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Abstract

Numerous methods or algorithms have been designed to solve the problem of nonlinear
dimensionality reduction (NLDR). However, very few among them are able to embed
efficiently ‘circular’ manifolds like cylinders or tori, which have one or more essential loops.
This paper presents a simple and fast procedure that can tear or cut those manifolds, i.e. break
their essential loops, in order to make their embedding in a low-dimensional space easier. The
key idea is the following: starting from the available data points, the tearing procedure
represents the underlying manifold by a graph and then builds a maximum subgraph with no
loops anymore. Because it works with a graph, the procedure can preprocess data for all
NLDR techniques that uses the same representation. Recent techniques using geodesic
distances (Isomap, geodesic Sammon’s mapping, geodesic CCA, etc.) or K-ary neighborhoods
(LLE, hLLE, Laplacian eigenmaps) fall in that category. After describing the tearing
procedure in details, the paper comments a few experimental results.
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1. Introduction

The standard task in nonlinear dimensionality reduction (NLDR, see [18]) consists
in taking a set of data points sampled from a smooth, low-dimensional submanifold
(e.g. P-dimensional) of a high-dimensional Euclidean space (e.g. D-dimensional),
and to re-embed those points in a low-dimensional Euclidean space (e.g. P'-
dimensional) while preserving the local structure of the submanifold. The purpose is
to find useful new coordinates for the data. In general D > P'>P. If the original
submanifold has the topology of a convex region in the P-dimensional Euclidean
space, then one can hope for P’ = P, and this is the best possible situation: the new
coordinates parameterize the original submanifold. However, if the submanifold has
a more complicated topology, perhaps having ‘holes’ or ‘essential loops’, then
sometimes P’ must be chosen greater than P because it is not possible or not as easy
to find a P-dimensional embedding without tearing the manifold. For example, a
torus is 2-dimensional but cannot be embedded in the 2-dimensional Euclidean
plane.

This paper describes a procedure for ‘tearing’ or ‘cutting’ data manifolds,
modifying them so that they have no essential loops anymore. Once this is done, in
many cases one can then run NLDR algorithms successfully on the modified data,
whereas the same algorithms might have failed or been less useful in the initial
setting.

The proposed tearing procedure is actually applied to the ‘neighborhood graph’
which is often constructed in recent NLDR algorithms. Edges of the neighborhood
graph connect data points which are close to each other in the high-dimensional
Euclidean space. For example, each data point can be connected to its K-closest
neighbors (K-ary neighborhoods) or to all other points lying no further than a
certain distance ¢ from it (e-neighborhood). NLDR algorithms using such a
neighborhood graph are for instance LLE [15,17] and related techniques [7,2], or
Isomap [21] and other algorithms using geodesic distances (e.g. geodesic versions of
Sammon’s nonlinear mapping (NLM) and curvilinear distance analysis [13]).

The structure of the paper is as follows. After this introduction, Section 2 briefly
recalls some definitions about manifolds, graphs and shows how these two concepts
are put together within the framework of NLDR. In particular, the last part of
Section 2 explains how essential loops of manifolds are represented in their
associated graph. Next, the tearing procedure itself is described in Section 3, whereas
Section 4 shows a few experimental results on artificial data. Finally, Section 5 draws
the conclusions and outlines perspectives for future work.

2. Manifolds, graphs and their relationship in NLDR
2.1. Manifolds and non-contractible loops

This section briefly defines some concepts about manifolds and graphs that are
used further below.
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Manifolds are central objects in geometrical topology. Actually, a manifold .Z is a
topological space which is locally Euclidean (i.e., around every point, there is a
neighborhood which is topologically the same as the open unit ball). Although they
are objects of their own right, manifolds are often represented in a certain space in
such a way that its topology (or connectivity) is preserved; such a representation is
called an embedding. In a specific embedding, coordinates of a manifold can be given
by some parametric equations. If those are infinitely differentiable, then the manifold
is said to be smooth. Independently of any embedding, the intrinsic dimension P of
M is the number of ‘free parameters’ of .#, whereas D>P is its embedding
dimensionality. A manifold having intrinsic dimensionality P is called a P-manifold.
A Q-dimensional submanifold of a P-manifold .# (Q<P) is a subset of .#. For
instance, a circle may be a smooth 1-submanifold of a torus, which is in turn a
smooth 2-submanifold of the Euclidean space R*. In that example, both the circle
and the torus are embedded in R®. As a particular case, any compact smooth 1-
submanifold of a manifold .# (a deformed circle drawn on the .#) is called a loop.

As already stated above, the goal of NLDR is to re-embed a given smooth P-
manifold. Starting from an initial D-dimensional embedding, a new P’-dimensional
embedding is determined, where P’ is as close as possible to P. In addition to
smoothness, many NLDR techniques require that the manifold to re-embed has the
same topology as a convex region of R”. A curved sheet of paper, like the well-
known Swiss roll [21], fulfills these requirements. On the other hand, a circle or a
torus do not. This is because a circle or a torus are ‘circular’, i.e. are connected but
not simply connected. Formally, a smooth manifold is said to be simply-connected if
every loop is contractible (every compact smooth 1-submanifold can be shrunk to a
single point). Connected manifolds like a circle or a torus are said to be multiply
connected. The presence of non-contractible loops in a manifold is due to holes, in
the topological sense of the word. For example, loops drawn around the ‘donut hole’
of a torus are non-contractible.

The presence of non-contractible loops in a smooth P-manifold makes its
embedding more difficult, mainly because it may happen that more than P
dimensions are needed to preserve its topological structure. The circle is the most
typical example: at least 2 dimensions are needed to embed this I-manifold.
However, a P-manifold with non-contractible loops can still be embedded in R if
one ‘destroys’ a well-chosen part of its connectivity. In the case of the circle, the idea
of ‘cutting’ (or ‘tearing’) it at some point seems natural: the result is a manifold that
is still connected (it looks like a curved line segment) but can now be embedded in R.
Following the same idea, a torus can be embedded in R?, but the way to tear it is not
as obvious as for the circle. A last interesting example is the cylinder; this 2-manifold
has non-contractible loops but can still be embedded in R? by deforming it to an
annulus (a disc with a hole). Nevertheless, many NLDR techniques achieve such a
deformation with great difficulty; on the other hand, if the cylinder is cut along its
height, one gets a manifold looking like a curved sheet of paper whose embedding in
a plane is straightforward for many algorithms.

All the above arguments raise some interest in designing a procedure that can
automatically cut smooth manifolds with non-contractible loops, in order to obtain
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a simply-connected manifold. Unfortunately, such a procedure would be almost
useless, because usual NLDR techniques use smooth manifolds only as a modeling
tool. In practice, indeed, they process (noisy) points sampled from an unknown
manifold. Recent NLDR techniques like Isomap or LLE, however, use the available
manifold points to build a discrete representation of the manifold. Most often, this
representation is a graph obtained by connecting neighboring points. This is actually
an advantage because tearing a graph proves much easier than tearing a smooth
manifold.

2.2. Graph representation of smooth manifolds

A graph G = (V,E) consists of two sets: V' is a set of vertices and E is a
set of edges, which are pairs of vertices. If those pairs are (un)ordered, then the
graph is said to be (un)directed. If edges may not be repeated in E, the graph is
said to be simple. Usually, NLDR techniques represent manifolds by simple
undirected graphs. Given a set Y ={...,y;...,¥;... }i<;j<ny of N points sampled
from a smooth P-manifold .# embedded in D-dimensional space, a graph G is
built by associating a vertex v; with each available point y; and an edge with each
pair of vertices whose associated data points are neighbors. Most often, these
neighborhood relationships are determined by computing the K closest neighbors
of each point (K-ary neighborhoods) or by looking at all points lying inside an
e-ball centered on each point (e-neighborhoods). Finally, edges are often labeled
with their Euclidean length, i.e. the Euclidean distance between the two data
points associated with its two vertices. Such an edge-weighted graph is said to be
Euclidean and is useful to approximate geodesic distances [21] with Dijkstra’s
algorithm [6]. A Euclidean graph can be seen as a discrete approximation of a
smooth manifold. The quality of this approximation is assessed in [3] (from the point
of view of geodesic distances). In a few words, the approximation holds if data
points are numerous enough, not (too) noisy, and if the parameters K or ¢ are
carefully adjusted.

In the same way as a manifold, a graph is a topological object (its topo-
logical properties are encoded in the edges). Graphs and manifolds share many
common properties (they can be connected/disconnected, etc.). One of the most
important ones is that graphs can be embedded in a Euclidean space, more or
less in the same way as manifolds. Graph embedding [5] is a problem somewhat
related to NLDR. To some extent, Isomap or LLE can be seen as graph embedding
techniques that starts by transforming the coordinates of data points into a
Euclidean graph.

What does happen when a smooth manifold with non-contractible loops is
represented by a Euclidean graph G? Actually, if the quality of the graph
approximation is good, non-contractible loops will be replaced in the Euclidean
graph with ‘non-contractible’ cycles. In a graph G, a smooth /-submanifold is
somewhat equivalent to a path, i.e. a subgraph that can be encoded as a sequence of
vertex such that an edge connects two successive vertices (m = [...,v;, v}, Uk, ...] and
{vi, v}, {vj, vk} € E). Then, a loop (compact smooth 1-submanifold) corresponds to a



J.A. Lee, M. Verleysen | Neurocomputing 67 (2005) 29-53 33

‘circular’ path, in the sense that the first vertex of the first edge is the same as the
second vertex of the last edge. Assuming further that

® a b-cycle is a cycle having b edges,
® an elementary cycle is a cycle with no more than ¢ edges,
e two cycles of the same graph G are t-tangent if they share at least ¢ edges,

then any b-cycle y can be ‘continuously’ deformed (i.e. modified step by step) by
repeatedly running the following simple procedure:

(1) Find an elementary cycle 7 that is at least 1-tangent to 7.
(2) Remove from y and 7 all edges they share.
(3) Replace the missing edges in y with the remaining edges of .

At each execution, this procedure replace an b-cycle y with a (b + d)-cycle (0<d <c)
which is at least (b — ¢ 4+ 1)-tangent to y. Non-contractible cycles are detected in a
graph when there are cycles that cannot be deformed to elementary cycles using the
above procedure.

In the same way as non-contractible loops in a manifold, non-contractible cycles
in a graph usually complicate its embedding in a low-dimensional space. Hence, it
would be useful to tear the graph in order to cut all non-contractible cycles before
embedding it.

3. Tearing graphs with non-contractible cycles

The task of detecting non-contractible loops in a smooth manifold or non-
contractible cycles in a graph proves very difficult in both cases, because many
possibilities should be explored. Moreover, for each manifold loop or graph cycle,
testing whether it can be deformed to a single point or an elementary cycle would be
very time-consuming. Finally, even if it is assumed that non-contractible loops/cycles
have been detected, how to achieve the tear?

In the case of a graph, detecting non-contractible cycles and cutting them can be
combined into a single and simple procedure. The key idea is the following: instead
of detecting and cutting non-contractible cycles in a graph G, cut all cycles (by
removing an appropriate subset of edges) and then put back edges one at a time,
making sure not to generate any non-contractible cycle. These two steps are detailed
in the two next subsections.

3.1. Cutting all cycles

The first stage of the tearing procedure (cutting all cycles in a graph G, see central
plots in Fig. 1) can be achieved very easily by using standard algorithms that
compute a spanning tree of G. By definition, a tree T = (V, E7) is a connected graph
with no cycles. More formally, a graph is connected if at least one path connects
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Fig. 1. The two-stage tearing procedure: (left) 300 points lying on a cylinder, connected to their 7 closest
neighbors, (center) the minimum spanning tree (MST) and a shortest path tree (SPT) computed on the
resulting graph, (right) the torn graph after reintroduction of all edges that do not generate non-
contractible cycles with more than 4 edges.

every pair of vertices; this means that a connected graph trivially includes at least
V| — 1 edges. As a particular case, a tree is a connected graph with precisely | V] — 1
edges and where only a single path connects each pair of vertices; this prevents the
presence of any cycle in a tree. Then, starting from a connected graph G = (V, E), a
spanning tree Gr = (V, E7) is a subgraph of G (Er C E) that is a tree. Two well
known kinds of spanning trees are minimum spanning trees (MST) and shortest path
trees (SPT).

MST can be computed by either Kruskal’s [9] or Prim’s [14] algorithm. In a
connected graph where edges are labeled with real numbers, Prim’s algorithm
provides a spanning tree such that the sum of its edge lengths is minimum. MST are
often used to identify a minimum cost network to connect e.g. computers (with
wires) or cities (with railroads). When all edges of a connected graph have different
real numbers as labels, the MST is unique.

SPT are computed by Dijkstra’s algorithm [6], which solves the well-known single-
source shortest paths (SSSP) problem. If the algorithm is run on a connected graph
whose edges are labeled with positive real numbers, and given a source vertex v;, the
algorithm computes all shortest paths from v; to all other vertices v; (1 <j< N, j#i).
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It is then not difficult to see that the resulting shortest paths can be encoded as a tree:
each vertex v; is connected to the single following vertex on the shortest path leading
to the source vertex v;. This requires exactly N — 1 edges since the source vertex v; is
not connected to itself. Contrarily to a MST, a SPT is not necessarily unique: there
may be at most N different SPTs.

At first glance, it is not evident at all to guess whether an MST would behave
better or worse than a SPT in the context of manifold tearing. This question is
answered in the experimental section (Section 4).

3.2. Reintroducing discarded edges

Once a spanning tree G of G is computed, the second stage (Fig. 1 right) of the
tearing procedure may be run. This stage aims at determining a graph G¢ = (V, E¢),
having exactly the same vertices as the initial graph G, but with a smaller edge set
E¢ C E, such that G¢ has no non-contractible cycles. For this purpose, edges
discarded during the first stage are gathered in a set S = E\E7 and G is initialized
with G7. Then edges in S are considered one at a time, in an adequate order, by
means of a breadth-first traversal of G along its spanning tree Gr. Because G¢ is
initialized with G, adding an edge coming from S to E¢ always generates one or
more cycles in G¢. At this point, the important step of the tearing procedure consists
in checking that the addition of an edge generates only contractible cycle. Practically,
this is done by computing the number of edges of the shortest cycle generated by the
addition of an edge and testing that this number is less or equal to ¢, the maximum
number of edges in an elementary cycle. An easy way to perform this comparison,
before adding the edge, is to compute in G¢ the shortest path between both vertices
of the considered edge: if this number is smaller than ¢, then the edge may be added
to G¢. All these ideas are detailed more formally in the pseudo-code listed in Fig. 2.

Intuitively, the algorithm detailed in Fig. 2 progressively ‘welds’ the branches of
the tree G together, starting from the root v, of the tree and using edges available in
S; it stops when it reaches the leaves of the tree. Because the algorithm explores Gr
in a breadth-first way, cycles generated by the addition of an edge can only occur in
the region of G¢ that has already been explored (removing the explored vertices and
associated edges leaves a forest of disconnected trees). This ensures that edges are
considered in the right order.

The important point in the above algorithm is the computation of the path from v;
to vertex v; having the smallest number of edges (call to the function
MIN_NUMBER_EDGES() in Fig. 2). Fortunately, this task can be performed very
efficiently. Indeed, instead of using Dijkstra’s algorithm, a simplified search
procedure has been designed, based on the following observations:

® The problem is symmetric with respect to v; and v; (there can be two source
vertices, whereas the problem solved by Dijkstra’s algorithm (SSSP) has only one.

e Edges lengths may be neglected (all edges have unit weight).

e The search procedure may be stopped as soon as it is sure that the shortest path
between v; and v; includes more than ¢ — 1 edges.
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TEARSTAGE2(G, G, ¢)
Input: G = (V, E) (original Euclidean graph),
G = (V, E1) (spanning tree of G, with root vertex v;.),
¢ (the maximum number of edges in an elementary cycle).
Output: G = (V, E¢) (torn G i.e. subgraph of G without any non-contractible cycle including more than ¢ edges).
Auxiliary: Q (a queue data stracture), v;, v; (vertices), I (integer).
Begin
> Initialize G to Gp.
Gg «— Grp
> Breadth-first traversal of the spanning tree of G.
Q — [vr]
while Q is not empty do
> Extract top element of the queue Q.
v; — Q.POP()
> Visit each vertex v; directly connected to v;.
for each neighbor v; of v; € V do
if edge {vi,v;} € Ep then
> Put vertex v; at the end of the queue.
Q + [Q, vj]
else
> Check that edge {v;,v;} may be introduced in G¢,
> i.e. compute in G¢ the path from vertex v; to vertex v;
> having the smallest number [ of edges (edge lengths are neglected).
! «— G .MIN.NUMBER-EDGES(%, j, ¢)
if | < c then
> The smallest cycle generated by the addition the edge {v;, v;} to G is either elementary,
> meaning that no non-contractible cycle is generated: it may be added to G¢.
Ec¢ <« Ec U{{v;,v;}}
end if
end if

end for
end while
Return G¢
End

Fig. 2. Pseudo-code for the second stage of the tearing procedure (comment lines begin with a triangle).

Hence, combining these ideas allows writing function MIN_NUMBER_EDGES() as two

symmetric breadth-first traversals of the graph G¢ (see pseudo-code in Fig. 3).
The symmetric traversals combined with the early stopping conditions make the
procedure very fast. For example, suppose G¢ is a Euclidean graph that is embedded
in R?; if the shortest path between v; and v; includes / </n.x edges, the value of / is
determined in ¢(2n[1/2]%) (explored vertices lie in two growing circles centered on v;
and v;; the symmetric traversals stop when both circles are tangent to each other).
This means that checking the shortest path between two vertices is fast on average.
Obviously, the true complexity of the algorithm depends on several factors (number
of vertices, minimum embedding dimension of the Euclidean graph, number of edges
per vertex, shape of the graph, etc). and is difficult to evaluate. As an example, the
[y

»
Fig. 3. Pseudo-code for a fast function computing the path having the smallest number of edges in a graph

G (comment lines begin with a triangle).
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MIN_NUMBER-EDGES(%, , Imax)
Input: G = (E, V) (a graph), %, j (the indices of two vertices of G), Imax (an upper bound of the number of edges).
Output: the number I of edges of the path between v; and v; having the smallest number of edges;
the value of [ is either less or equal to lmax (a path with no more than Imax edges exists)
or co (there is no path with no more than Imax edges).
Auxiliary: v, vk, vy, Vm, vn (vertices from V, Q1, Q2 (queue data structures).
Begin
> Initialize each vertex as being unvisited.
for each vertex v € V do
v.distance < —1
v.mark «— 0
end for
> Initialize two queues with both sources vertices v; and v;.
Q1 « [vi]
Q2 «+ [vj]
> Mark both sources.
v;.distance «— 0
vi.mark «— 1
vj.distance «— 0
vj.mark < 2
> Symmetric breadth-first traversals of G.
while neither Q1 nor Q2 are empty do
> Extract the top elements of both queues.
vk — Q1.POP()
v Q2.POP()
> Check that the threshold c is not reached.
if vy .distance + vj.distance > lpmax then
l —
Return [
end if
> Visit each vertex vy, directly connected to vy
for each neighbor vy, of vy do
if v,y .mark = 2 then
> A path is found! Return its length.
| « vy .distance + 1 + vy, .distance
Return |
else
> Push vy, in the queue and mark it as visited by Q1.
Q1 « [Q1,vm]

Vo .distance «— vy .distance + 1

Uy, -mark — 1
end if

end for

> Visit each vertex vy, directly connected to v;.

for each neighbor v, of v; do

if v, .mark = 1 then

> A path is found! Return its length.

| < vj.distance + 1 + vy, .distance

Return |

else

> Push vy, in the queue and mark it as visited by Q2.
Q2 — [Q1,vm]

Vp, .distance «— vj.distance 4 1

Uy, .mark «— 2
end if

end for

end while
End
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Fig. 4. The ‘rice’ image database: performance measure. The total number of vertices visited by the
function MIN_NUMBER_EDGES is divided by the complexity of Dijkstra’s algorithm (used to build the SPT,
O(Nlog,N)). The cost has been measured for 4 different numbers of vertices in the graph G
(N = 300, 500,700,900) and averaged over the N possible SPTs. Data points are intrinsically two-
dimensional and G is built using K-ary neighborhoods (K = 6). (Note: Please refer to the web-version of
the paper to see the colour version of the figure.)

practical complexity of the tearing procedure has been measured in the case of the
‘rice’ image database, which is studied in Section 4. The tearing procedure has been
run on graphs having different numbers of vertices, as shown in Fig. 4. In that
experiment, the manifold has two free parameters, each point is connected to its 6
closest neighbors, ¢ = 5 and the tearing procedure uses SPTs computed by Dijkstra’s
algorithm. The total number of vertices that are visited by the function
MIN_NUMBER_EDGES( ) during a run of the tearing procedure is compared with the
complexity of Dijkstra’s algorithm (¢(N log, N)) and displayed as a ratio in Fig. 4.
For each value of the number of vertices (N = 300, 500, 700, 900), the displayed costs
are averaged over the N possible SPTs and divided by the corresponding complexity
value of Dijkstra’s algorithm. As can be seen, the cost of the whole tearing procedure
is more important than the one of Dijkstra’s algorithm, but its relative importance
decreases as the number of vertices grows. Anyway, this cost is negligible in case
Isomap is run afterwards, because the latter requires to run Dijkstra’s algorithm N
times, in order to approximate all pairwise geodesic distances from each vertex.

3.3. Optimization of the tear

It is easy to see that the proposed tearing procedure is deterministic, i.e. yields a
unique graph G, for a given value of its parameters G, Gy and c. Considering that G
depends on the available data, the user chooses the value of ¢ and the type of
spanning tree (MST or SPT). As already stated above, G has a unique MST if all
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edge lengths are different; with randomly distributed data, this condition holds most
of the time. Hence, in the case of a MST, the tearing procedure yields a unique result.

On the other hand, a graph G with N vertices has generally several SPTs (at most V).
When running Dijkstra’s algorithm, the obtained SPT depends on the source vertex
that is specified. Quite naturally, the source vertex can be seen as a free parameter that
can be optimized. Possible criterions to be optimized are for example the number of
torn edges or their summed length; the last proposition seems more natural in the case
of a Euclidean graph. Those numbers can be either minimized or maximized by
simulating successively the tear obtained with each possible SPT. Afterwards, the tear
that reaches the best value of the criterion is chosen and truly achieved.

From the computational point of view, the above iterative optimization requires
to run Dijkstra’s algorithm N times to find the N possible SPTs. As observed in the
previous section, the cost of the tearing procedure may be assumed similar to the one
of Dijkstra’s algorithm. Within the framework of NLDR, e.g. using Isomap, that
cost remains reasonable.

3.4. Related algorithms

Graph cutting [19] is a central problem in graph theory and has many
applications, for instance in chip and circuit design, reliability of communication
networks, etc. Many algorithms solve the following fundamental problem: find the
minimum cut of an undirected edge-weighted graph. More precisely, it consists in
finding a non-trivial partition of the graph vertex set V into two parts such that the
cut weight (the sum of the weights of the edges connecting the two parts) is
minimum. This goal looks very similar to the one presented in the previous
subsection. In spite of this resemblance, min-cut algorithms perform a task that is
totally different from what the above-described tearing procedure does. Indeed, min-
cut algorithms compute a graph partition, whereas the tearing procedure yields a
graph that remains connected.

4. Experimental results

This section shows some results of the proposed tearing procedure on simple
manifolds, which are artificially generated. As the aim is to illustrate visually how the
tearing procedure works, most of them are two-dimensional manifolds embedded in
a R3: a cylinder, a torus and a holed cylinder. It is noteworthy that representative
points of the manifolds are obtained as advised in [11,13]: a large number of points
(several thousands) are randomly drawn and processed by a simple vector
quantization method (Competitive Learning [1]). This yields a small subset of
points which are regularly spaced on the manifold.

Several NLDR methods are used to embed the proposed data manifolds in a
plane. These methods are Isomap [20,21], Sammon’s NLM [16] and curvilinear
component analysis [4,8] (CCA). These three methods try to find an isometry
between the available high-dimensional data points and their representation in a
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low-dimensional space. In order to compare with Isomap, geodesic versions of NLM
and CCA, namely GNLM and GCCA [11,13], are used. As in Isomap, distances
measured in the high-dimensional space are geodesic ones, whereas usual Euclidean
distances are computed in the low-dimensional space.

Two additional NLDR methods, namely Isotop [12,10] and LLE [15], which are
based on topology preservation, are also used. To the authors’ knowledge, CCA is
the only existing NLDR method that is intrinsically able to tear a manifold, without
any preprocessing.

For simple and illustrative examples, like the cylinder or the torus, only one
method is used (GNLM). For the holed cylinder, the four methods are compared in
order to show how each of them reacts to different types of tears.

4.1. Cylinder

Fig. 5 clearly shows the advantage of tearing a manifold with non-contractible loops
(a cylinder) before reducing its dimensionality. If the manifold is not torn, its different
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Fig. 5. Two-dimensional embedding of the same cylinder as in Fig. 1 using Sammon’s nonlinear mapping
with the graph distance: (top) the 300-vertex Euclidean graph is embedded without tearing any edges,
(bottom) embedding obtained when the same graph is torn (using a shortest path tree and ¢ = 4).
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regions may get deformed or superimposed in the low-dimensional embedding space
(second plot in Fig. 5). On the other hand, after running the tearing procedure, it only
needs to be ‘unrolled’ in order to get a good embedding (fourth plot in Fig. 5).

As advised in [11], the 300 available points of the cylinder are obtained by
performing a vector quantization on a larger distribution (10000 points, without
noise). In order to build the graph, each point is connected to its 7 closest neighbors.
Next, graph distances are computed using Dijkstra’s algorithm and processed by
GNLM, which yields the first embedding. As can be seen, the cylinder is crushed or
flattened instead of being unrolled.

If the graph is torn before, in order to suppress all non-contractible cycles (¢ = 4),
GNLM yields the desired embedding. The tear is obtained using a SPT, because it
produces a straighter and neater cut than the MST (see Fig. 1).

4.2. Torus

A slightly more difficult example is the torus, shown in top of Fig. 6. As for the
other manifolds, the 600 available points are obtained by performing a vector
quantization on a larger distribution (30000 points, without noise). Each point is
connected to its 6 closest neighbors.

Because tearing a torus is not an obvious task, this is an ideal manifold to illustrate
how NLDR techniques behave with or without a preliminary run of the proposed
tearing procedure. For this purpose, two-dimensional embeddings are computed by
GCCA, which is the only NLDR algorithm having the intrinsic ability to tear
manifolds, as mentioned in the beginning of Section 4. However, when GCCA has to
stretch and tear a manifold, it usually converges slowly; the goal is then to see
whether the use of the tearing procedure can help GCCA to converge. Five
embeddings are computed and displayed in Fig. 6. Their quality is assessed by
evaluating Sammon’s stress [16] (this criterion is better than the one proposed in
[4,8], which depends on a lot of parameters).

As was already visible in Fig. 1, the shape of the tear mainly depends on the chosen
kind of spanning tree. The MST computed by Prim’s algorithm unfortunately leads
to a very long and meandering tear. Yet, the idea of a minimum-weight spanning tree
was appealing: the tree retains the shortest edges, i.e. the intuitively ‘strongest’ ones.
On the other hand, a SPT computed by Dijkstra’s algorithm is not unique (it depends
on the source vertex), but leads to a more regular tear. If the source vertex is chosen in
order to minimize or maximize the summed lengths of the torn edges, very nice results
are obtained. In the former case, the torus is torn along its smallest horizontal circle;
in the latter case, the tear follows the largest horizontal circle.

Not surprisingly, Sammon’s stress reaches the lowest value for the minimum tear
computed with a SPT.

4.3. Holed cylinder

The first plot of Fig. 7 shows a cylinder very similar to the one of Fig. 5, except
that two lateral holes are digged. The diameter of the cylinder is 1.0 and the one of
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Torus GCCA, no tear, Egy = 0.1421

GCCA, MST tear, Egy v = 0.1275 GCCA, any SPT tear, Egy v = 0.0286

GCCA, min SPT tear, Egy = 0.0131 GCCA, max SPT tear, Egy y = 0.1018

Fig. 6. Two-dimensional embedding of a torus using GCCA: (top left) the torus manifold, where the color
varies according to the height, (top right) embedding of 600 points, the graph is not torn beforehand,
(middle left) embedding of the same data set after breaking all non-contractible cycles (¢ = 4) by means of
the proposed tearing procedure, using an MST, (middle right) idem, but with an SPT, chosen randomly
among the 600 possible ones (bottom left) idem, with the SPT that leads to the shortest cut, (bottom right)
the same again, but with the SPT that leads to the longest cut. (Note: Please refer to the web-version of the
paper to see the colour version of the figure.)

the side holes is 0.5. The 800 available points are obtained by performing a vector
quantization on a larger distribution (17000 points, without noise). Each point is
connected to its 7 closest neighbors. The other plots of Fig. 7 shows how four
different methods embed the data set in a plane, without any prior tear. These
methods are Isomap, GNLM, GCCA and Isotop. As can be seen, Isomap and the
GNLM perform poorly: the cylinder is crushed like an empty can and large regions
of the manifold get superimposed. GCCA yields a much better result, with no
superimposition, thanks to its intrinsic ability to tear the manifold. As Isomap and
GNLM, Isotop cannot tear the manifold but still manages to minimize the
superimposition; because topology preservation is a milder condition than distance
preservation, Isotop achieves such result by distorting the manifold. How do those
four methods behave if the tearing procedure preprocess data? Before answering this
question, it is noteworthy that the holed cylinder has three holes (i.e. different
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3D Data, No Tear

2D Embedding, Isomap, No Tear 2D Embedding, NLM, No Tear

O O

2D Embedding, CCA, No Tear 2D Embedding, Isotop, No Tear

Fig. 7. Holed cylinder: three-dimensional data and two-dimensional embeddings achieved four NLDR
algorithms (Isomap, CCA, Sammon’s NLM and Isotop).

families of non-contractible loops). However, side holes must not be considered on
the same footing as the main hole. Indeed, non-contractible loops around the side
holes need not to be broken in order to embed the holed cylinder. Indeed, the holed
cylinder could be torn in exactly the same way as the one in Fig. 5, i.e. just as if the
two lateral holes did not exist. Actually, breaking the non-contractible loops related
to the side holes would even be wasteful since doing so uselessly destroy part of the
manifold connectivity.

Figs. 8-11 show the embeddings computed by Isomap, GNLM, GCCA and
Isotop, respectively. The tearing procedure is run with different parameter settings:

e Two different maximum numbers of edges for the allowed non-contractible cycles
are proposed (¢ = 5 or ¢ = 30).

e Two different spanning trees are used (MST or SPT).

e In the case of the SPT, the source vertex given to Dijkstra’s algorithm is either
randomly chosen or the one leading to the maximum and minimum tears.

If ¢ =5, all non-contractible cycles get broken, but a higher value (¢ = 30) allows
considering cycles around the lateral holes as elementary cycle: only the longer cycles
associated with the main hole are considered as non-contractible. The different types
of tears (MST, any SPT, min SPT, max SPT) yield the expected results. As in
previous experiments, the MST leads to a long and meandering tear, whereas SPTs
yields straighter cuts.
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Tear (c =5), MST Tear (c = 30), MST

v

Tear (c = 5), SPT, any Tear (c = 30), SPT, any

X

Tear (c =5), SPT, min Tear (c = 30), SPT, min

{

Tear (c = 5), SPT, max Tear (c = 30), SPT, max

X

Fig. 8. Two-dimensional embeddings of the holed cylinder: results of Isomap after tearing the manifold
with different parameters.

The results of Isomap (Fig. 8) are dramatically improved when the holed cylinder
is preprocessed by the tearing procedure. The performances of Isomap are very
sensitive to the convexity of the manifold; holes, for example, decrease the quality of
the embedding [13]. If ¢ = 5, lateral holes are torn and some regions of the manifold
becomes loosely connected to other ones, like peninsulas (they are more visible on
the left of Fig. 10). That configuration harms the hypothesis of convexity even more
than holes, explaining why Isomap tends to stretch those regions (embeddings have
spiky corners). Things get much better when ¢ = 30: convexity still does not hold,
but connectivity is better, what prevents Isomap to distort the manifold.

The results of GNLM (Fig. 9) fairly compare to those of Isomap. Instead of
distorting loosely connected regions, GNLM sometimes twists the manifold. Again,
this happens because the holed cylinder is not a convex manifold: a perfect isometry
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Tear (c =5), MST Tear (c = 30), MST

Tear (c = 5), SPT, any Tear (c = 30), SPT, any

Tear (c =5), SPT, min Tear (c = 30), SPT, min

Tear (c = 5), SPT, max Tear (c = 30), SPT, max

Fig. 9. Two-dimensional embeddings of the holed cylinder: results of the GNLM after tearing the
manifold with different parameters.

between geodesic distances and Euclidean ones does not exist. Indeed, because of the
two side holes, some geodesic distances get overestimated (the corresponding
shortest path has to circumvent the holes, whereas Euclidean distance may fly over
them). In this case, a twisted embedding allows stretching the Euclidean distances
corresponding to overestimated geodesic ones.

Fig. 10 shows that GCCA outperforms both Isomap and the GNLM. Minor
twists are observed when ¢ = 5 but distortions are nearly absent. These good results
may be explained by the fact that GCCA attempts to preserve short distances prior
to long ones [4,8]. This trick allows neglecting long graph distances that are
overestimated because of holes.
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Tear (c = 5), MST Tear (c = 30), MST

Tear (c = 5), SPT, any Tear (c = 30), SPT, any

Tear (c =5), SPT, min Tear (c = 30), SPT, min

Tear (c = 5), SPT, max Tear (c = 30), SPT, max

Fig. 10. Two-dimensional embeddings of the holed cylinder: results of GCCA after tearing the manifold
with different parameters.

Results of Isotop are slightly different from the three previous NLDR algorithms,
because it is based on topology preservation rather than on distance preservation.
This explains the ‘slack and spongy’ look of embeddings displayed in Fig. 11.

The example of the holed cylinder shows that tearing a manifold with non-
contractible loops helps to reduce its dimensionality. As it could be expected, the best
results are attained with the minimum-length tear (which is often the most regular
one too).

4.4. The ‘rice’ image database

As already proposed in other papers (e.g. [21,15]), NLDR can be used in image
processing, in order to sort huge set of images. In this example, 10000 images of a
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Tear (c = 5), MST Tear (c = 30), MST

Tear (c =5), SPT, any Tear (c = 30), SPT, any

Tear (c = 5), SPT, min

Tear (c = 5), SPT, max

Fig. 11. Two-dimensional embeddings of the holed cylinder: results of Isotop after tearing the manifold
with different parameters.

rice seed have been artificially generated. Each image consists of a 16 x 16 array of
gray-level pixels; the background is black and the rice seed, drawn as a stretched
two-dimensional bell, is white with shades of gray. A small subset of the database is
displayed in Fig. 12. Just as for previous examples, the database has been
preprocessed by a vector quantizer, in order to retain a small but representative
subset of the whole database.

There are two free parameters in the database: the rotation angle of the seed and
its left-right position. Hence, theoretically, NLDR could be applied to embed the
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Fig. 12. The ‘rice’ image database: a few images taken from the database; each image is an array of
16 x 16 gray-level pixels.

data in a plane. For this purpose, three NLDR algorithms are used: Isomap, GNLM
and LLE. These algorithms process the raw images that are output by the vector
quantizer (256-dimensional vectors). In the case of this example, however,
embedding the images in a plane may prove a difficult task, because the first free
parameter is a rotation angle, meaning that the manifold is ‘circular’ with respect to
this parameter. Results of the three NLDR algorithms are shown in Fig.13. As
expected, it can be guessed from the embeddings in the left column that the manifold
contains non-contractible loops (it actually looks like a torus quarter). These
embeddings are not ideal, because different regions of the manifold get super-
imposed. On the other hand, embeddings displayed in the right column, obtained
after tearing the manifold, are much more satisfying: similar images are embedded
close to each other and there are no superimpositions anymore.

b
L8

Fig. 13. The ‘rice’ image database: two-dimensional embedding of 300 representative images (obtained
with vector quantization); three NLDR algorithms are used (Isomap, GNLM and LLE) with K-ary
neighborhoods (K = 6). In the left column, the 300 images are embedded without any preprocessing,
whereas in the right column, the tearing procedure has been applied before.
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GNLM, no tear GNLM, min. tear (SPT, c=5)

Isomap, no tear

LLE, no tear
(1] E
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4.5. Removal of undesired edges

Cutting non-contractible cycles in a graph may be useful even for manifolds that
have no non-contractible loops. Indeed, when building a graph in order to represent
an unknown data manifold, it may happen that undesire edges appear in the graph
and totally jeopardize the graph representation of the underlying manifold. This may
raise some major difficulties in some NLDR techniques. For instance, in Isomap, the
approximation of geodesic distances by graph distances may be completely wrong
because of a single undesired edge [13] that connects two different regions of the
manifold.

Undesired edges typically appear when data points are noisy and connected to a
too high number of neighbors, as illustrated by the spiral in Fig. 14. With three
neighbors only (first plot in Fig. 14), there are no undesired edges but the
approximation of the geodesic distances is very rough (the graph is sparse).
Approximations would be far better with 7 neighbors (second plot in Fig. 14), but
then a few undesired edges appear in the graph. Those edges are like short-circuits in
an electrical system: their presence make the result of Dijkstra’s shortest path
algorithm completely different. How to remove those undesired edges?

In most cases, edges are undesired when they generate long non-contractible in the
graph associated with a manifold that has normally no non-contractible loops. The

K=3 K=7, No Tear

Fig. 14. Tearing undesired edges: (first plot) some noisy points of a spiral-shaped manifold, each point is
connected to its 3 closest neighbors, (second plot) the same points connected to their 7 closest neighbors,
undesired edges appear in the graph, (third plot) the latter graph after removing the non-contractible
cycles with a SPT, (fourth plot) with a MST.
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tearing procedure described in Section 3 allows removing them in an elegant way.
The two last plots in Fig. 14 show the results when using, respectively, a SPT
and MST.

As can be seen, the SPT computed by Dijkstra’s algorithm (bold edges) does
not yield the expected result. This is not very surprising, as undesired edges
precisely provide Dijkstra’s algorithm with opportunities to shrink some
paths. As a consequence, undesired edges get almost systematically included
in the SPT. This does obviously not solve the problem and leads to an even worse
case.

On the other hand, using an MST in the tearing procedure yield a much better
result. By construction, an MST tends to include the shortest edges and to exclude
longer ones. As undesired edges typically appear in sparse regions of the data
distribution, they are often longer than normal edges and should likely be eliminated
when computing the MST. This explains why the tearing procedure performs better
with an MST than with a SPT in this case.

5. Conclusion

This paper has presented an efficient procedure to tear manifolds with holes
or non-contractible loops, within the framework of nonlinear dimensionality
reduction. The procedure relies on the fact that most recent NLDR methods build
a graph to represent the unknown manifold. In that case, tearing the manifold
corresponds more or less to cutting all non-contractible cycles in its associated
graph. Instead of directly identifying and breaking the non-contractible cycles, which
would be a tedious task, all cycles are broken by computing a spanning tree and then
all edges that do not generate non-contractible cycles are put back in the graph, one
by one.

The proposed tearing procedure may be useful in many NLDR algorithms.
Experiments are conducted with five methods: Isomap [21], Geodesic Sammon’s
NLM [16,11,13], Geodesic CCA [11,13], LLE [15] and Isotop [10].

Experimental results have demonstrated that the procedure can tear manifolds like
cylinders or tori. The influence of different parameters of the procedure is
investigated, showing how to get various types of tears (minimum or maximum
length, etc.). Moreover, the same tearing procedure eclegantly addresses the
important issue of undesired edges in the graph representation of data manifolds.
Indeed, the procedure can efficiently remove undesired edges that often jeopardize
the operation of NLDR algorithms.

Yet, although the tearing procedure proves successful for ‘circular’
manifolds (cylinders, tori), it does not work for ‘spherical’ ones (i.c. manifolds
with essential spheres). This is because such manifolds have no non-
contractible loops, contrarily to ‘circular’ ones. Extending the tearing procedure
to spherical manifolds is a challenging task and a research direction for future
work.
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