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Abstract

Dimension reduction techniques are widely used for the analysis and visualization of complex
sets of data. This paper compares two recently published methods for nonlinear projection:
Isomap and Curvilinear Distance Analysis (CDA). Contrarily to the traditional linear PCA, these
methods work like multidimensional scaling, by reproducing in the projection space the pairwise
distances measured in the data space. However, they di6er from the classical linear MDS by the
metrics they use and by the way they build the mapping (algebraic or neural). While Isomap
relies directly on the traditional MDS, CDA is based on a nonlinear variant of MDS, called
Curvilinear Component Analysis (CCA). Although Isomap and CDA share the same metric, the
comparison highlights their respective strengths and weaknesses.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

When analyzing huge sets of numerical data, problems often occur when the raw
data are high-dimensional. For example, these di?culties are typical in domains like
image processing (large number of pixels) or biomedical signal analysis (numerous
captors).
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From a theoretical point of view, two related facts explain the problems encountered
in high-dimensional spaces:

• The curse of dimensionality [1]. The number of samples required to approximate
accurately a data distribution grows exponentially with the dimensionality.
• The empty space phenomenon [19]. Some properties of high-dimensional spaces are
unexpected (for example, the volume of a sphere inscribed in a cube tends to zero
when the dimensionality grows).

These phenomenons have insidious consequences, sometimes leading to malfunctions in
the analysis algorithms. A solution is to reduce the dimension of the raw data, because
their structure is often more simple than they look at Hrst sight, i.e. they probably
contain redundancies and dependencies between the variables. This means that the raw
data often lie on a manifold whose dimension is smaller than the dimension of the
embedding space. Under this assumption, the dimension reduction is achieved by the
construction of a continuous mapping between the embedding space and the unknown
manifold space. To be useful, this mapping has to be inversible (in the noiseless case),
in order to project and reconstruct the data with minimal error.
An essential parameter to build the mapping is the intrinsic dimension [6,7] of

the data, i.e. the true dimensionality of the manifold, given by its number of latent
(or explicative) variables. Most dimension reduction techniques require to know the
intrinsic dimension in advance, in order to avoid both underHtting or overHtting.
From a practical point of view, the dimension reduction techniques can be classiHed

according to

• the class of model,
• the criterion they optimize and,
• the type of application for which they are designed (e.g. visualization).

First, linear and nonlinear models can be distinguished. Among the linear ones,
three well-known methods are Principal Component Analysis [9,12], Projection Pursuit
[5,10] and the original metric multidimensional scaling [21]. The PCA criterion yields
a linear projection which preserves as much as possible the variance of the manifold.
Practically, this is achieved by computing the eigenvectors of the covariance matrix of
the data. Projection Pursuit generalizes the PCA by allowing the user to select a crite-
rion more sophisticated than the decorrelation. For example, statistical independence is
the criterion which leads to Independent Component Analysis [11]. Finally, the metric
MDS works like the PCA, by extracting eigenvectors (in this case from the matrix of
pairwise distances).
Among the nonlinear models, a Hrst one may be local PCA [13]. After a vector

quantization of the data, several PCA are conducted, one on each cluster. This locally
linear model is nonlinear at the level of the whole manifold. But unfortunately local
PCA is not designed to represent the manifold in a single coordinate system. This obvi-
ously compromises any attempt to consider the data set as a whole for any subsequent
continuous process.
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(a) (b) (c)

Fig. 1. Distance between two points: (a) two points on a manifold with a spiral shape, (b) the Euclidean
distance between them in the data space, (c) the distance along the manifold, which is the one approximated
by the curvilinear or geodesic distance.

Nonlinear methods not su6ering from this disadvantage are nonlinear variants of
the metric MDS, like Sammon’s nonlinear mapping (NLM) [18] or the Curvilinear
Component Analysis (CCA) [3,8]. These algorithms minimize criterions which com-
pletely di6er from the one used by PCA. They are based on notions like topology
and neighborhood. Actually, they build a mapping in such a way that the pairwise
distances between the raw data vectors are reproduced between the mapped vectors.
These algorithms show good capabilities for the unfolding of nonlinear manifolds. Their
limitations come from the distortions that can exist between the distances measured in
the data space and the distances measured in the manifold space (see the example of
the spiral in Fig. 1). The last evolutions of the distance-preserving techniques avoid
partly the problem by using a more complex metric than the Euclidean distance. For
example, the Curvilinear Distances Analysis (CDA) [15,16] and Isomap [20], devel-
oped independently and compared in this paper, compute a ‘curvilinear’ or ‘geodesic’
distance [2]. This metric can measure good approximations of the distances along the
manifold, without shortcuts as does the Euclidean distance (Figs. 1b and c). By the
way, it is worth to notice that the geodesic distance could be used not only in MDS
and CCA, but also in Sammon’s NLM. However, such a combination has apparently
not been published yet and is not investigated here.
The remainder of this document is organized as follows. Section 2 explains and

deHnes the curvilinear (or geodesic) distance. Sections 3 and 4, respectively, detail
how Isomap and CDA works. In order to compare both algorithms, Section 5 shows
some experimental results and Section 6 discusses them. Finally, Section 7 draws the
conclusions and sketches some perspectives for future work.

2. Curvilinear distance

At the Hrst glance, the curvilinear distance appears as a very strange concept. Indeed,
although it is directly apparented with the Euclidean distance, the curvilinear distance
depends not only on the two points between which the distance is measured, but also
on other surrounding points. This use of more than two points is totally unknown
in the world of Lp norms, where e.g. Euclidean and Manhattan distances are coming
from. A well-known exception is the Mahalannobis distance, for which the covariance
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of the data set is taken into account. Nevertheless, this approach remains very limited
by comparison with the curvilinear distance. Actually, the curvilinear distance does not
use global statistics computed on the data set, but it exploits the shape of the data set
at a local level.
Intuitively, the goal of the curvilinear distance consists in computing distances along

an object. For example, a plane cannot Ly from New York to Tokyo by following a
straight line (a plane is neither a submarine nor a tunneller!). Instead, it has to follow
the curvature of the Earth. This comparison explains why curvilinear distances are also
known as geodesic distances. Of course, the curvilinear distances must not be restricted
to the computation of curves on the surface of a sphere. It has to be feasible for any
manifold, and especially for manifolds that are only known through set of points.
Since only a discrete representation of the manifold is known, only a discrete ap-

proximation of the curvilinear distance will be computed. Instead of measuring the
length of a curve, we could sum the lengths of small interconnecting segments that
approximate the curve. Two important questions remain. Starting with the points in the
data set, how to build the segments? And how to choose the interconnecting segments
that best approximate the true curvilinear distances?
The Hrst question has a direct answer. If two points are neighbors, i.e. one of the

two points is the closest one to the other, then it seems normal that a segment should
connect the two points; the curvilinear distance between them is simply the length of
the segment. This reasoning gives a clue about how to weave the links between the
points. Obviously, not only the closest point may be used to build a link to a point:
in high-dimensional space, a point can be surrounded by several other ones. Therefore,
a point would ideally be connected to the k nearest ones (k-rule), or with all points
lying closer than a certain threshold � (�-rule). To the end, if every point is connected
with all other ones, the curvilinear distance is equivalent to the norm used to measure
the length of the segments.
The second question does not Hnd an answer so easily. Fortunately, the data set is

now complemented with links and can be seen as a weighted graph structure. Indeed,
each link can be labelled with its (Euclidean) length. Such a structure has been widely
studied in computer science and graph theory. These Helds abound in algorithms in-
tended to compute minimal cost trajectories in graphs. Especially, Dijkstra’s algorithm
[4] computes shortest paths in a weighted graph. Given a point in a graph, Dijkstra’s
algorithm computes the length of the shortest path to each other (reachable) point by
summing the length of the segments along the shortest path. Under certain conditions
on the links, it can be proven [2] that the length computed by Dijkstra’s algorithm
tends to the true curvilinear distance when the number of points deHning the manifold
increases. In this case, indeed, the length of the segments tends to decrease and the
shortest paths between pairs of points become smoother and smoother.
In the framework of nonlinear projection by distance preservation, the purpose of

the curvilinear distance consists in simplifying the preservation of long distances when
dealing with a nonlinear manifold. Indeed, the example of the spiral of Fig. 1 is
intuitively clear: the correct unfolding of the spiral requires to unroll it. However,
when doing so, long Euclidean distances have to be stretched, contrary to curvilinear
ones, which are naturally longer.
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3. Isomap

Isomap [20] is the straightest way to use the curvilinear distance for nonlinear pro-
jection. In this section, the term curvilinear is replaced by geodesic, since it is the
word used by the authors of [20].
First of all, assume that all n data vectors x16i6n are stored in matrix X as d-dimen-

sional columns: X = [x1; : : : ; xi; : : : ; xn].
Classically, e.g. in psychology, when high-dimensional sets of points are only known

by their pairwise distances (or equivalently by their similarity), the traditional PCA can-
not be achieved (the coordinates X of the points are not known). But, assuming that
the distance or similarity measures are convertible to Euclidean distances, the equiva-
lence between PCA and traditional metric MDS can be exploited in order to Hnd the
same solution as PCA would have given. Instead of Hnding the principal components
as eigenvectors of XX T (proportional to the sample estimation of the covariance ma-
trix of the set X of unknown coordinates), the dual problem X TX can be investigated.
Actually, X TX relates to D, the n×n matrix of all pairwise distances. In this case, the
eigenvectors of X TX are directly proportional to the coordinates along the principal
components. The main shortcoming of both PCA and MDS is that they can only deal
with linear dependencies between the features.
In this framework, Isomap replaces the Euclidean distances by the geodesic ones.

This modiHcation makes the projection of nonlinear manifolds possible, at least for
a certain class of manifolds. This class gathers all compact smooth submanifolds of
Rd (called intrinsically Euclidean manifolds in [2]) that can be isometrically mapped
to a convex domain of Rp. Here, the term ‘isometrically’ means that the
mapping equates the Euclidean distances in Rp with the true manifold distances
measured according to the natural Riemannian structure of the manifold and induced
from the Euclidean metrics on Rd. Intuitively, considering only 2D manifolds,
all manifolds obtainable by curving a sheet of paper belong to class of Euclidean
manifolds. More generally, a Euclidean manifold must respect the following
scheme:




x(1)

...

x(r)

...

x(d)



= A




f(1)(y(16s6p))

...

f(r)(y(16s6p))

...

f(d)(y(16s6p))



; (1)

where A is a square matrix and the bracketted indices (16 r6d) and (16 s6p),
respectively, indicates the rth and sth feature of the vector x (data vector in embed-
ding space) and y (corresponding vector in parameter space). Functions f(16r6d) are
one-to-one.
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Practically, Isomap goes through the following steps:

(1) Select randomly l points (l¡n): when the data set X contains numerous points,
it is useful to select a random subset P of them when measuring the pairwise
distances in order to keep the number of pairs computationally tractable.

(2) Connect neighboring points: connect each point either with the k closest other ones
(k-rule), or with those lying closer than a certain threshold � (�-rule).

(3) Compute the matrix D of all pairwise geodesic distances: run Dijkstra’s algorithm
for each point and store the pairwise distances between all points in a symmetric
matrix D with l× l entries. 2

(4) Center D: compute the mean of the rows, the mean of the columns and the mean
all entries; subtract the mean of the rows from each row, subtract the mean of
the columns from each column and the grand mean to all entries; this makes D
equivalent to PTP.

(5) Compute the eigenvalues and eigenvectors of the centered D and sort eigenvectors
according to the descending order of their associated eigenvalues.

(6) Choose p such that the residual variance associated with the l−p last eigenvectors
is su?ciently small; suppress those eigenvectors.

The p kept eigenvectors give the coordinates M =[m1; : : : ; mi; : : : ; ml] of the mapped
points in a p-dimensional projection space.

4. Curvilinear distance analysis

In the same way Isomap is derivated from classical metric MDS, Curvilinear Distance
Analysis (CDA, see [15,16]) comes from Curvilinear Component Analysis (CCA, see
[3,8]), intended to be a nonlinear alternative to PCA. As well CDA as CCA may be
seen as neural version of Sammon’s nonlinear mapping (NLM, see [18]), conceived
as a nonlinear version of metric MDS using gradient descent instead of eigenvalue
decomposition.
Similarly to Isomap, CCA/CDA begins by selecting a subset of the data in order

to keep the number of pairwise distances computationally tractable. But contrarily to
Isomap, the coordinates of the subset P are not randomly drawn in the data set X ;
instead, they result from a vector quantization applied on the data. Any basic vec-
tor quantization can Ht; concretely, the implementation uses hard competitive learning
(on-line algorithm, decreasing learning rate). Although vector quantization may fall
in local minima, the resulting prototypes are far more representative of the original
manifold than randomly selected points. As for Isomap, the quantization step may be
skipped when the number of data vector is small.

2 In addition to the selection of a randomly chosen subset of the points in the database, Isomap can also
decrease the size of D by making it sparse: all pairwise distances are not computed; instead, only a few
points serve as landmarks and the distance from all points to the landmarks are measured. This possibility
is not investigated here.
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The second stage of CCA/CDA is the mapping procedure itself. While Isomap relies
on algebraical methods resulting from the reformulation of the PCA problem as a
distance preservation problem (metric MDS), CCA/CDA considers directly this last
point of view. Concretely, it means that CCA/CDA works by optimizing a criterion
that explicitly measures the preservation of the pairwise distances:

ECCA=CDA =
∑

16i6l
i¡j6l

(�i; j − di;j)2F(di;j; �); (2)

where �i; j is a distance measured between prototypes pi and pj in the data space
and di;j is a distance measured between the coordinates mi and mj of the same two
prototypes in the projection space. The factor F(di;j; �) weighs the contribution of each
pair of prototypes in the criterion. Contrarily to the NLM, the factor F does not depend
on the distance �i; j in the data space but on the distance di;j in the projection space,
like for a Self-Organizing Map (SOM, see [14,17]). Consequences of this important
change will be analyzed later on. Moreover, the factor F does not need to be static: it
may be a function that evolves during the convergence by means of the parameter �,
again like in a SOM. This parameter may be seen as a neighborhood radius controlling
the scale at which the unfolding of the manifold occurs. Usually, F is implemented as
the Heaviside step function:

F(di;j; �) = �(�− di;j) =

{
0 if �− di;j ¡ 0;

1 if �− di;j¿ 0:
(3)

Starting from the criterion, the derivation of the learning rule follows a similar scheme
as for a stochastic gradient descent. Nevertheless, instead of moving one mapped pro-
totype according to the position of all other ones, one prototype mi is frozen while
moving all other ones (mj �=i) radially around it:

mj ← mj + �F(di;j; �)(�i; j − di;j)
mj − mi

di; j
; (4)

where � and � are, respectively, a time-decreasing learning rate and the neighborhood
radius. More details about the choice of F and the derivation of the learning rule can
be found in [3].
Actually, the main di6erence between CCA and CDA regards the metric �i; j which

measures the distance between two prototypes. While CCA uses the traditional
Euclidean distance, CDA works with the curvilinear distance like Isomap. Although
CCA is more powerful than NLM, its main shortcoming is the parameterization of the
neighborhood radius �. When the manifold is nonlinear, � has to be large enough to get
a not too slow unfolding, but it also has to be small enough to avoid the preservation
of long Euclidean distances which have to be distorted anyway. In this situation, the
use of the curvilinear distance simpliHes the parameterization since the entire class of
Euclidean manifolds can be unfolded without care of �. Its value has simply to be set
beyond the maximum curvilinear distance measured in the data set.
By comparison with CCA, CDA also reinforces its neural aspect. Indeed, as in

CCA, the prototypes coming from the vector quantization are considered as neurons,
i.e. processing units independent from the learning set. These neurons have connections
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towards both the data and projection spaces. But in addition, the use of the curvilinear
distance, and particularly its implementation as a proximity graph, may be seen as a
way to weave lateral connections. In that sense, CDA shows more or less the same
structure as a SOM. Another resemblence regards the two learning parameters � and
�, which have approximately the same meaning in both methods.

5. Comparison between CDA and Isomap

This section highlights some di6erences between the results of Isomap and CDA.
The Hrst subsection gives an intuition of how both methods work, with the help of
toy experiments. The second subsection, although still based on artiHcial data, a6ords
real-life problems in the Held of image processing.

5.1. Toy experiments

In order to explain visually and intuitively the capabilities of Isomap and CDA, noth-
ing compares to two-dimensional manifolds embedded in a three-dimensional space.
Fig. 2 illustrates four examples. All of them are intrinsically two-dimensional and can
thus be projected on a plane.

Fig. 2. Four typical manifolds: the Swiss roll (top left), the heated Swiss roll (top right), the open box
(bottom left) and the cylinder (bottom right).
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Fig. 3. Two-dimensional projections of 20,000 samples drawn from the Swiss roll manifold by Isomap with
random selection (top) and by CDA (bottom); the number of randomly selected points or prototypes is 1000
in both cases; k = 5.

The Hrst one (see Fig. 2 top left) is the well-known Swiss-roll, more or less similar
to the one already used in [20] to explain Isomap. Its parametric equations are

x = u cos(4 v); (5)

y = u sin(4 v); (6)

z =  (0:5− u); (7)

where u and v vary between 0 and 1. The Swiss-roll belongs to the class of Euclidean
manifolds since it su?ces to curve a sheet of paper to get it. Alternatively, it can
be seen that the above parametric equations match the pattern proposed in Eq. (1).
For the experiment, the data set given to Isomap and CDA contains 20,000 points
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Table 1
Residual variances given by Isomap for all examples: the size of the projected subset and the way it is chosen
(either by Random Selection or Vector Quantization) are indicated in the second and third columns; the fourth
column shows the parameter k (minimal number of neighbors for the graph construction); the remaining
columns show the residues for projection dimensionalities ranging from 1 to 6. The ideal dimensionality
according to Isomap is given by the Hrst column of the plateau where residues hardly vary around a small
value; the true intrinsic dimensionality of all manifolds is two; contrarily to eigenvalues yielded by PCA or
MDS, residual variances may not decrease strictly

Manifold Size Selection k 1D 2D 3D 4D 5D 6D

Swiss roll 1000 RS 5 0.1081 0.0042 0.0030 0.0029 0.0030 0.0029
1000 VQ 5 0.1054 0.0007 0.0010 0.0010 0.0011 0.0011
1000 VQ 6 0.1783 0.0353 0.0132 0.0173 0.0202 0.0207

Heated Swiss roll 1000 VQ 6 0.0341 0.0184 0.0082 0.0031 0.0022 0.0014
Box 500 VQ 6 0.6349 0.1702 0.0356 0.0433 0.0502 0.0498
Cylinder 500 VQ 6 0.5391 0.3057 0.0295 0.0334 0.0352 0.0357
Face 698 no 6 0.197 0.089 0.023 0.018 0.014 0.013
Clock 720 no 2 0.570 0.042 0.049 0.053 0.054 0.054
Thin Swiss roll 1000 VQ 6 0.00095 0.00087 0.00077 0.00086 0.00089 0.00095

drawn from the manifold. After selecting 1000 points and connecting each of them
with their Hve nearest neighbors (k-rule, k = 5), Isomap delivers the result shown at
the top of Fig. 3, with residue values given in the Hrst row of Table 1. After quantizing
and connecting with the same numbers of prototypes and neighbors, CDA yields the
result shown at the bottom of Fig. 3. This Hrst example proves the beneHt of using
the curvilinear or geodesic distance: as well Isomap as CDA unroll the manifold with
ease (without any tuning of the � and � parameters in the case of CDA). However,
the results are not completely identical. Indeed, the projection of the Swiss-roll done
by Isomap looks like a slice of Swiss cheese, with holes and bubbles, although the
probability distribution of the data was not so chaotic before the projection. This e6ect
is due to the random selection of points for Isomap and implies more than only visual
consequences on the result. Actually, the random selection does not reproduce correctly
the initial distribution of the data set. Thus, some regions are empty whereas other ones
are slightly too dense by comparison. As a Hrst consequence, those holes prevent a
good approximation of the geodesic distances, that are unnecessarily stretched (they
have to slalom around the holes). Secondly, Isomap aggregates points that lie close to
each other and widens the holes. In fact, Isomap behaves in that way because it tends
to better preserve long distances by comparison with shorter ones, that are shrunken.
Of course, nothing prevents the use of vector quantization as a preprocessing for

Isomap as it is done for CDA (see Fig. 4). Indeed, the above described phenomenum
does not appear in the result of CDA, for which the vector quantization gives prototypes
that are far more representative of the initial distribution in the manifold. From now
on, Isomap uses vector quantization in all subsequent examples.
The same manifold can be projected again by Isomap and CDA with vector

quantization for both methods. The sole di6erence regards the number of neighbors,
which is increased (k = 6). This change causes the apparition of a parasitic link, as
shown in the three-dimensional view of Fig. 5. The results of Isomap and CDA are



J.A. Lee et al. / Neurocomputing 57 (2004) 49–76 59

Fig. 4. Two-dimensional projections of 20,000 samples drawn from the Swiss roll manifold by Isomap (top)
and CDA (bottom) with vector quantization (1000 prototypes) in both cases; k = 5.

illustrated in Fig. 6. The residual variances, in the third row of Table 1, indicate that
Isomap di?cultly compute a two-dimensional projection. According to the variances,
Isomap cannot reduce the dimensionality, just because of the parasitic connection. On
the other hand, CDA seems to be more robust: the parasitic link has been stretched
(it can be seen on the top right corner of the projection).
The second example (see Fig. 2 top right) is very similar to the Swiss roll. Visually,

the original Swiss roll has been slightly heated and molted. The wall
follows a parabolic curve instead of a straight line. The number of available points
remains 20,000, generated by the parametric equations

x = 0:5(1 + (1− 2r2)2)u cos(4 v); (8)

y = 0:5(1 + (1− 2r2)2)u sin(4 v); (9)

z =  (0:5− u); (10)
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Fig. 5. Three-dimensional view of the 1000 prototypes after vector quantization on 20,000 samples drawn
from the Swiss roll manifold; when k = 6, a parasitic link appears.

where u and v vary between 0 and 1. Unfortunately, the multiplication by the parabolic
factor implies that the manifold is not Euclidean anymore: the above parametric equa-
tions does not respect the scheme of Eq. (1). As a consequence, Isomap (1000 se-
lected points, k = 6, top of Fig. 7) has some di?culties to Hnd a 2D representation.
The residual variances, shown in Table 1 conHrm this fact: the plateau of small vari-
ances starts at best at the third value. Anyway, the absence of a clear fall between
the Hrst and second variances indicates that two dimensions do not su?ce to build
a satisfying two-dimensional projection with Isomap, although the manifold is intrin-
sically two-dimensional. On the contrary, CDA (1000 prototypes, k = 6, bottom of
Fig. 7) beneHts from its gradient descent method, allowing some distortions for the
large distances.
The third example is an open box (see Fig. 2 bottom left), made of Hve joined

square planes, with a uniform distribution between −1 and +1. Clearly, the open box
does not belong to the class of Euclidean manifolds. Like the second example, the open
box tries to highlight the di6erences between Isomap and CDA in the mapping phase.
The results of Isomap and CDA are shown in Fig. 8, again with 20,000 initial points
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Fig. 6. Two-dimensional projections of 20,000 samples drawn from the Swiss roll manifold by Isomap (top)
and CDA (bottom) with vector quantization (1000 prototypes) in both cases; k = 6.

but only 500 prototypes (vector quantization for both methods). Visually, Isomap has
rounded the sharp edges of the box and shrunken the four lateral faces like a crown:
the height of the box is lost. On the other hand, CDA has unfolded the box by tearing
two faces (see the stretched links), but the rest of the surface is perfectly Lattened
and never crushed. This is the consequence of the gradient descent technique used
by CDA: the neighborhood factor F allows the algorithm to converge locally. More
precisely, the dependence of F on the distance di;j in the projection space and not on
the distance �i; j in the data space allows CDA to tolerate stretched links. Indeed, a
stretched link implies a longer di;j, and therefore a weaker contribution in ECCA=CDA.
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Fig. 7. Two-dimensional projections of 20,000 samples drawn from the heated Swiss roll manifold by Isomap
(top) and CDA (bottom); the 1000 shown points are the prototypes determined by CDA, which are directly
fed into Isomap instead to select 1000 points randomly.

Isomap, on the other hand, can only deliver a global linear solution downstream from
the nonlinear transform brought by the use of geodesic distances.
The fourth example is a cylinder (Fig. 2 bottom right) and conHrms the usefulness

of stretched links. The data set contains 20,000 points generated by the parametric
equations

x = cos(2 v); (11)

y = sin(2 v); (12)

z = 4(0:5− u); (13)

where u and v vary between 0 and 1. The results of Isomap and CDA are presented
in Fig. 9 (500 prototypes after vector quantization for both methods). Unfortunately,
Isomap works di?cultly with this non-Euclidean manifold (see the residual variances
in Table 1), mainly because it is circular. Visually, Isomap crushes the cylinder like
an empty can. Again, CDA manages the problem by tearing the cylinder: once it is
cut, the dimensionality reduction is made much easier.

5.2. Image processing

This section still deals with artiHcially generated data, but now the examples are more
realistic in the sense that there is an important dimensionality reduction to achieve. In
the Held of image processing and visual perception, where the two examples below
are coming from, it is not uncommon to retrieve only a few latent variables hidden
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Fig. 8. Two-dimensional projections of 20,000 samples drawn from the open box manifold by Isomap (top)
and CDA (bottom); the 500 shown points are the prototypes determined by CDA, which are directly fed
into Isomap instead to select 500 points randomly.

among thousands of pixels. Two problems are presented. The Hrst example consists
in Hnding the orientation of a human face in a picture and the second one in read-
ing the time on a traditional (not digital) clock. In both cases, the input data are a
set of 4096-dimensional vectors, representing the brightness of 64 pixel × 64 pixel
black-and-white images.
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Fig. 9. Two-dimensional projections of 20,000 samples drawn from the cylinder manifold by Isomap (top)
and CDA (bottom); the 500 shown points are the prototypes determined by CDA, which are directly fed
into Isomap instead to select 500 points randomly.

The face orientation problem is taken from [20] and includes 698 images. Only
three variables su?ce to distinguish them: the horizontal angle (left–right pose), the
vertical angle (up–down pose) and the illumination angle. As advised in [20], the
data has been preprocessed by Principal Component Analysis (PCA) in order to re-
duce the 4096 pixels to only 240 principal components. Afterwards, all images are
given to Isomap, without any subset selection. The geodesic distances are computed
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Fig. 10. Projection of the face data: the three-dimensional projection of the face data is divided in cells;
in each cell, the highest and the lowest points (bold circle) are displayed in Fig. 11 and 12 with the
corresponding two images, respectively on the top and bottom of the Hgures.

after connecting the input data with k = 6. The eigendecomposition of the distance
matrix yields the residual variances of Table 1. Since they are negligible and hardly
varying starting from the third value, the three eigenvectors associated with the three
largest eigenvalues are kept as advised in [20]. This gives a three-dimensional rep-
resentation of the images; Fig. 10 explains how it is displayed in only two
dimensions.
As well for Isomap (Fig. 11) as for CDA (Fig. 12), the 3D representation is divided

in 8× 8 cells along two dimensions. On the top of each Hgure, each cell is Hlled with
the image corresponding to the lowest point of the three-dimensional representation,
according to the third dimension. On the bottom of each Hgure, each cell is Hlled with
the image corresponding the highest point lying in the cell.
Obviously, Isomap retrieves the latent variables that have generated the images.

Going from left cells to right cells changes the left–right pose while going from top
to bottom changes the up–down pose. The illumination direction is full left for the
projection of the lowest points and full right for the projection of the highest point in
each cell.
Without any care for the parameterization, CDA can deliver similar results, as

illustrated in Fig. 12. CDA ran without vector quantization and with k = 6 in order
to compare fairly with Isomap.
Other experiments have shown that the face orientation problem is a typical example

where the geodesic or curvilinear distance plays an essential role. Neither classical
metric MDS nor CCA achieve a good unfolding of the manifold with only the Euclidean
distance (although a careful parameterization of CCA would maybe lead to acceptable
results). Moreover, the manifold seems to be a Euclidean one, as almost no di6erence
appears between Isomap and CDA.
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Fig. 11. Projection of the face data set by Isomap (698 faces, no subset selection); the three-dimensional
projections is displayed as two 2D projection according to the scheme of Fig. 10.

Such a conclusion, however, does not hold for the second image processing exam-
ple, for which Isomap and CDA behave di6erently. The clock reading problem com-
prises 720 images (one image every minute during 12 h). Therefore, as well Isomap
as CDA should theoretically be able to project the 4096-dimensional vectors to only
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Fig. 12. Projection of the face data set by CDA (698 faces, no vector quantization); the three-dimensional
projections is displayed as two 2D projection according to the scheme of Fig. 10.

one variable: the time displayed by the clock! 3 But the problem presents a subtlety
by comparison with the face orientation. Indeed, assuming the distance between two

3 Of course, the result will not exactly equate the real time: a shift and a magniHcation factor have to be
taken into account.
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consecutive images is smaller than images separated by a longer duration, the manifold
is circular, since just after 11h59, the clock goes back to 00h00.
Contrarily to the face orientation problem, Isomap and CDA are fed with the raw

data, without preprocessing by PCA. When running Isomap without subset selection
and with parameter k=2, the residual variances are those mentioned in Table 1. Isomap
does not succeed to detect that the underlying manifold is only one-dimensional, since
the plateau begins only after the Hrst residual variance. Indeed, when keeping two
eigenvectors as indicated in Table 1 and advised by [20], the 2D representation appears
to be a circle. Consequently, the 1D representation is inevitably the projection of this
circle on a line. Actually, the 1D solution superposes the two halves of the circle,
meaning concretely that Isomap cannot distinguish, for example, 06h00 and 12h00.
This can be seen in Fig. 13, where the time line, i.e. the 1D projection, has been
equally divided by 144 (read from left to right and from top to bottom). Each division
is represented by the average of the original images corresponding to the points in
the division. The projection of the circle has another shortcoming in the sense that the
distribution in the time line is not uniform: the Hrst and last cells include approximately
40 points, i.e. last 40 min, while the cells in the middle of the Hgure last only 3 min.
Visually, this phenomenon can be seen in the Hgure by observing the minute hand on
the clocks: it is well drawn in the middle of the Hgure, begins to be broader and lighter
when moving upwards or downwards, and totally disappears in the Hrst and last cells.
With the help of its gradient descent, CDA computes a totally di6erent solution by

cutting and unrolling the underlying circular manifold. The same visual representation
as for Isomap is given in Fig. 14. There is no superposition, time goes by as one reads
from left to right, row by row, and each division of the time line contains between
4 and 6 points. The minute hand conHrms that fact, since its average on a cell is
approximately Hve minutes broad.
The clock reading problem may seem odd or trivial. It is quite easy to write a bunch

of code that looks at the right pixels and gives the current time. But unfortunately,
the programmer should deeply change his code to adapt it to a new clock. With
the approach developed here, the modiHcation is done automatically! If Big Ben is
replaced by a Swiss cuckoo clock, one just needs to rerun the mapping algorithm and
to recalibrate the obtained time line with the real time (o6set, magniHcation).

6. Discussion

This section brieLy gathers some arguments about the way Isomap and CDA solve
the problem of nonlinear projection.

6.1. Algebraical versus neural, global versus local

Isomap deHnitely looks more like an algebraical procedure, resulting from a global
approach of the model, while CDA appears rather as a neural network with a local
approach of the problem.
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Fig. 13. Projection of the clock data set (720 images) by Isomap (no subset selection) from 4096 to 1
dimension; the projection line is divided in 12 rows to be read from left to right and from top to bottom;
each row is then divided into 12 cells Hlled with the average of the images corresponding to the points lying
in the cells.
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Fig. 14. Projection of the clock data set (720 images) by CDA (no vector quantization) from 4096 to 1
dimension; the projection line is divided in 12 rows to be read from left to right and from top to bottom;
each row is then divided into 12 cells Hlled with the average of the images corresponding to the points lying
in the cells.



J.A. Lee et al. / Neurocomputing 57 (2004) 49–76 71

At Hrst sight, the algebraical approach of Isomap may seem better because it lies on
strong theoretical foundations. Nevertheless, algebraical methods, when implemented,
often loose some of their beauty due to their translation on real computers, in which
Loating point numbers are represented with a limited precision. In the case of Isomap,
the computation of the eigenvectors of large matrices is not an easy task and it might
be critical to rely on a general-purpose algorithm to achieve it. Though, this a?rmation
need to be moderated, knowing that much work has been decicated to MDS, which
faces the same issue. On the other hand, CDA considers the problem from the opposite
point of view and solves it directly, without translation or transformation, with an ad
hoc procedure, especially tailored for it.
The main advantage of a global approach, at least in the case of Isomap, is that a

solution always exists for any problem in the framework of the considered model. This
solution minimizes an explicitly formulated criterion. Practically, however, this advan-
tages has its counterparts. The price to pay is often an unrealistic or too constraining
model. Similarly, the criterion does not always translate exactly what the user expects.
In brief, the solution always exists, is a global minimum, but, when the problem does
not Ht the model, its interpretation could be hazardous (see Figs. 7, 8 or 9).
On the contrary, a local approach like CDA does not o6er any theoretical guarantee.

Even when the problem perfectly Hts the model, an unexperienced user might badly
parameterize the algorithm. On the other hand, a well-parameterized local approach is
more tolerant and generally delivers a good solution, even if the problem does not Ht
exactly the underlying model. In the case of CDA, the local approach to nonlinear
projection consists in focusing the work on small distances and in allowing some
distortion for larger ones. In the same way, CDA can accept to shrink some regions
of the manifold while stretching (or even tearing) other ones. Obviously, the obtained
solution is not guaranteed to be a global optimum, since no explicit criterion exists at
the global level. But does the brain optimize some global formula to get good ideas?
Probably not.

6.2. Robustness and tolerance

Although Isomap seems to work perfectly on the Swiss roll, this simple manifold, can
highlight a major drawback of the method. The case of the parasatic link, detailed above
(see Figs. 5 and 6), already underlines the better robustness of CDA. But unfortunately,
Isomap does not yield a satisfying solution, even if the connections are well done. In
order to notice visually what exactly goes wrong, a thin Swiss roll is needed (it is
much longer than wide, see Fig. 15). Using vector quantization, a subset of the points is
selected in order to represent correctly the manifold and to avoid shortcut links. Isomap
then computes the shortest paths and the low-dimensional coordinates. The residual
variances, given in the last row of Table 1, do not decrease clearly, meaning that one
dimension already su?ces to project the data set. Obviously, the second dimension
is small but not negligible and Fig. 16 (top) shows a two-dimensional projection, in
agreement with the true intrinsic dimensionality.
Oddly, the projected manifold looks like a bone, wider at both ends than in the mid-

dle. What reason could explain such a strange phenomenon? Actually, as mentioned



72 J.A. Lee et al. / Neurocomputing 57 (2004) 49–76

Fig. 15. Thin Swiss roll: 1000 prototypes after vector quantization and linking step (k =6); the length is 4 
larger than the width.

Fig. 16. Thin Swiss roll: two-dimensional projection of the 1000 prototypes of Fig. 15 with Isomap (top)
and CDA (bottom).

in Section 2, Isomap only approximates the geodesic distances. While the distance is
well computed between two linked points, it is unnecessarily overestimated when the
shortest path goes through some intermediate points. In this case, indeed, the shortest
path usually zigzags 4 on the left and the right, causing the distortion. In the perspec-

4 At Hrst glance, the overestimation caused by zigzagging could be compensated by the fact that the links
do not Ht exactly the curvature of the manifold: they are indeed somewhat shorter since they follow a straight
line; unfortunately, this concurrent phenomenon equally a6ects all links.
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Table 2
Mean (and maximum) ratio between the Euclidean distance and the graph distance for n randomly drawn
points, connected with the k-rule (k = 6) and the �-rule (� = 0:25)

n k-rule �-rule

100 1.074169 (1.787279) 1.258154 (6.740509)
200 1.108013 (2.942647) 1.104395 (4.307957)
300 1.124344 (3.680271) 1.037936 (2.771733)
400 1.112438 (3.945047) 1.023038 (2.488945)
500 1.111599 (3.298277) 1.014248 (1.646258)
600 1.115607 (4.165133) 1.010244 (1.403222)
700 1.125792 (4.758089) 1.008191 (1.403222)
800 1.119858 (4.484999) 1.006355 (1.247347)

tive of Hnding a global solution, this phenomenon is very annoying since this ‘noise’
pollutes the matrix of all pairwise distances. To avoid the bone-end e6ect, Isomap
should give less importance to large (overestimated) distances and focus on smaller
(well estimated) ones, exactly like the Lexible neighborhood radius of CDA does. A
naive and simplistic solution would be to neglect long distances, but beyond which
threshold? And which value would be given in the distance matrix for the neglected
entries? How to compute the eigenvectors of such a sparse matrix? Experiments made
with CCA/CDA have shown that although long distances are somewhat distorted, they
give essential information that is absolutely necessary for the unfolding of objects like
the Swiss roll.
Fig. 16 (bottom) shows the result of CDA. Actually, because of the nature of the

weighting factor F in ECCA=CDA, CCA/CDA reacts better and more robustly against
stretched distances than against shrinked ones.
Another solution to attenuate the bone-end e6ect in Isomap would be to increase the

number of points in the data set, as advised by the theorems proved in [2]. Even when
this is possible (the amount of available data is su?cient and the computing time
remains reasonable), it experimentally appears that the hypotheses of the theorems
are di?cultly met, at least for the k-rule. A simple experiment consists in randomly
drawing n points uniformly distributed in a square. After connecting them with the
k-rule (k = 6) or the �-rule (� = 0:25), the graph distances are measured. In the case
of a plane unit square, the true manifold distances are simply the Euclidean distance.
Then, the distortion between the true manifold distances and the graph distances can
be computed for several value of n, as it is shown in Table 2. The addition of points
does not really improve the distortion for the k-rule. Actually, to get a better behavior,
k should grow simultaneously with the number of points. In this case, many links
originate from each point in many directions, attenuating the zigzag e6ect. This is
exactly what occurs with the �-rule when the number of points increases. Unfortunately,
a large k or � implies to build long and numerous links, often incompatible with the
curvature of a manifold. Indeed, when the total number of links tends to n(n − 1)=2,
the average number of links to follow along a shortest path tends to one and the
geodesic distance reduces to the Euclidean distance. Thus, practically, the projection
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of the longer-than-wide Swiss roll requires to connect a huge number of points with
the � rule, � remaining small to avoid shortcut links. Of course, this situation obliges
to solve an enormous eigenproblem with a prohibitive time cost.
Although CDA does not bring a global solution, the result should appear visually

more desirable to the user since the manifold is not distorted. In order to get desirable
mathematical properties, Isomap pays the price of some compromises and/or restrictions
in the deHnition of the problem.

6.3. Parameterization

Several parameters need to be tuned as well for Isomap as for CDA.
Since both methods share the same procedures to connect the points, some parameters

are also common: the value of k or � according to the choice of either the k-rule or
�-rule. For the mapping stage, only CDA has parameters: �, the learning rate, and �,
the neighborhood radius.
For both methods, the value of k or � have to be carefully chosen. Too large, they

counterbalance the advantages of the curvilinear distance (shortcut links and overall un-
derestimation of the true manifold distance). Too small, they cause the graph distances
to overestimate the manifold distance (zigzag e6ect and unconnected points).
The learning rate of CDA does not need any special care and can be set auto-

matically: a smooth decrease between 1.0 and 0.0 works perfectly. The neighborhood
radius � requires to pay a little more attention for di?cult problems, i.e. non-Euclidean
manifolds. Intuitively, � may be seen as a metaparameter acting on the underlying
model of CDA. When � remains large, the model of CDA resembles to the one of
Isomap, Hnding the best global solution with a high probability when the problem
perfectly Hts the model. On the other hand, when � is small, the model becomes more
tolerant. As mentioned in the preceding subsection, the default parameterization of �
exploits this tolerance to remedy to a not so good choice for k or �.

7. Conclusion

Isomap and CDA are two nonlinear projection algorithms useful to explore data sets.
Both methods work by preserving in the projection the pairwise distances measured in
the original manifold, like classical metric MDS does. Although they have been devel-
oped independently (and almost simultaneously), they share common innovative ideas.
The most important one is probably the alternative metrics they use: the geodesic or
curvilinear distance. The new metrics is intended to overcome the di?culties encoun-
tered when working with traditional algorithms like metric multidimensional scaling and
Sammon’s nonlinear mapping. Actually, the geodesic distance facilitates the preserva-
tion of the pairwise distances by computing them along the manifold, giving a measure
that is almost independent of the manifold curvature.
In this framework, Isomap is just a translation of the classical metric MDS from the

language of Euclidean distances into the one of geodesic distances. CDA goes a step
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further, by using neural methods (vector quantization, stochastic gradient descent, etc.)
like Sammon’s nonlinear mapping and CCA.
Because of its mathematical elegance, Isomap has both the advantages of speed and

theoretical solidity. Somewhat slower, CDA relies on more complicated techniques and
needs to be well parameterized. However, this complexity makes CDA more robust than
Isomap on two points. The Hrst one regards the performance of the projection when
the manifold does not Ht exactly the model hidden behind the geodesic distance (the
manifold is not Euclidean). The second point is related to the way geodesic distances
are computed: practically, they can only be approximated.
As a global conclusion, the user should remind that an ideal algorithm does not

exist for the problem of nonlinear projection. For example, the use CDA or Isomap
makes no sense when the data are purely linear: PCA or classical metric MDS will
work faster and better. But once the manifold becomes curved, the introduction of the
geodesic distance and the choice of Isomap or CDA are fully justiHed, at least if the
manifold remains Euclidean. When even this last condition does not hold, the higher
Lexibility of CDA is welcome.
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