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Abstract

Using resampling methods like cross-validation and bootstrap is a necessity in neural

network design, for solving the problem of model structure selection. The bootstrap is a

powerful method offering a low variance of the model generalization error estimate.

Unfortunately, its computational load may be excessive when used to select among neural

networks models of different structures or complexities. This paper presents the fast bootstrap

(FB) methodology to select the best model structure; this methodology is applied here to

regression tasks. The fast bootstrap assumes that the computationally expensive term

estimated by the bootstrap, the optimism, is usually a smooth function (low-order polynomial)

of the complexity parameter. Approximating the optimism term makes it possible to

considerably reduce the necessary number of simulations. The FB methodology is illustrated

on multi-layer perceptrons, radial-basis function networks and least-square support vector

machines.

r 2004 Published by Elsevier B.V.

Keywords: Model selection; Nonlinear modeling; Bootstrap; Resampling
see front matter r 2004 Published by Elsevier B.V.

.neucom.2004.11.017

nding author.

dresses: lendasse@cis.hut.fi (A. Lendasse), simon@dice.ucl.ac.be (G. Simon),

ucl.ac.be (V. Wertz), verleysen@dice.ucl.ac.be (M. Verleysen).

www.elsevier.com/locate/neucom


ARTICLE IN PRESS

A. Lendasse et al. / Neurocomputing 64 (2005) 161–181162
1. Introduction

Model design has raised a considerable research effort since decades, on linear
models and nonlinear ones (i.e. artificial neural networks and many others). Model
design includes the necessity to compare models (for example of different
complexities) in order to select the most appropriate model among a family.
Model structure selection is the problem of choosing a specific model complexity

among several possibilities. While effective statistical tests exist to select the
complexity of linear models, their extension to nonlinear ones usually relies on
approximations not always verified in real situations. For this reason, nonlinear
model structure selection often relies on extended experiments repeated for each
considered structure complexity. Unfortunately, nonlinear model optimization (i.e.
finding the best parameters of a nonlinear model, once the structure—or complex-
ity—is fixed) is in most cases a computationally intensive task in itself. Therefore,
repeating this task for various structure complexities often exceeds the acceptable
computational load.
Model structure selection necessitates estimating the generalization error of the

model for each considered model complexity. The generalization error may be
estimated by resampling techniques, such as k-fold cross-validation, leave-one-out
and bootstrap. Unfortunately, both k-fold cross-validation and leave-one-out show
a large variance in the estimation of the generalization error; their reliable use is thus
restricted to problems where a very large number of data is available.
A resampling method that offers a lower variance is the bootstrap [5,8]. However,

the bootstrap still necessitates a large number of repetitions to obtain a reliable
estimate of the model generalization error, despite the fact that this number is
reduced compared to the k-fold cross-validation and the leave-one-out techniques.
Its computational load may thus exceed any acceptable level. There is thus a need for
methods that approximate the results of the bootstrap with a reduced number of
experiments.
In this paper, we present the fast bootstrap (FB) methodology, and apply it to the

model structure selection problem. The FB methodology relies on the fact that the
computationally intensive part of the bootstrap, the computation of the so-called
optimism, usually leads to a very simple curve (with respect to the hyper-parameter
to optimize). It will be shown that in many cases the optimism may even be
approximated by a linear function of the hyper parameter. Exploiting this simple
structure may thus considerably reduce the number of experiments. The use of a
statistical test will validate the simple form of the optimism curve, and will help to
automatically select its complexity if necessary.
The FB methodology will be applied to supervised regression tasks. The models

that are used in this paper are: radial-basis functions networks (RBFN), multi-layer
perceptrons (MLP), and least-square support vector machines (LS-SVM). It could
be applied to other tasks than function approximation problems, including
classification ones.
The paper is organized as follows. Section 2 formulates the model structure

selection problem, and introduces resampling techniques. Section 3 describes in more
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detail the bootstrap method. Section 4 presents the proposed FB methodology, and
the statistical test used to assess the complexity of the FB approximation compared
to the bootstrap. Section 5 shows experimental results of the FB methodology on
two function approximation examples: a toy example, for illustration, and the
traditional Santa Fe Laser Data time-series prediction benchmark.
2. Model structure selection

We consider the problem of determining a model which approximates as
accurately as possible an unknown function g(.). This approximation is chosen
among a set of several possible models. Models in such a set are denoted here by

hq
ðx; yðqÞÞ; (1)

where q represents the qth element in the set, yðqÞ are the parameters of the qth model
and x is the d-dimensional input vector. A time series prediction problem is a
particular case of function approximation if nonlinear auto-regressive models
(NARX) are used, as described in Section 5.3.
The parameters that define the set of possible models are called hyper-parameters;

they are not estimated by the learning algorithm, but by some external procedure as
will be described in the next section. These hyper-parameters are most often discrete, as
the number of units or neurons in a MLP for example. They can be continuous too, in
the case of a model parameter difficult to estimate by standard gradient-based learning
procedures. In the case of RBF networks, the hyper-parameters are the number of
Gaussian kernels and the widths of these kernels; the first hyper-parameter is discrete
and the second one continuous. In this case the model structure selection problem is the
selection of the appropriate number of Gaussian kernels and their appropriate widths.
In a typical learning procedure, the yðqÞ parameters are optimized to minimize the

approximation error on the learning set; the structure (i.e. the value of the hyper-
parameters) is determined as the minimization of the generalization error described below.
The generalization error is defined by

Egenðq; yÞ ¼ lim
M!1

PM
i¼1ðh

q
ðxi; yðqÞÞ � yiÞ

2

M
(2)

where xi are d-dimensional input vectors to the model and yi the corresponding
scalar expected outputs.
According to definition (2), the generalization error is the mean square error of the

model, computed on an infinite-size test set. Such set is of course not available;
the generalization error has to be approximated. The best model structure q is then
the structure that minimizes this approximation of the generalization error.
Resampling techniques may be used to approximate the generalization error.

Several resampling techniques exist:
�
 The hold-out (HO) consists in removing data from the learning set and keeping
them for validation; HO is also called ‘‘validation’’ [11], or ‘‘external validation’’.
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�
 In Monte-Carlo cross-validation [10] (or simply ‘‘cross-validation’’, CV), several
HO partitions between learning and validation sets are randomly and sequentially
drawn. The resulting generalization error estimate is the mean of the errors
computed on the validation sets.
�
 The k-fold cross-validation [8] consists in dividing the available sample of N data
into k sets of approximately equal size; then a model is learned on k-1 sets and
independently validated on the remaining one. This operation may be performed k

times on different splittings between learning and validation sets; the k validation
results are then averaged to give an approximation of the generalization error of
the model.
�
 Leave-one-out (LOO) [8] is the name given to the k-fold cross-validation method
when k takes its largest possible value k ¼ N:
�
 The bootstrap [5], consists in drawing with replacement sets from the original
sample and using these sets to estimate the generalization errors (bootstrap 632
and 632+ are improved versions of the original bootstrap); the bootstrap method
will be detailed in Section 3.

All these methods share some asymptotic properties (see for example [16]), but
they also differ on the following points:
�
 LOO is less biased [5,8] but needs a very high number of data to be reliable;

�
 cross-validation is consistent (i.e. converges to the generalization error when the
size of the sample increases) if the size of the validation set grows faster than the
size of the learning set (which is hard to expect in practical situations!) [14];
�
 cross-validation is almost unbiased [5];

�
 bootstrap is downward biased but has a very low variance [5];

�
 most recent bootstrap methods (632) are almost unbiased and also have a low
variance [5].

In this paper, the bootstrap method is used to exploit the fact that, due to its lower
variance property, the number of repetitions needed to obtain a reliable estimate of
the generalization error is reduced compared to the k-fold cross-validation and the
LOO. The bootstrap is described in details in Section 3.
3. Bootstrap

The bootstrap [2,5] is a resampling method that has been developed in order to
estimate some statistical parameters (like the mean of a population, its variance,
etc.). In the case of model structure selection, the parameter to be estimated is the
generalization error (i.e. the average error that the model would make on an infinite
size and unknown test set). When using the bootstrap, this error is not estimated
directly. Rather the bootstrap estimates the difference between the generalization
error and the training error (the latter being called apparent error by Efron). This
difference is called the optimism. The estimated generalization error will thus be the
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sum of the training error and of the estimated optimism. The training error
is computed using all data from the training set. The optimism is estimated
using a resampling technique based on drawing with replacement within the
training set. In the following, notation EAl ;Av

j is used to denote the error made
by a model learned on set Al and tested on set Av: If these two sets are equal,
EAl ;Av

j denotes a training error; is they are different, it denotes a validation or
test error. As the bootstrap methodology requires averaging several estimates, j is
used to denote the estimate number. It is important to notice that using different
learning sets Al requires learning several models, while evaluating models on several
test sets Av only requires a single learning (provided that Al does not change).
Finally, let us note that in our model structure selection problem, the bootstrap
methodology is used for each of the considered model structures (or model
complexities): an estimate of the generalization error is needed for each of the model
structures, and the selection of the ‘‘best’’ model structure is made according to their
minimum.
Following these notations, the Bootstrap method can be decomposed in the

following steps:
1.
 From the initial data set I of size N, one randomly draws N points with
replacement. The new set Aj has thus the same size as the initial set. This step is
called the resampling.
2.
 The training of the various model structures q is done on the training set Aj : The
learning error on this set is computed:

E
Aj ;Aj

j ðq; y�j ðqÞÞ ¼

PN
i¼1ðh

q
ðx

Aj

i ; y�j ðqÞÞ � y
Aj

i Þ
2

N
; (3)

where hq is the qth model that is used, y�j ðqÞ are the model parameters after
learning, x

Aj
i is the ith input vector from set Aj ; y

Aj
i the corresponding output and

N the number of elements in this set.

3.
 can also compute the validation error on the initial sample I which now plays the
role of the validation set:

E
Aj ;I
j ðq; y�j ðqÞÞ ¼

PN
i¼1ðh

q
ðxI

i ; y
�
j ðqÞÞ � yI

i Þ
2

N
: (4)
4.
 The difference between the learning and validation errors (3) and (4) is computed
and defined as the optimism by Efron [5]:

optimismjðq; y
�
j ðqÞÞ ¼ E

Aj ;I
j ðq; y�j ðqÞÞ � E

Aj ;Aj

j ðq; y�j ðqÞÞ: (5)
5.
 Steps 1–4 are repeated J times. The global estimate of the optimism is then
calculated as the average of the J values from (5):

optim̂ismðqÞ ¼

PJ
j¼1optimismjðq; y

�
j ðqÞÞ

J
: (6)
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Steps 1–5 result in an estimate of the optimism. To get an estimate of the
6.

generalization error of each model structure q, one still has to estimate the
apparent error (the original set I is used both for learning and validation):

EI ;I ðq; y�ðqÞÞ ¼
PN

i¼1ðh
q
ðxI

i ; y
�
ðqÞÞ � yI

i Þ
2

N
: (7)
7.
 An approximation of the generalization error is finally obtained by:

ÊgenðqÞ ¼ optim̂ismðqÞ þ EI ;I ðq; y�ðqÞÞ: (8)

Êgen(q) is an approximation of the generalization error for each model structure
q. The best structure is the one that minimizes this estimate of the generalization
error.

4. Fast bootstrap methodology

In this section, an improvement to the bootstrap method is presented. It is called
the FB and allows reducing the computational time of the traditional bootstrap
[9,15].
Experimental observations have shown that the estimate of the optimism is a

simple and smooth function of the hyper-parameters. ‘‘Simple and smooth’’ means
that the optimism can be approximated by a low-order function (parameterized by a
few parameters) as for example a linear, quadratic or exponential one.
When the hyper-parameter is the number of parameters (or a linear function of it),

it has been experimentally observed that the optimism is linear with respect to the
number of parameters. This observation will be confirmed by statistical tests.
The linear character of the optimism is also in agreement with the AIC asymptotic

criterion that approximates the optimism by a linear function [1]:

optim̂ism ¼ 2 logðNÞpEI ;I : (9)

In (9), p is the number of parameters in the model, N the number of samples in the
learning set and EI,I the learning error defined by (7).
Both AIC and bootstrap are methods to estimate the optimism: AIC is an

analytical and asymptotic method, while the bootstrap is experimental and remains
valid when the number of learning data is smaller.
Relation (9) only holds when the number p of parameters is equal to the effective

number of parameters in the model [4]. This is the case for MLP and RBFN models
without regularization or early stopping. However, one could also use MLP or
RBFN models with an early stopping criterion or models including a regularization
term like LS-SVM. In these cases, an extension of (9) using Moody’s generalized
prediction error (GPE) criterion should be used [12]: in the GPE criterion the
number of parameters is replaced by the effective number of parameters (which is
smaller than the number of parameters thanks to the use of a regularization term in
the cost function).
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Therefore, if the hyper-parameter is not the number of parameters but a nonlinear
function of the complexity (for example the regularization parameter g in the LS-
SVM), the optimism function linear but a simple form. The methodology presented
in this paper will allow determining the form of the optimism function.
The FB works as follows. In the traditional bootstrap, the optimism is a function

of the hyper-parameter q (see (6)). Each evaluation of this function necessitates J

repetitions (sampling, learning and evaluation). As the function has to be evaluated
for Q model complexities, this means that J.Q models have to be learned. The FB
will use the simplicity and a priori known form of the optimism function to reduce J

and/or Q, and therefore the number of models that have to be learned.
If a polynomial optimism function of low order r is assumed, we know that r+1

evaluations are sufficient to determine the optimism function, allowing a huge
decrease of Q. This is valid if each evaluation is accurate enough, i.e. if J is
sufficiently high. On the contrary, the optimism function can also be approximated
with a high number Q of rough evaluations (i.e. a low number J of bootstrap
replications). Between these two extremes, both J and Q may be reduced
simultaneously to drastically reduce the number J.Q of models while keeping
acceptable values for both J and Q.
The experiments detailed in the following section confirm that due to the simple

form of the optimism, the latter may be approximated accurately with a strongly
reduced number of experiments compared to the original bootstrap. Therefore, the
structure selection by traditional bootstrap and FB will lead to similar models, with
an important advantage for the FB in terms of computational complexity.
The key point is therefore to find the complexity of these ‘‘simple and smooth’’

low-order functions. For example polynomial functions, of some order, can be used.
In this case the question becomes ‘‘what is the order of the polynomial
approximation of the optimism?’’ To answer this question the simple analysis of
variance (ANOVA) methodology is applied in a polynomial regression framework
(see for example [6]): the sum of squared errors (or sum of residuals) obtained from
two polynomial approximations of different orders are compared. Let H0 be the null
hypothesis of having a low-order model of order k0:

v̂i ¼ a0 þ a1ui þ a2u2i þ 
 
 
 þ ak0u
k0
i ; (10)

where ui and vi are, respectively, the input and desired output of the model, and v̂i

the approximation of the latter; H1 is the alternative hypothesis of having a model of
order k1 with k14k0: The comparison between the residuals obtained from the two
models leads to the following Fisher’s statistics:

Fk1�k0;K�k1�1 ¼
ðSR0 � SR1Þ=ðk1 � k0Þ

SR1=ðK � k1 � 1Þ
; (11)

where K is the total number of data, and SRj is the sum of residuals of the model
under hypothesis Hj defined as

SRj ¼
XK

i¼1

jjvi � v̂ijj
2: (12)
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The obtained F-statistics, which follows a Fisher–Snedecor law with ðk1 � k0Þ
and ðK � k1 � 1Þ degrees of freedom, is used to test the null hypothesis H0 ‘the
underlying model is of order k00 against H1 ‘the underlying model is of
order k10.
The methodology used to assess the complexity of the approximation is thus the

following:
�
 choose two model orders k0 and k1 (k14k0);

�
 fit the respective models (10);

�
 compute the F statistics (11);

�
 test the result of the F statistics against the 5% confidence level given by the
Fisher’s tables with ðk1 � k0Þ and ðK � k1 � 1Þ degrees of freedom.

If the test is successful, hypothesis H0 is accepted, meaning that the order k0 of
approximation (10) is sufficient.
This methodology is applied in our case to the approximation of the optimism

according to the model complexity; in other words, v ¼ optim̂ism and u ¼ q: In the
experimental section, we will see that in most cases, taking order k0 equal to 1 is
sufficient.
Note that in some cases, a low order k0 will not be found thus invalidating the

polynomial hypothesis. In such situations, an ad hoc preprocessing is suggested, as
illustrated in Sections 5.2 and 5.3 for the LS-SVM model, where the log of the
optimism is taken before using (10).
In practice, the optimism estimate does not have to be computed for very low

values of the model complexity q. Indeed, the apparent error for such small values of
the complexity will be high compared to the optimism, leading to a high
generalization error too.
5. Experimental results

5.1. Nonlinear models used in the experiments

In this section, the FB methodology is applied on two function approximation
examples: a toy one-dimensional example used for illustration, and the traditional
Santa Fe Laser Data time series prediction benchmark [21]. Both problems are
solved by three non-linear models: radial-basis functions networks (RBFN), multi-
layer perceptrons (MLP), and least-squares support vector machines (LS-SVM) [20].
Note that although state-of-the-art optimization algorithms have been used for the
learning of these models as detailed below, the purpose here was not to perform an
extended comparison between, for example, MLP learned with various learning
procedures. Other learning procedures without regularization lead to similar
conclusions regarding the shape of the optimism curve as estimated by the
bootstrap, which is the topic of this paper.
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The MLP model [7] used in the experiments is a one hidden layer network with P

units or neurons in the hidden layer:

hðxÞ ¼
XP

i¼1

wi tanh
Xd

j¼1

wijxj

 !
; (13)

where xj are the elements of the d-dimensional input vectors x, and wi; wij the
elements of the parameter set y: The hyper-parameter measuring the complexity is
the number P of hidden units. One thousand epochs of the Levenberg–Marquardt
algorithm implemented in the Matlabs Neural Networks toolbox are used to
optimize the parameters; no regularization has been used. The best model has been
selected among several runs with different weight initializations.
The RBFN [13] model used here is given by

hðxÞ ¼
XP

i¼1

li exp �
x � cik k2

2WSFs2i

� �
: (14)

In this model, the parameter set y includes the li; ci and si that are learned by
unsupervised and supervised techniques without regularization (see [3] for details).
WSF is a continuous hyper-parameter that regularizes the widths of the Gaussian
kernels (a small WSF will lead to narrow local kernels while a large one will smooth
the hðxÞ approximator). The number P of Gaussian kernels is the other hyper-
parameter. The FB may be used to estimate the adequate number P of kernels, but
not for adjusting the regularization factor WSF. As a consequence, the optimism
curve resulting from the bootstrap will be drawn for a specific value of WSF. A
further loop is needed to experimentally select an optimal value forWSF; this further
arguments the need for a fast procedure inside the loop.
The LS-SVM model [17–20] is given in primal weight space by

hðxÞ ¼ oTjðxÞ þ b; (15)

where jðxÞ is a function which maps the input space into a higher dimensional
feature space. In LS-SVM for function estimation, the following optimization
problem is formulated:

min
o;b;e

Jðo; b; eÞ ¼
1

2
oToþ g

1

2

XN

i¼1

e2i ; (16)

subject to the equality constraints

yi ¼ oTjðxiÞ þ b þ ei; i ¼ 1; . . . ;N: (17)

The parameter set y consists of o and b, and the hyper-parameters are the width of
the Gaussian kernels (taken to be identical for all kernels) and the g regularization
factor. Solving this optimization problem in dual space leads to finding the ai and b
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coefficients in the following solution:

hðxÞ ¼
XN

i¼1

aiKðx;xiÞ þ b: (18)

The function kðx;xiÞ is the kernel defined as the dot product between the jðxÞ
T

and jðxiÞ mappings.
LS-SVM can be viewed as a form of parametric ridge regression in the primal

space. The training method for the estimation of the o and b parameters can be
found in [19]. Note also that LS-SVM are not only used as supervised learning
models; they are also used in the case of unsupervised learning such as nonlinear
PCA [19].

5.2. Toy example

The first example used for illustration purposes is a one-dimensional function
approximation problem [9]. In this example, 200 inputs xi have been randomly
drawn using a uniform distribution between 0 and 1. The corresponding yi outputs
have been generated according to

yi ¼ sinð5xiÞ þ sinð15xiÞ þ sinð25xiÞ þ �i; (19)

where �i are uniformly distributed and independently drawn random values in [�0.5,
0.5]. The function without noise and the 200 noisy samples are shown in Fig. 1.
The MLP model has been tested on the toy example for a number of hidden

neurons between 1 and 13. Figs. 2 and 3, respectively, show the estimate of the
optimism and of the generalization error, both when a full bootstrap and when the
FB approximation is used. Both the bootstrap and the FB select an optimal number
0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

x

y

Fig. 1. Toy example: function without noise (solid line) and 200 noisy samples (dots).
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Fig. 2. Estimate of the optimism obtained with a MLP on the toy example.
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Fig. 3. Estimate of the generalization error obtained with a MLP on the toy example.

A. Lendasse et al. / Neurocomputing 64 (2005) 161–181 171
of units equal to 6. Table 1 summarizes the experimental conditions, i.e. the number
of models, number of bootstrap replications for each model, and the gain obtained
by using the FB methodology.
Fishers’ statistics has been computed in the FB case. Eq. (11) is used with k0 ¼ 1;

k1 ¼ 2 and K ¼ 5 to verify that the estimate of the optimism is a linear function of
the number of hidden neurons. Table 1 also gives the value of Fisher’s test.
The RBFN model has been tested on the same example. The FB has been used to

optimize the number of kernels in the model, in the [10,19] range. The bootstrap
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Table 1

Experimental conditions and results of Fisher’s test for the three models applied to the toy example

MLP Number of

hidden neurons

Bootstrap

replications

Number of

experiments

Gain F1,2

Bootstrap 1–13 by steps of 1 100 1300

Fast

Bootstrap

1–13 by steps of 3 10 50 96.2% 3.2545

RBFN Number of

kernels

Bootstrap

replications

Number of

experiments

Gain F1,1

Bootstrap 10–19 by steps of

1

100 1000

Fast

Bootstrap

10–19 by steps of

3

10 40 96% 16.3085

LS-SVM Regularization

parameter g
Bootstrap

replications

Number of

experiments

Gain F1,7

Bootstrap 5–50 by steps of

0.1

100 45100

Fast

Bootstrap

5–50 by steps of 5 10 100 99.8% 0 *

The 0 value marked by * for the F1,7 Fisher’s test in the LS-SVM case reaches the numerical limit of the

computer calculation.
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Fig. 4. Estimate of the optimism obtained with a RBFN on the toy example.
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selects an optimum number of kernels equal to 17, while the FB gives a close estimate
equal to 16.
Simulations conditions are summarized in Table 1. Figs. 4 and 5, respectively,

show the estimate of the optimism and of the generalization error, both when a full
bootstrap and when the FB approximation is used.
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Fig. 5. Estimate of the generalization error obtained with a RBFN on the toy example.
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Fig. 6. Estimate of the optimism obtained with a LS-SVM on the toy example; the solid line has been

artificially shifted for illustration purposes (see text for details).
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Fishers’ statistics has been computed in the FB case. Eq. (11) is used with k0 ¼ 1;
k1 ¼ 2 and K ¼ 6 to verify that the estimate of the optimism is a linear function of
the number of kernels.
Finally, the LS-SVM has been applied to the same problem. The regularization

parameter g is the hyper-parameter to be optimized in the [5–50] range. Simulations
conditions are summarized in Table 1. Figs. 6 and 7, respectively, show the estimate
of the optimism and of the generalization error, both when a full bootstrap and when
the FB approximation is used. Note that the Y-scale of these figures has been
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Fig. 7. Estimate of the generalization error obtained with a LS-SVM on the toy example; the solid line has

been artificially shifted for illustration purposes (see text for details).
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adapted to show more clearly the shape of the curves; indeed, in both figures, the
bootstrap and FB curves are in fact very close. Therefore, the two full bootstrap
curves (solid lines) have been artificially shifted downwards by subtracting a fixed
0.005 value, for illustration purposes only. The optimal regularization parameter g is
found to be equal to 12 by the bootstrap method, and to 15 by the FB one.
Fishers’ statistics has been computed in the FB case. Fig. 6 suggests that the

optimism estimate is a linear function of the regularization parameter logarithm
(note the logarithmic X-scale). Therefore, in order to perform Fisher’s test, the
logarithm of the regularization parameter is taken. Eq. (11) is used with k0 ¼ 1;
k1 ¼ 2 and K ¼ 10 to verify that the optimism estimate is a linear function of the
regularization parameter logarithm.

5.3. Santa fe laser data

The Santa Fe Laser Data time-series [21] has been obtained from a far-infrared-
laser in a chaotic state. This time-series has become a well-known benchmark in time
series prediction since the Santa Fe competition in 1991. It includes 1000 points, and
is illustrated in Fig. 8.
The prediction task may be expressed as a function approximation problem using

model (20):

x̂ðt þ 1Þ ¼ hq
ðxðtÞ; xðt � 1Þ;xðt � 2Þ;xðt � 3Þ;xðt � 4Þ; xðt � 5Þ; yðqÞÞ: (20)

In (20), yðqÞ are the parameters of the MLP, RBFN or LS-SVM model used in the
experiments. The largest time lag (t-5) has been chosen according to published results
on this benchmark [21]. This model is a nonlinear auto-regressive one (NAR) [11];
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the FB methodology can be extended in a straightforward manner to NARX models
(including exogenous variables).
For this example, only the FB methodology has been used. Indeed in a real

experimental setting, only the FB will be used, Fisher’s test being checked to verify
the hypothesis made to allow the reduction in the number of experiments.
The MLP model has been tested on the SantaFe Laser Data time series for a

number of hidden neurons between 1 and 10. Figs. 9 and 10, respectively, show the
estimate of the optimism and of the generalization error when the FB approximation
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Fig. 9. Estimate of the optimism obtained with a MLP on the SantaFe Laser Data time series.
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Fig. 8. SantaFe Laser Data time series.
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Fig. 10. Estimate of the generalization error obtained with a MLP on the SantaFe Laser Data time series.

Table 2

Experimental conditions and results of Fisher’s test for the three models applied to the SantaFe Laser

Data time series

MLP Number of hidden

neurons

Bootstrap

replications

Number of

experiments

F1,3

Fast

Bootstrap

4–9 by steps of 1 10 60 0.2002

RBFN Number of kernels Bootstrap

replications

Number of

experiments

F1,2

Fast

Bootstrap

60–140 by steps of 20 20 100 1.6472

LS-SVM Regularization

parameter g
Bootstrap

replications

Number of

experiments

F1,16

Fast

Bootstrap

15–105 by steps of 5 10 190 0*

The 0 value marked by * for the F1,7 Fisher’s test in the LS-SVM case reaches the numerical limit of the

computer calculation.
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is used. Table 2 summarizes the experimental conditions, i.e. the number of models,
number of bootstrap replications for each model, and the result of Fisher’s test. Eq.
(11) is used with k0 ¼ 1; k1 ¼ 2 and K ¼ 4 to verify that the estimate of the optimism
is a linear function of the number of hidden neurons.
The RBFN model has been tested on the same example. The FB has been used to

optimize the number of kernels in the model, in the [60,140] range. Simulations
conditions are summarized in Table 2. Figs. 11 and 12, respectively, show the
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Fig. 11. Estimate of the optimism obtained with a RBFN on the SantaFe Laser Data time series.
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Fig. 12. Estimate of the generalization error obtained with a RBFN on the SantaFe Laser Data time

series.
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estimate of the optimism and of the generalization error when the FB approximation
is used. Fishers’ statistics has been computed: Eq. (11) is used with k0 ¼ 1; k1 ¼ 2
and K ¼ 5 to verify that the estimate of the optimism is a linear function of the
number of kernels.
Finally, the LS-SVM has been applied to the same problem. LS-SVM better scale

to high dimensional input spaces than RBFN and MLP and on this problem a
largest time lag (t-50) can be used [19]. Nevertheless, in order to compare the results
between RBFN, MLP and LS-SVM, the same largest time lag (t-5) is used.
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Fig. 13. Estimate of the optimism obtained with a LS-SVM on the SantaFe Laser Data time series.
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Fig. 14. Estimate of the generalization error obtained with a LS-SVM on the SantaFe Laser Data time

series.
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The regularization parameter g is the hyper-parameter to optimize in the [25–1000]
range. Simulations conditions are summarized in Table 2. Figs. 13 and 14,
respectively, show the estimate of the optimism and of the generalization error when
the FB approximation is used. Fig. 14 clearly suggests that the optimism estimate is a
linear function of the regularization parameter logarithm (note the logarithmic X-
scale). Therefore in order to perform Fisher’s test, the logarithm of the regularization
parameter is taken. Eq. (11) is used with k0 ¼ 1; k1 ¼ 2 and K ¼ 10 to verify that the
optimism estimate is a linear function of the regularization parameter logarithm.
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6. Conclusion

Neural networks, and more generally linear and nonlinear models, require both
parameter optimization and model structure selection in order to perform their
regression or classification task. While the former is usually achieved through a
standard or specialized optimization procedure on real parameters using a learning
set, the discrete nature of model structure makes the use of validation sets
unavoidable. In order to avoid the dependency on a specific choice of these
validations sets, resampling is necessary.
The drawback of most resampling procedures (k-fold cross-validation, bootstrap,

etc.) is their huge requirements in terms of computational load. Learning, sometimes
slow in itself, is nested in simulations loops often making the total computation time
prohibitive. There is thus a need for accelerated resampling procedures implementing
an effective compromise between accuracy and computational load.
In this paper, the FB procedure is presented. It is shown experimentally that the

computationally intensive term of the bootstrap, the optimism, often takes a simple
form with regards to the model complexity parameter. This property is exploited
through a dramatic decrease of the number of experiments needed for the optimism
estimation. The smoothness of the optimism estimation can also be exploited to
estimate the complexity parameter by gradient-based search, which is usually
difficult or impossible with other resampling procedures, producing irregular
estimates. A statistical test is used to verify a posteriori the validity of the hypothesis
made in the suggested approximation; if the test fails, it is always possible to increase
the number of experiments. Such accelerated procedure makes it possible to combine
the power of the bootstrap resampling and the constraints of real applications.
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