
i=1

wi ≈ 0.95. (71)

The resulting PPRs are used to optimise model parameters and the
algorithm iterates until convergence. At each iteration, a new α

value is computed, since the weightswi have changed meanwhile.
In the end, PPRs and model parameters are obtained, whereas the
condition (71) is satisfied.
5.2. The L1 regularised case

When L1 regularisation is used, observations must be first or-
dered according to their probability p (xi|θ). Indeed, it follows from
(13) and (34) that any observation whose probability is smaller
than 1

α
has a weight wi = αp (xi|θ), whereas all other instances

have unitary weight. Then, the α search consists in looking for the
smallest number k of observations with subunitary weight such
that

w(α) =
1
n

n
i=1

wi

=
1
n

k
i=1

1
p (xk+1|θ)

p (xi|θ)+
1
n

n
i=k+1

1 ≤ 0.95, (72)

where α has been replaced by 1/p (xk+1|θ) since xk+1 is one of the
instances with unitary weight wk+1 = 1 = αp (xk+1|θ). Since the
n − k last observations (and only them) necessarily have a unitary
weight forw(α) = 0.95, the value of α which satisfies (71) can be
estimated as

α ≈

k
n − 0.05

1
n

k
i=1

p (xi|θ)
. (73)

Fig. 11 shows an example of reinforcementmeta-parameter choice
for linear regression. Fig. 11(a) shows the mean of weights in
terms ofα for optimalmodel parameters, whereas Fig. 11(b) shows
the linear regression which is obtained for the mean of weights
w(α) = 0.95 with α = 10.19. This solution is obtained with 3 it-
erations of the two-step iterative algorithm proposed in Sections 3
and 4.1.

5.3. The L2 regularised case

For L2 regularisation, a dichotomy approach can be used. In-
deed, the mean of the weights is an increasing function of α, since
its first-order derivative can easily be shown to be always pos-
itive. Initially, two very small and very large initial values of α
(e.g.α1 = 10−4 andα3 = 1020) are picked. Then, one computes the
intermediate value α2 =

√
α1α3 and only the two values αi < αj

such that 0.95 ∈

w(αi), w(αj)


are kept. The algorithm is iterated

untilα1 andα3 are close enough,where the valueα2 can be chosen,
since (71) is sufficiently close to be satisfied for w(α2). Fig. 12(a)
shows the mean of weights in terms of α for optimal model pa-
rameters, whereas Fig. 12(b) shows the linear regression which is
obtained for the mean of weights w(α) = 0.95 with α = 323.08.
This solution is obtained with 18 iterations of the two-step itera-
tive algorithm proposed in Sections 3 and 4.1.
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Fig. 12. Reinforcement meta-parameter selection for linear regression with L2 regularisation on PPRs. The left panel shows the mean of weights in terms of α for optimal
model parameters. The right panel shows the linear regression which is obtained with α = 323.08 (black line), with respect to the true function (white line). The 30 data are
shown by circles whose darkness is proportional to the sample weights. The estimated and true 95% confidence intervals are shown by dashed lines and the shaded region,
respectively.
5.4. Computational cost of reinforcing probabilities

This section analyses the computational cost of the PPR
methodology, with the above method for the choice of the rein-
forcement meta-parameter α. At each iteration of the algorithm
proposed in Section 3.2, irrespective of the model type, three steps
are performed.

First, the probabilities p

xi|θold are computedusing the current

estimate θold of the model parameters. The computational cost
depends on the considered model and is therefore difficult
to characterise precisely. However, evaluating the probabilities
p

xi|θold is expected to be much faster than learning the estimate

θold itself. For example, in the case of linear regression, the former
only requires to estimate the model output for each observation
and to compute its probability, whereas the latter requires to
compute a pseudo-inverse.

Second, the reinforcement meta-parameter α is optimised and
the PPRs ri are obtained from the probabilities. The computational
cost depends on the type of regularisation. For L1 and L2
regularisation, Eqs. (12) and (17) provide cheap closed-form
expression for the PPRs. With L1 regularisation, the reinforcement
meta-parameter is first estimated as explained in Section 5.2 and
then the PPRs are computed. With L2 regularisation, the PPRs must
be computed at each step of the reinforcement meta-parameter
search. The computational cost with L2 regularisation is higher, but
the computation of the reinforcement meta-parameter and of the
PPRs only consists of simple operations.

Third, the instance weightswi are computed and the model pa-
rameters are optimised with a weighted log-likelihood algorithm.
Whereas weights are obtained using the simple closed-form ex-
pression (34), the model parameter optimisation is the most com-
putationally expensive step in the proposed methodology. Indeed,
learning algorithms usually involve costly operations like matrix
inversion, gradient descent or convex optimisationwith often non-
linear time complexities.

Overall, the cost of reinforcing probabilities is dominated by the
optimisation of the model parameters, since all other operations
involve computations which are comparatively more simple. In
practice, only a few iterations of the proposed algorithm are
necessary before convergence. For example, in the two problems
discussed in Sections 5.2 and 5.3, 3 and 18 iterations are necessary
to converge when L1 or L2 regularisation is used, respectively.
Experimentally, it is observed that the number of iterations
decreases as the number of training instances increases. For small
sample sizes,modernmachine learning techniques are fast enough
to cope with training the model a few times. For iterative learning
procedures like gradient descent or convex optimisation, the
proposed methodology can be considerably sped up by using the
model parameters θold obtained at a given iteration as a seed for the
model parameters optimisation in the next iteration. Convergence
of such methods should be much faster this way.

6. Experiments for kernel ridge regression

The goal of this section is to assess the PPR methodology in
a more comprehensive way than the simple artificial problems
used in Section 4. Indeed, since the aim of this paper is to propose
a generic approach to robust maximum likelihood inference, it
is important to check whether reinforced inference is able to
perform at least as well as existing robust methods. The particular
case of the kernel ridge regression discussed in Section 4.2 is
considered. The choice of the reinforcement meta-parameter α is
performed as proposed in Section 5. This section shows that the
resulting methodology is competitive with existing methods to
detect outliers in real settings for kernel ridge regression.

6.1. Experimental settings

As shown in Section 4.2, similarly to linear regression, kernel
ridge regression is sensitive to outliers (Liu et al., 2011; Suykens,
De Brabanter et al., 2002; Wen et al., 2010). Hence, Suykens, De
Brabanter et al. (2002) propose to use a weighted kernel ridge
regression to reduce the influence of outliers. Thismethod consists
in performing a standard kernel ridge regression, computing the
error variables ei = αi/γ and training a weighted kernel ridge
regression with the instance weights

wi =


1 if |ei/ŝ| ≤ c1
c2 − |ei/ŝ|
c2 − c1

if c1 ≤ |ei/ŝ| ≤ c2

10−4 if c2 < |ei/ŝ|

(74)

where c1 and c2 are two constants. As discussed in Section 4.2,αj >

0 are dual weights and γ = σ 2
β/σ

2
ϵ is a meta-parameter which

controls the compromise between errors and model complexity.
The robust estimate ŝ of the standard deviation of the error
variables ei is

ŝ =
IQR

2 × 0.6745
(75)

where IQR is the difference between the 25% and the 75%
percentiles. Here, the constants c1 = 2.5 and c2 = 3 are used as
suggested in Suykens, De Brabanter et al. (2002).

This section compares the reinforced kernel ridge regression
proposed in Section 4.2 to both standard and weighted kernel
ridge regression. For each method, the RBF kernel k (x, z) = exp
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Table 1
List of datasets used for experiments, ordered by size.

Size Dimensionality Source

Pollution 60 15 StatLib7

Pyrim 74 27 LIBSVM4

Wine 124 256 MLG5

Nelson 128 2 NIST6

Nitrogen 141 166 ASRG1

Enso 168 1 NIST6

Hardware 209 6 UCI8

Chwirut1 214 1 NIST6

Tecator 240 100 StatLib7

Gauss3 250 1 NIST6

Bodyfat 252 14 LIBSVM4

Yacht 308 6 UCI8

Auto-MPG 392 7 LIBSVM4

NO2 500 7 StatLib7

Housing 506 13 LIBSVM4

Cooling 768 8 UCI8

Heating 768 8 UCI8

Stock 950 9 LIAAD3

Concrete 1030 8 UCI8

Mortgage 1049 15 FRB2

MG 1385 6 LIBSVM4

Space-GA 3107 6 LIBSVM4


∥x − z∥2/σ 2


is used. The regularisation meta-parameter γ and

the kernel precision parameter σ−2 are selected using 10-fold
cross-validation on the mean squared error (MSE). The possible
values belong to a 20 × 20 logarithmic grid such that γ ∈
10−3, 106 and σ−2

∈

10−4, 102. Each experiment is repeated

100 times in order to obtain statistically significant results. For
each repetition, the dataset is randomly split into a 70% training
set and a 30% test set. Three distinct experiments are discussed
here,where training data are polluted by 2%, 5% and 10% of outliers,
respectively. Outliers are created by replacing the target value
for some of the training instances by random values uniformly
drawn in [−10, 10]. Input and output variables are normalised so
that each variable has the same impact during learning. Table 1
shows the details for the datasets, which are chosen to span
different small training set sizes and come from the Analytical
Spectroscopy Research Group of the University of Kentucky,1
the Federal Reserve Bank of Saint-Louis website,2 the Laboratory
of Artificial Intelligence and Decision Support of the University
of Porto,3 the LIBSVM data repository,4 the Machine Learning
Group of the Université catholique de Louvain website,5 the NIST
statistical reference datasets,6 the StatLib dataset archive7 and the
UCImachine learning repository8 (Asuncion &N, 2007). Reinforced
kernel ridge regression is allowed a maximum of 20 iterations to
learn a robust model. The method proposed in Section 5 is used to
choose the reinforcement meta-parameter under the hypothesis
that data contain 5% of outliers, i.e. the value of α is tuned so that
the mean of instance weights isw(α) ≈ 0.95.

For each trainedmodel, the generalisation error is estimated by
the MSE over the test set. The results for the 100 repetitions are
averaged and theWilcoxon rank-sum (Riffenburgh, 2012) statistic
is used to assess whether the different MSE distributions are
similar or not. Small p-values mean that those distributions are

1 http://kerouac.pharm.uky.edu/asrg/cnirs.
2 http://www.stls.frb.org/fred/data/zip.html.
3 http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html.
4 http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.
5 http://www.ucl.ac.be/mlg/.
6 http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml.
7 http://lib.stat.cmu.edu/datasets/.
8 http://archive.ics.uci.edu/ml/index.html.
significantly different; in this analysis, the significance threshold
is 0.05. This test is preferred to e.g. a two sample test of means
because theMSE values appear to have non-Gaussian distributions
(Riffenburgh, 2012).

6.2. Experimental results

Tables 2–4 show the results obtained with 2%, 5% and 10%
of outliers, respectively. In each table, the three first columns
show the average MSE obtained using (i) standard kernel ridge
regression on clean data, (ii) standard kernel ridge regression
on polluted data and (iii) weighted kernel ridge regression on
polluted data. Results show that, for each percentage of outliers,
the performances of standard kernel ridge regression are altered
by the outliers. Moreover, the weighted kernel ridge regression
proposed in Suykens, De Brabanter et al. (2002) allows improving
the results in the presence of outliers. These conclusions are
supported by Wilcoxon rank-sum tests whose p-values are not
given here, since they are all close to zero (i.e. theMSE distributions
with the three methods are significantly different).

The fourth and sixth columns of Tables 2–4 show the results
obtained with L1 and L2 regularised PPRs. The fifth (seventh)
column shows the p-values for aWilcoxon rank-sum test between
the MSE distributions of the weighted kernel ridge regression
and the L1 (L2) reinforced kernel ridge regression. With only
2% of outliers, the reinforced results are most of the time not
significantly different than those obtained with weighted kernel
ridge regression. In only a few cases, the reinforced results are
slightly (and significantly) worse. With 5% of outliers, reinforced
kernel ridge regression is always at least as good as weighted
kernel ridge regression. In a few cases, the former (significantly)
outperforms the latter. With 10% of outliers, our method is always
significantly worse than Suykens’ method. This is due to the
hypothesis made by the method used to choose the reinforcement
meta-parameter, i.e. that there are about 5% of outliers.

The p-values for theWilcoxon rank-sum tests between theMSE
distributions with L1 and L2 regularisation are shown in the last
column of the tables. These large values show that there is no
statistically significant difference between the results obtained by
both regularisation schemes for each of the outlier percentages.

6.3. Conclusion of experiments

The experiments show that the PPR methodology works in
realistic settings for kernel ridge regression. Themethod competes
with Suykens, De Brabanter et al. (2002). In addition, whereas
the weighted kernel ridge regression proposed in Suykens, De
Brabanter et al. (2002) is an ad-hocmethodwhich can only be used
for kernelised regression methods, the PPR methodology can be
used to robustify any maximum likelihood inference technique as
shown in Section 4. Reinforced inference could therefore e.g. be
used to deal with outliers in settings where it is less simple to
design an ad-hoc method for robust inference.

The method described in Section 5 needs to make the
hypothesis that data contain a known percentage x of outliers.
Three situations can be distinguished in this context. First,
when the actual percentage of outliers is smaller than x%, the
results of reinforced inference remain often similar to those of
robust inference methods. Second, when the actual percentage of
outliers is close to x%, good results are obtained and reinforced
inferencemay outperform robust inference. Third, when the actual
percentage of outliers is larger than x%, reinforced inference
does not remove enough outliers and is outperformed by robust
inference. In conclusion, the experimental results confirm the
discussion in Section 5.1, i.e. that it is more harmful to keep too
many outliers than to remove too many correct data (Brodley &
Friedl, 1999).

http://kerouac.pharm.uky.edu/asrg/cnirs
http://www.stls.frb.org/fred/data/zip.html
http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
http://www.ucl.ac.be/mlg/
http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
http://lib.stat.cmu.edu/datasets/
http://archive.ics.uci.edu/ml/index.html
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Table 2
Results obtained with standard, weighted and reinforced kernel ridge regression with 2% of outliers in training data. Average MSE for 100 repetitions and p-values for
Wilcoxon rank-sum tests between the MSE distributions are shown. MSE distributions with L1 and L2 regularised PPRs are compared to those of weighted regression. MSEs
in grey for regularised PPRs are significantly worse than MSEs with weighted kernel ridge regression. Performances of standard kernel ridge regression on clean data are
shown as reference. See text for more details.

MSE with clean data MSE with polluted data MSE with weighted L1 reinforced PPRs L2 reinforced PPRs L1 vs. L2
MSE p-value MSE p-value p-value

Pollution 4.6e−1 7.5e−1 5.7e−1 5.6e−1 0.88 5.6e−1 0.94 0.93
Pyrim 6.6e−1 9.5e−1 7.7e−1 7.2e−1 0.59 7.3e−1 0.75 0.86
Wine 9.0e−3 1.2e−1 3.5e−2 4.0e−2 0.40 4.3e−2 0.44 0.97
Nelson 1.2e−1 2.5e−1 2.3e−1 1.6e−1 0.66 1.7e−1 0.68 0.99
Nitrogen 2.0e−1 3.9e−1 4.4e−1 5.1e−1 0.54 4.4e−1 0.79 0.69
Enso 5.4e−1 7.4e−1 5.8e−1 6.4e−1 0.04 6.4e−1 0.08 0.64
Hardware 2.2e−1 2.5e−1 2.2e−1 2.2e−1 0.82 2.1e−1 0.90 0.97
Chriwut1 2.1e−2 4.6e−2 2.8e−2 2.8e−2 0.75 2.8e−2 0.75 0.99
Tecator 6.7e−2 2.9e−1 1.5e−1 9.7e−2 0.16 1.2e−1 0.21 0.79
Gauss3 3.6e−3 5.9e−2 2.0e−2 1.6e−2 0.79 1.4e−2 0.92 0.82
Bodyfat 2.7e−2 8.0e−2 2.7e−2 4.7e−2 0.97 2.7e−2 0.78 0.75
Yacht 2.9e−3 1.8e−1 2.5e−2 3.8e−2 0.00 3.4e−2 0.00 0.77
Auto-MPG 1.2e−1 1.6e−1 1.3e−1 1.3e−1 0.51 1.3e−1 0.70 0.84
NO2 4.5e−1 4.9e−1 4.7e−1 4.8e−1 0.13 4.8e−1 0.24 0.69
Housing 1.3e−1 2.2e−1 1.6e−1 1.8e−1 0.07 1.9e−1 0.03 0.68
Cooling 2.4e−2 1.1e−1 3.2e−2 3.3e−2 0.32 3.3e−2 0.07 0.41
Heating 2.3e−3 7.6e−2 5.6e−3 5.6e−3 0.46 5.6e−3 0.28 0.76
Stock 1.1e−2 5.4e−2 1.7e−2 1.6e−2 0.64 1.6e−2 0.84 0.69
Concrete 1.2e−1 2.1e−1 1.3e−1 1.3e−1 0.09 1.3e−1 0.06 0.81
Mortgage 4.9e−4 1.1e−2 2.7e−3 3.5e−3 0.90 2.8e−3 0.50 0.49
MG 2.8e−1 3.2e−1 2.9e−1 3.0e−1 0.01 3.0e−1 0.05 0.42
Spage-GA 2.8e−1 3.2e−1 2.9e−1 2.9e−1 0.34 2.9e−1 0.29 0.98
Table 3
Results obtained with standard, weighted and reinforced kernel ridge regression with 5% of outliers in training data. Average MSE for 100 repetitions and p-values for
Wilcoxon rank-sum tests between the MSE distributions are shown. MSE distributions with L1 and L2 regularised PPRs are compared to those of weighted regression. MSEs
in bold for regularised PPRs are significantly better than MSEs with weighted kernel ridge regression. Performances of standard kernel ridge regression on clean data are
shown as reference. See text for more details.

MSE with clean data MSE with polluted data MSE with weighted L1 reinforced PPRs L2 reinforced PPRs L1 vs. L2
MSE p-value MSE p-value p-value

Pollution 4.9e−1 7.9e−1 7.2e−1 7.5e−1 0.72 8.8e−1 0.55 0.80
Pyrim 5.6e−1 9.9e−1 6.2e−1 7.2e−1 0.55 7.2e−1 0.52 0.98
Wine 7.2e−3 2.1e−1 9.8e−2 7.4e−2 0.70 1.1e−1 0.76 0.92
Nelson 1.2e−1 4.5e−1 3.5e−1 3.7e−1 0.13 1.9e−1 0.17 0.96
Nitrogen 2.0e−1 4.6e−1 2.7e−1 2.7e−1 0.96 2.7e−1 0.78 0.86
Enso 5.4e−1 9.7e−1 6.3e−1 7.5e−1 0.98 6.2e−1 0.61 0.61
Hardware 2.4e−1 3.7e−1 2.9e−1 2.8e−1 0.60 3.0e−1 0.49 0.90
Chriwut1 2.1e−2 8.6e−2 5.3e−2 5.2e−2 0.58 5.1e−2 0.55 0.95
Tecator 6.0e−2 3.4e−1 1.6e−1 1.5e−1 0.69 1.5e−1 0.42 0.71
Gauss3 3.5e−3 1.1e−1 2.1e−2 2.1e−2 0.63 2.1e−2 0.86 0.47
Bodyfat 2.9e−2 1.7e−1 4.9e−2 5.6e−2 0.59 5.1e−2 0.96 0.50
Yacht 3.3e−3 2.6e−1 4.1e−2 2.3e−2 0.01 2.4e−2 0.03 0.67
Auto-MPG 1.3e−1 2.0e−1 1.4e−1 1.4e−1 0.30 1.4e−1 0.23 0.90
NO2 4.7e−1 5.3e−1 4.9e−1 4.9e−1 0.95 4.8e−1 0.87 0.81
Housing 1.4e−1 2.7e−1 1.8e−1 1.7e−1 0.86 1.8e−1 0.85 0.72
Cooling 2.4e−2 1.5e−1 4.2e−2 3.8e−2 0.00 3.7e−2 0.00 0.98
Heating 2.2e−3 1.1e−1 1.3e−2 1.1e−2 0.00 1.0e−2 0.00 0.94
Stock 1.1e−2 8.7e−2 2.3e−2 2.1e−2 0.01 2.2e−2 0.01 0.93
Concrete 1.2e−1 2.7e−1 1.5e−1 1.4e−1 0.02 1.4e−1 0.01 0.78
Mortgage 5.5e−4 2.4e−2 8.4e−3 7.1e−3 0.81 7.6e−3 0.82 0.98
MG 2.8e−1 3.4e−1 2.9e−1 2.9e−1 0.80 2.9e−1 0.80 0.99
Spage-GA 2.8e−1 3.4e−1 3.1e−1 3.0e−1 0.22 3.0e−1 0.31 0.84
7. Conclusion

This paper introduces a generic method to deal with outliers
in the case of probabilistic models. Indeed, it is well-known that
maximum likelihood inference of model parameters is sensitive to
abnormally frequent data. An approach is proposed to robustify
maximum likelihood techniques. Probabilities are reinforced by
pointwise probability reinforcements (PPRs), whose properties can
be controlled by regularisation to obtain a compromise between
fitting data and finding outliers. It is shown that L1 regularisation
induces sparse PPRs, what results in a few observations being
considered as potential abnormally frequent data. Using L2
regularisation, a similar, yet smoother solution is obtained. In
addition, it is proven that observations which are more probable
with respect to the parametricmodel are going to be less reinforced
and correspond to larger reinforced probabilities. In order to
perform maximum likelihood inference with PPRs, a generic two-
step iterative algorithm is proposed which alternatively optimises
the PPRs and the model parameters. For the PPRs, cheap closed-
form update rules are obtained. For the model parameters, a
lower bound to the objective function is derived which allows us
to obtain an approximate maximisation step. This step consists
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Table 4
Results obtained with standard, weighted and reinforced kernel ridge regression with 10% of outliers in training data. Average MSE for 100 repetitions and p-values for
Wilcoxon rank-sum tests between the MSE distributions are shown. MSE distributions with L1 and L2 regularised PPRs are compared to those of weighted regression. MSEs
in grey for regularised PPRs are significantly worse than MSEs with weighted kernel ridge regression. Performances of standard kernel ridge regression on clean data are
shown as reference. See text for more details.

MSE with clean data MSE with polluted data MSE with weighted L1 reinforced PPRs L2 reinforced PPRs L1 vs. L2
MSE p-value MSE p-value p-value

Pollution 4.7e−1 9.4e−1 6.4e−1 8.1e−1 0.00 7.8e−1 0.01 0.86

Pyrim 5.1e−1 9.4e−1 7.0e−1 8.3e−1 0.02 8.4e−1 0.02 0.95

Wine 9.6e−3 3.9e−1 1.9e−1 2.3e−1 0.00 2.4e−1 0.00 0.89

Nelson 4.4e−1 4.8e−1 3.7e−1 4.2e−1 0.02 3.8e−1 0.02 0.89

Nitrogen 1.9e−1 5.6e−1 3.2e−1 4.1e−1 0.00 4.1e−1 0.00 0.88

Enso 5.4e−1 1.2 1.0 1.0 0.01 1.0 0.02 0.82
Hardware 2.0e−1 3.8e−1 2.7e−1 2.5e−1 1.00 2.5e−1 0.75 0.68
Chriwut1 2.1e−2 1.5e−1 6.3e−2 8.3e−2 0.00 8.4e−2 0.00 0.89

Tecator 6.7e−2 4.5e−1 1.7e−1 2.8e−1 0.00 2.5e−1 0.00 0.95

Gauss3 3.7e−3 2.2e−1 4.8e−2 9.0e−2 0.00 9.0e−2 0.00 0.47

Bodyfat 3.0e−2 2.7e−1 7.1e−2 1.3e−1 0.00 1.3e−1 0.00 0.89

Yacht 2.9e−3 4.4e−1 1.4e−1 1.8e−1 0.00 1.8e−1 0.00 0.68

Auto-MPG 1.3e−1 2.5e−1 1.7e−1 1.9e−1 0.00 1.8e−1 0.00 0.85
NO2 4.7e−1 5.9e−1 4.9e−1 5.1e−1 0.19 5.0e−1 0.26 0.88
Housing 1.3e−1 3.8e−1 2.0e−1 2.4e−1 0.00 2.4e−1 0.00 0.80

Cooling 2.4e−2 1.8e−1 7.1e−2 1.2e−1 0.00 1.2e−1 0.00 0.88

Heating 2.3e−3 1.5e−1 4.4e−2 9.1e−2 0.00 8.9e−2 0.00 0.65

Stock 1.1e−2 1.5e−1 3.7e−2 7.0e−2 0.00 7.0e−2 0.00 0.99

Concrete 1.2e−1 3.3e−1 1.8e−1 2.3e−1 0.00 2.3e−1 0.00 0.79
Mortgage 5.5e−4 5.1e−2 3.3e−2 2.9e−2 0.47 2.9e−2 0.49 0.96
MG 2.8e−1 3.8e−1 3.0e−1 3.2e−1 0.00 3.2e−1 0.00 0.63

Spage-GA 2.9e−1 3.7e−1 3.3e−1 3.4e−1 0.01 3.4e−1 0.02 0.82
in maximising a weighted log-likelihood. The instance weights
are obtained from the PPRs and can also be used by experts to
analyse data in search of outliers. The adaptation of four standard
probabilistic techniques (linear regression, kernel ridge regression,
logistic regression and PCA) shows the generality of the proposed
approach. Outliers can be detected in supervised or unsupervised
contexts and a degree of abnormality can be obtained for each
observation. The average degree of abnormality can be easily
controlled using a meta-parameter α, what can be used to select
an adequate compromise in the regularisation. Algorithms are
proposed to choose a good intermediate value of α in the case of L1
and L2 regularisation.

Experiments for kernel ridge regression show that the method-
ology proposed in this paper works in realistic settings. The ob-
tained results depend on the choice of the PPR regularisation
meta-parameter α, i.e. on the estimated percentage of outliers
if α is chosen so that the mean weight of instances during in-
ference corresponds to that percentage. When the percentage of
outliers is overestimated, reinforced inference provides good re-
sults which are comparable to those of existing methods. Also,
when the percentage of outliers is accurately estimated, reinforced
inference may outperform other methods. Eventually, when the
percentage of outliers is underestimated, the performances of rein-
forced inference decrease. In conclusion, reinforced inference can
be used in practice and meets the goal of this paper, i.e. to provide
a generic method which can be used to robustify maximum likeli-
hood inference techniques. Experiments show that it is necessary
to have at least a rough upper bound on the percentage of outliers.
Using PPRs, there is no need for ad-hoc procedures like e.g. those
proposed in the literature for kernel ridge regression (Jiyan et al.,
2011; Liu et al., 2011; Suykens, De Brabanter et al., 2002; Wen
et al., 2010), logistic regression (Rousseeuw & Christmann, 2003)
and principal component analysis (Fan et al., 2011; Huber, 1981).
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