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Abstract

Combining the mutual information criterion with a forward feature selection strategy offers a good trade-off between optimality of the
selected feature subset and computation time. However, it requires to set the parameter(s) of the mutual information estimator and to
determine when to halt the forward procedure. These two choices are difficult to make because, as the dimensionality of the subset
increases, the estimation of the mutual information becomes less and less reliable. This paper proposes to use resampling methods, a K-
fold cross-validation and the permutation test, to address both issues. The resampling methods bring information about the variance of
the estimator, information which can then be used to automatically set the parameter and to calculate a threshold to stop the forward

procedure. The procedure is illustrated on a synthetic data set as well as on the real-world examples.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Feature selection consists in choosing, among a set of
input features, or variables, the subset of features that has
maximum prediction power for the output. More formally,
let us consider X = (X4,...,X,) a random input vector
and Y a continuous random output variable that has to be
predicted from X. The task of feature selection consists in
finding the features X; that are most relevant to predict the
value of Y [16].

Selecting features is important in practice, especially
when distance-based methods like k-nearest neighbors (k-
NN), Radial Basis Function Networks (RBFN) and
Support Vector Machines (SVM) (depending on the
kernel) are considered. These methods are indeed quite
sensitive to irrelevant inputs: their performances tend to
decrease when useless variables are added to the data.
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When the data are high-dimensional (i.e. the initial number
of variables is large) the exhaustive search of an optimal
feature set is of course intractable. In such cases, furthermore,
most methods that ‘work backwards’ by eliminating useless
features perform badly. The backward elimination procedure
for instance, or pruning methods for the MultiLayer
Perceptron [34], SVM-based feature selection [14] or weight-
ing methods like the Generalized Relevance Learning Vector
Quantization algorithm [18] require building a model with all
initial features. With high-dimensional data, this will often
lead to large computation times, overfitting, convergence
problems, and, more generally, issues related to the curse of
dimensionality. These approaches are furthermore bound to
a specific prediction model.

By contrast, a forward feature selection procedure can be
applied using any model and begins with small feature subsets.
Such procedure is furthermore simple and often efficient.
Nevertheless, when data are high-dimensional, it becomes
difficult to perform the forward search using the prediction
model directly. This is because, for every candidate feature
subset, a prediction model must be fit, involving resampling
techniques and grid searching for optimal structural para-
meters. A cheaper alternative is to estimate the relevance of
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each candidate subset with a statistical or information-
theoretic measure, without using the prediction model itself.

The combined use of a forward feature search and an
information-theoretic-based relevance criterion is generally
considered to be a good option, when nonlinear effects
prevent from using the correlation coefficient [17]. In this
context, the mutual information estimated using a nearest
neighbor-based approach has been shown to be effective
[9,31]. Nevertheless, this approach, just like most feature
selection methodologies, faces two difficulties.

The first one, which is generic for all feature selection
methods, lies in the optimal choice of the number of
features to select. Most of the time, the number of features
to select is chosen a priori or so as to maximize the
relevance criterion. The former approach leaves no room
for optimization, while the latter may be very sensitive to
the estimation of the relevance criterion.

The second difficulty concerns the choice of parameter(s)
in the estimation of the relevance criterion. Indeed, most of
these criteria, except maybe for the correlation coefficient,
have at least one structural parameter, like a number of
units or a kernel width in a prediction model, a number of
neighbors or a number of bins in a nonparametric
relevance estimator, etc. Often, the result of the selection
highly depends on the value of that (those) parameter(s).

The aim of this paper is to provide an automatic
procedure to choose the two above-mentioned important
parameters, i.e. the number of features to select in the
forward search and the structural parameter(s) in the
relevance criterion estimation. This procedure will be
detailed in a situation where the mutual information is used
as relevance criterion, and is estimated through nearest
neighbors. Resampling methods will be used to obtain this
automatic choice. Those methods increase the computa-
tional cost of the forward search, but provide meaningful
information about the quality of the estimations and the
setting of parameters: it will be shown that a permutation
test can be used to automatically stop the forward
procedure, and that a combination of permutation and K-
fold resampling allows choosing the optimal number of
neighbors in the estimation of the mutual information.

The remaining of this paper is organized as follows.
Section 2 introduces the mutual information, the permuta-
tion test and the K-fold resampling, and briefly reviews
how they can be used together. Section 3 illustrates the
challenges in choosing the number of neighbors in the
mutual information estimation and the number of features
to select in a forward search. Section 4 then presents the
proposed approach. The performances of the method on
real-world data are reported in Section 5.

2. Prior art
2.1. Mutual information-based forward feature selection

The mutual information is a nonparametric, nonlinear,
measure of relevance derived from information theory.

Unlike correlation that only considers linear relationships
between variables, the mutual information is theoretically
able to identify relations of any type. It furthermore makes
no assumption about the distribution of the data.

The mutual information of two random variables Z; and
Z, is a measure of how Z; depends on Z, and vice versa. It
can be defined from the entropy H(-):

MI(Z,;Z,) = H(Z\)+ H(Z,) — H(Z\,Z,)
= H(Z,) - H(Z,|Z)), (1)

where H(Z,|Z)) is the conditional entropy of Z, given Z;.
In that sense, it measures the loss of entropy (i.e. reduction
of uncertainty) of Z, when Z; is known. If Z; and Z, are
independent, H(Z,,Z,) = H(Z,)+ H(Z>), and
H(Z,|Z,) = H(Z3). In consequence, the mutual informa-
tion of two independent variables is zero.

For a continuous random variable Z;, the entropy is
defined as

H(Zy) = - / P20 log py ()L, @)

where p, is the probability distribution of Z;. Conse-
quently, the mutual information can be rewritten, for
continuous Z; and Z,, as

Pz,.2,(1,02)
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It corresponds to the Kullback—Leibler distance between
Pz,.2,(1,{5), the joint probability density of Z; and Z»,
and the product of their respective marginal distributions.
In the discrete case, the integral is replaced by a finite sum.

In practice, the mutual information has to be estimated
from the data set, as the exact probability density functions in
the above equations are not known. The most sensitive part
of the estimation of the mutual information is the estimation
of the joint probability density function py, ,({;,{,). Several
methods have been developed in the literature to estimate
such joint densities: histograms, kernel-based methods and
splines [32]. All those estimators depend on at least one
parameter that has to be chosen appropriately.

In the context of a forward procedure, the mutual
information is estimated between a set of inputs X; (instead
of a single variable X;) and the output Y. The above
definitions of entropy and mutual information remain
valid, provided that Z; is replaced by a multi-dimensional
variable. The dimension of the latter grows at each
iteration of the forward procedure. Therefore, the estima-
tions of the p, and p, ,, densities must also be performed
in spaces of increasing dimension.

Unfortunately, most of the density estimation methods
require a sample whose size grows exponentially with both
the dimension of Z; and the dimension of Z, to provide an
accurate estimation. This is sometimes referred to as one
instance of the curse of dimensionality [3]. In practice, one
seldom has the required number of points for an accurate

MI(Z1: Z2) = / / 7 (1.00) log
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estimation when the dimension is above 10. For dimen-
sions below or close to that value, the estimation of the
multi-dimensional mutual information can be performed
with classical multivariate density estimators [5,23]. With
more than 10 dimensions the estimation becomes quite
unreliable with those estimators. However, nearest neigh-
bor-based density estimators have been reported to be less
sensitive to dimensionality than many others [22,30] and
are therefore more suitable for the forward search strategy.

The forward search is incremental and ‘greedy’ in the sense
that the method makes final decisions about features at each
iteration: once a feature is chosen, its relevance is never
questioned again. The forward search will therefore perform
at most O(d?) estimations of the criterion (rather than 2¢ for
the exhaustive search). The forward search begins with an
empty set of features and adds at each iteration the feature
that has the most positive influence on the criterion. The
procedure is halted either when the a priori chosen number
of features has been selected or when adding one more
feature does not improve the relevance criterion.

Combining a forward search procedure with a mutual
information estimator for the relevance criterion is an idea
dating back to 1994 [2]. Before the nearest neighbor
estimator was popularized by Kraskov et al. [22], the
multivariate mutual information measures were most often
approximated using combinations of bi-variate [2,24] or
tri-variate [10] mutual information estimations. Those
approximations, however, do not estimate the true value
of the mutual information between the set of X; and Y, and
make strong independence assumptions between the input
features. The forward strategy with the mutual information
estimated using nearest neighbors was shown to be
successful [30] and is used as the foundation method in
the present paper. It however requires manual tuning of the
number of neighbors and comparisons between the
respective mutual informations between sets of features
of different sizes and the output, which is not always
advisable in practice, as detailed in Section 3.

2.2. Resampling methods

Additional information is needed to select a priori sound
values (i) for the structural parameter of the estimator and
(i1) for the number of selected features in the subset,
without optimizing these numbers with respect to the
prediction performances of the model. This additional
information, namely an estimation of the variance of the
estimator, is brought by two resampling methods: the
permutation resampling and the K-fold resampling.

Resampling methods have heavy computational require-
ments that increase the time needed to perform the forward
selection procedure. However, the running time of the
scheme proposed in Section 4 remains acceptable com-
pared to the computational burden of alternate solutions
that could be used to choose the number of features and
the parameter of the estimator (e.g. optimizing those
elements based on the performances of a prediction model).

It should be noted that bootstrap resampling, while
generally advisable for exploring the behavior of an
estimator, is not adapted to the k-nearest neighbors
estimator [22] used in this paper. When a bootstrap sample
is generated from the original data set, it contains
duplicates of many of the observations. As a consequence,
the k-nearest neighbors of each observation may contain
this observation itself (sometimes even repeated), which
leads to a strong overestimation of the mutual information.

2.2.1. K-fold resampling

The K-fold resampling is very similar to the K-fold cross-
validation scheme used for validating prediction models,
except that it is used in an unsupervised manner. Given z;
and z,, respectively, realizations of Z; and Z,, and some
statistic 0, it consists in computing the K estimates 0; of 0
where one (or several) data eclement(s) has(ve) been
removed from the analysis. Typically, the sample is
partitioned into K clusters of roughly equal size, and the
statistic is estimated K times on the sample from which the
Kth cluster was excluded. The average of those estimations
is often found to be a more robust estimator of 0, while the
variance of the estimations gives an idea of the sensitivity
of the estimator to the particular sample.

2.2.2. The permutation test or randomized resampling

The permutation test [15] is a nonparametric hypothesis
test over some estimated statistic 0 involving z; and z;. The
statistic 6 can be a difference of means in a classification
context, or a correlation, or, as in this paper, a mutual
information. Let 6 be the estimation of the statistics for the
given z; and z;, both vectors of size n drawn from p, and
Pz, respectively. The aim of the test is to answer the
following question: how likely is the value 6 given the
vectors z; and z; if we suppose that Z; and Z, are
independent? In particular, the value of the mutual
information under such hypothesis should be zero.

The permutation test considers the empirical distribution
of z; and z; to be fixed, as well as the sample size. The
random variable of interest is the value of the statistic 6. In
such a framework, the distribution of 6 is the set of all
values of 0y, for all n! possible permutations of the elements
of the vector zj, or, equivalently, all permutations of the
elements of the vector z;. The P-value o associated to the
test is the proportion of 0 that are larger than the value of
0 estimated with z; and z, without permutation.

In practice, it is not necessary to perform all n!
permutations. Several tens or hundreds of them are
randomly performed. In this case, the exact P-value cannot
be known but a 95% confidence interval around the
observed P-value can be estimated [26].

2.3. Combined uses

The permutation test has been extensively used in
conjunction with the mutual information to perform a
nonparametric statistical test of independence of variables
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or signals. It has been of much use in identifying nonlinear
relationships between pairs of variables in exploratory
analysis [1,7,20,21,27], and to test serial independence in
time series [§].

The permutation test has also been used specifically to
filter out features, by measuring independence via mean
differences, student statistics or chi-squared measures. The
test is used, for instance, to discard features for which the
independence hypothesis cannot be statistically rejected [6],
or to rank features according to the P-value estimated by
the permutation test [28]. The permutation test can also be
used in the process of building a decision tree, to choose the
features that should be used at a split point [12].

Feature filtering with the mutual information and the
permutation test was also recently proposed [9,11,28], in a
pure feature ranking approach where the permutation test
is used to automatically set a threshold on the value of the
mutual information.

Resampling approaches similar to the K-fold resampling
(Jackknife, bootstrap, etc.) have also been used to get
better estimates of the mutual information [35] and to
choose among several estimators (nearest neighbor-based,
histogram-based, spline-based, etc) to estimate the mutual
information between EEG signals [25]. The estimator that
is chosen is the one that is most robust with respect to
resampling, i.e. that has the lowest variance around the
estimated value.

Mutual information with permutation testing has thus
been used for automatic feature filtering, that is for
discarding features that are statistically non-relevant for
the prediction. This approach however selects many
features, more than necessary since redundancy in the
features is not considered. That is why automatic forward
selection is preferable to actually select features rather than
discarding them. Furthermore, in choosing the value of the
estimator structural parameter and the number of variables
to consider in the forward search, we should not only
consider the variance of the estimator but also, and more
importantly, how well it discriminates dependent features
(with MI>0) from independent ones (with MI = 0). The
methodology described in the next section answers these
questions.

3. The sensitivity to parameter values

The mutual information, with a nearest neighbor-based
estimator, and the forward search combined together
present a good compromise between computation time
and performances. As already discussed, two issues must
be addressed, however, namely the number of features to
select and the choice of the parameter in the estimation of
the mutual information to discriminate at best relevant
features from useless ones. The results of the feature
selection process highly depend on those two parameters,
especially when the mutual information must be estimated
from a few samples. This section illustrates those difficul-
ties in a simple case.

The problem discussed here is a synthetic prediction
problem, derived from Friedman’s [13]. We consider 10
input variables X; and one output variable Y given by

Y = 10sin(X; - X2) +20(X3 — 0.5)> + 10X4 + 5X5 + &.
“)

All X;,1<i<10, are uniformly distributed over [0, 1], and ¢
is a centered Gaussian noise with unit variance. Variables
X to X9 are just noise and have no predictive power. The
sample size is 100.

3.1. Parameter sensitivity

The number k& of neighbors taken into account in the
estimation of the mutual information must be chosen
carefully, especially in the case of a small sample and noisy
data. If the number of neighbors is too small, the
estimation will have a large variance; if the number of
neighbors is chosen too large, the variance of the estimator
will be small, but all estimations will converge to zero, even
for highly dependent variables.

In practice, a bad choice of k can modify the ranking
between variables and lead to false conclusions. As an
illustration, Fig. 1 displays the mutual information between
each X; and Y, using the nearest neighbor-based estimator
for a single data set generated from Eq. (4). The number of
neighbors used in the estimation of the mutual information
is shown at the top of the graphs.

Although only features X — X5 are informative, they do
not always have a mutual information larger than the other
features. Furthermore, a significant, large, difference can
be observed between X| and X, while they have the same
influence on the output.

This simple experiment shows that the number of
neighbors must be chosen correctly to avoid artifacts from
the estimator, even in simple cases.

3.2. Stopping criterion instability

The stopping criterion of the forward search will
determine how many features are selected. When nested
subsets of features are considered, as in the forward search,
the mutual information is theoretically a non-decreasing
function of the subset size; it can only increase or remain
constant as more features are added. Maximizing the
mutual information therefore does not make sense: the
whole feature subset will always, in theory, have the largest
mutual information with the value to predict.

In practice however, as illustrated in Fig. 2, the
evaluation of the mutual information tends to decrease
when useless variables are added, especially with an
estimator based on the distances between observations. It
is therefore tempting to look for the maximum value of the
mutual information. But again, as shown in Fig. 2, this will
frequently lead to sub-optimal feature subsets. On this
example, stopping the forward procedure at the first peak
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Fig. 1. Mutual information between the 10 variables of the synthetic example and the output, for several values of the estimator number of neighbors. All
relevant features have a higher mutual information than non-relevant ones only for well-chosen values.

selects a wrong number of features in almost all
cases. Moreover, searching for the global maximum
does not improve a lot the situation: the optimal set of
features is selected only in three cases (for k equal to 1, 3
and 6).

In fact, there is no particular reason for this strategy
(maximization of the mutual information) to give optimal
results when the mutual information is estimated via a
distance-based method. Indeed, the forward proc-
edure tends to add features in their relevance order.
Moreover, when a feature is included in the current subset,
it has the same individual importance in the distance
calculations as each previously selected feature. As a
consequence, the influence of the previous features, which
might be more relevant than the last one, on the mutual
information estimator tends to decrease. As shown in Fig.
2, there are many cases in which the first five features are

the optimal ones and yet the mutual information is not
maximal for the five feature set. In fact, the forward
procedure only fails for k& equal to 5, 7 and 9, when
it selects the irrelevant feature 8 before the relevant
feature 3. While an optimal choice of k should in theory
prevent estimator problems to lead to bad estimations
of the mutual information, and therefore rule out values 5,
7 and 9 for k, we cannot guarantee that the optimal
feature subset will correspond to the highest value of
the estimated mutual information. This is in fact more
an intrinsic limitation of the chosen estimator than a
problem of its tuning; it is in a sense the price we have to
pay for an estimator that is able to handle higher-
dimensional data.

There is thus a need for a sound stopping criterion of the
forward search based on the mutual information, in
addition to the optimal choice of k.



D. Frangois et al. /| Neurocomputing 70 (2007) 12761288 1281
1 2 3 4 5
2 5[, 1 3, 0.75 4 , 10 0.70 8 0.65 R
1.0 1 6 0.80 - 54 0.70 3 5
0.9 , J s, ' o 0.65 - 0.60 - .
10 .
0.8 4 7 0.70 + 6 10 065 6 0.60 - 0.55 +
9 - 2 7
i 0.60
07 0.60 - 79 0554 0.50 9
0.6 i 0.55 4
4 4 4 0.45 + 10
0.5 0.50 0.50
6 7 8 10
58 0.60 - 0.55
0.55 2 1 6 0-55 1 0591
R 0.55 0.50 4
0504 3 76 | 050 0.50 4 7 tis | 0.45 -
045 0.45 045 7 i 0.40 -
6 0.40
0.40
0.40 10| 0.40 10 0.35
0.35
1" 13
0.50
0.50 2 , 045 0.45 -
045 0.45 - 045 1 0.40 J
’ 0.40 7 0.40
0.40 + ’ 6 0.35 -
0.40 - 0.35 A
0.35 - 0357 4 ® 1o 0.30 -
0.35 030 . 0.30 A
0.30 - ] 0.25 -
18
0.45 - 3
0.40 -
0.40 - 0.40 4 5 040 +
0.40 - 0.35 -
0.35 A :
0.35 0.35 -
0.35 4
: 0.30 - 0.30 -
0.30 A 0.30 '
0.30 :
025 4 0.25
i 0.25 '
0.25 4 028 0.20 0.20 -

Fig. 2. Result of the forward procedure on the artificial example with different values of the number of neighbors in the estimation of the mutual
information. Only for well-chosen values of the number of neighbors the correct features (X| —Xs) are selected.

4. Proposed methodology
4.1. The number of neighbors

In order to determine the optimal number of neighbors
in the estimation of the mutual information, the notion of
optimality must be explicitly defined since there is no
obvious criterion that we could maximize or minimize. As
already discussed, we do not want to optimize the number
of neighbors with respect to the performances of a
prediction model built with the variables chosen by the
procedure, because this would render the search procedure
too time-consuming.

The goal is to discriminate between features that are
relevant for the problem and features that are useless. We
therefore consider the optimal value of k to be the value for
which the separation between the relevant features and an
independent feature is maximum. Since the estimator of the
mutual information has some variance, it is important to
take this variance into account in measuring the separ-
ability. If we had access to the distribution of the mutual
information estimate over the data, we could calculate a

separation between MI(X;Y) and MI(U;Y) (considered
as random variables) for an important feature X and an
useless feature U.

To show the behavior of those variables on a simple
example, 100 data sets are randomly generated from Eq.
(4). From those data sets, 100 realizations of the random
variables MI(X4;Y) and MI(Xo; Y) are produced, for
different values of k. Fig. 3 represents the means of
MI(X4;Y) and of MI(Xo; Y) over the 100 data sets, as
well as the 0.01 and 0.99 percentiles of the same
realizations. Those values are reliable estimates of the
theoretical values of the considered quantities.

As expected, the variability of the estimator reduces with
the number of neighbors. However, the mutual informa-
tion MI(X4;Y) also decreases, whereas there is a strong
relationship between X4 and Y. For a low number of
neighbors (1 and 2), the variability of the estimator is
important enough to blur the distinction between X4 and
X0 in term of potential predictive power: for some of the
data sets, MI(Xo; Y) is larger than MI(X4; Y). When k
increases, the estimator becomes stable enough to show
that Y depends more on X4 than on Xy (for k=3).
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Fig. 3. Mutual information estimator distribution for data sets generated from Eq. (4). Solid lines correspond to variable X4 and dashed lines to variable

X1o. See text for details.

However, after a first growing phase, the separation
between the distributions of MI(X4; Y) and MI(X10;Y)
decreases with k: the reduction of the mean estimated value
of MI(X4;Y) tends to negate the positive effect of the
reduction of variability. The lowest values of MI(X4;Y)
are getting closer and closer to the highest values of
MI(Xp; Y). It seems therefore important to choose k so as
to ensure a good separation between relevant and
irrelevant variables.

In practice however, the true distribution of MI(X; Y)is
unknown. We therefore rely on a combined K-fold/
permutation test to estimate the bias and the variance of
the estimator for relevant features and for independent
ones. The idea is the following. Consider X; a feature that
is supposed to be relevant to predict Y. Two resampling
distributions are built for both MI(X;; Y) and MI(XT;Y)
where X7 denotes a randomized X, that is made
independent from Y through permutations. This is done
by performing several estimations of (i) the mutual
information between X; and Y and (i) the mutual
information between a randomized version of X; and Y,
using several non-overlapping subsets of the original
sample, in a K-fold resampling scheme. A good value for
Kis around 20 or 30. Less than 20 renders the estimation of
mean and variance is hazardous, while the estimations with
more than 30 are often very close to those with K = 30.
The procedure results in two samples of estimates of
MI(X;; Y) and MI(XT; Y).

The optimal value of k is the one that best separates
those two distributions, for instance according to a
Student-like measure:

t: 2_7’ 5
l,k \/m‘zrz ()

where 1 and ¢° represent the mean and variance of the
cross-validated distribution of MI(X;; Y), and u, and o2
are those of the cross-validated distribution of MI(XT; Y)
(illustrated on Fig. 4).

The optimal k for all features is chosen as the one
corresponding to the largest value of #;x over all values of k
over all features. This way, features that are useless do not
participate in the choice of the optimal value. Using useless
features to choose the value that best separates the
resampling of the mutual information from the permuted
sample would indeed make no sense if they are independent
from the output value. It should be noted that other
solutions could be thought of, like, for instance, to
optimize the mean value of ¢;; over features for which ¢,
is above a pre-specified significance threshold, but at the
cost of an additional parameter.

4.2. The stopping criterion

As choosing the maximum or the peak of the mutual
information is neither sound nor efficient, a more promis-
ing approach consists in trying to avoid adding useless
features to the current subset by comparing the value of the
mutual information with the added feature to the one
without that feature in a way that incorporates the
variability of the estimator.

Let us consider S, the subset of already selected features,
and X*, the best candidate among all remaining features.
We consider the distribution of MI(S U {X*}; Y) under the
hypothesis that X™* is independent from Y and S, that is all
values of MI(SU{X*™};Y) where X™ is a random
permutation of X™*. If the P-value of MI(SU{X*};Y) is
small and the hypothesis is rejected, it means that X*
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Fig. 4. Distribution of mutual information for a relevant feature. On the
left, the distribution of the mutual information of the features with
permuted values, on the right, the distribution of the mutual information
of the relevant feature; as given by the K-fold method. The value of k is
chosen so as to best separate those two distributions.

brings sufficient new information about Y to be added to
the feature subset.

Note that this way, the increment in mutual information
between MI(S U {X™*}; Y) and MI(S;Y) is estimated with-
out comparing estimations of mutual information on
subsets of different sizes. In theory this should not be an
issue; in practice however, it is important. Indeed, as we
observed before, adding an informative variable should, in
theory, strictly increase the mutual information, but the
contrary is frequently observed (see for example Fig. 2.)

Fig. 5 summarizes the results of the proposed stopping
criterion applied to the synthetic data set introduced above.
The procedure selects the right features (X —X5) and finds
that the sixth added feature does not improve the mutual
information significantly. As already shown on Fig. 2, the
mutual information decreases when the third feature is
added, which can wrongfully be taken as a clue that the
procedure should be halted. The permutation test is able to
cope with the instabilities of the estimator and to detect the
relevance of the added feature even if it makes the mutual
information decrease.

4.3. Computational burden

In most traditional resampling schemes, the overall
computation time is simply multiplied by the number of
resamplings performed. In this case however, a more
detailed analysis is needed to grasp the overhead cost
brought by the proposed method.

The number of mutual information estimations to
perform at iteration ¢ in the forward search, is equal to
the number d — ¢+ 1 of features that are candidate for

0.5
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Fig. 5. Mutual information in a forward feature subset search on the toy
example. Thresholds (horizontal lines) are computed as the 95%
percentiles of the permutation distribution; the actual mutual information
is represented with circles. The number of neighbors is & = 19 (selected
according to the criterion proposed in Section 4.1).

entering the optimal feature subset plus the number P of
permutations performed to evaluate the threshold of the
stopping criterion. The cost of each iteration, in terms of
mutual information estimation, thus amounts to
d—t+ 1+ P. As the number of permutations is often
limited to 20 or 30, the additional cost at each iteration
needed to estimate the threshold is small compared with
the cost needed to find the feature that should be added to
the optimal feature subset. For instance, on a 100-
dimensional data set (like the Delve Census data set
presented in Section 5.4), 955 estimations of the mutual
information are needed to find the optimal subset of size 10
while 200 estimations, that is a bit more than 15% were
used to set the threshold. Of course, when the number of
original features is small, permutations tend to represent a
more important part of the total computational burden.

The cost of the choice of the optimal number of
neighbors is roughly equal to the cost of the first step of
the forward search multiplied by K, the number of folds in
the cross-validation scheme used in the proposed method.
In practice, K is chosen between 20 and 30. If the expected
number of optimal features has the same order of
magnitude, the total cost of the forward procedure will
also be of the same order of magnitude than the cost of the
cross-validation, which means that the overall cost is
roughly doubled. However, this is much less than if the
number of neighbors was optimized using the perfor-
mances of the prediction model, as this would imply
performing as many forward searches as the number of
values that are tested.

The total cost of the automatic determination of the
parameters, in the case of high-dimensional data, is thus a
bit more than the double of the cost when the number of
neighbors is chosen arbitrarily and the mutual information
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is maximized. This additional cost brings in better and
more stable results, as shown in the next section.

5. Experiments

This section presents further experiments on the
synthetic example and on three real-world data sets.

5.1. A simulation study

To further validate the interest of the proposed
approach, the forward procedure is applied to 100 data
sets randomly generated from Eq. (4). For each data set,
the optimal value of k is selected between 1 and 20, then the
forward procedure is conducted. The feature set that
maximizes the mutual information and the best feature set
according to the stopping criterion presented in the
previous section are retained for comparison. Results are
summarized in Tables 1-3.

It appears clearly from Table 1 that maximizing the
mutual information does not provide good results: this
leads to the selection of an optimal set of features (five
variables) only in one case out of one hundred. The
stopping criterion defined in Section 4.2 tends to select
more features: in fact, the feature sets obtained by this
methods have strictly more features that the ones selected
by maximizing the mutual information in 84% of the cases
(and equal sizes in other situations).

Moreover, the additional features are generally informa-
tive ones, as illustrated in Table 2. The positive aspect of
maximizing the mutual information is that it leads, on
those experiments, only to the selection of relevant
features. The stopping criterion proposed in Section
4.2 selects sometimes irrelevant features (see Table 3), but
it also selects always at least as much relevant features as
the former method. Moreover, in 79% of the experiments,
it selects strictly more relevant features than the maximiz-
ing strategy. In 5% of the experiments, the feature set
selected by the significance stopping criterion consists in
the set that maximizes the mutual information with an
additional uninformative variable: this corresponds to the
error level expected as the forward procedure was
controlled by using the 95% percentile of the permutation
distribution.

This simulation study shows that while the proposed
stopping criterion is not perfect, it provides significant
improvements over the standard practice of maximizing the
mutual information. Moreover, it does not lead to the

Table 1
Number of feature subsets of a given size obtained by both criteria

Number of features 1 2 3 4 5 6
Maximal mutual information 7 45 33 14 1 0
Stopping criterion 0 1 12 52 29 6

Table 2
Number of feature subsets that contain the specified number of relevant
features obtained by both criteria

Number of informative features 1 2 3 4 5
Maximal mutual information 7 45 33 14 1
Stopping criterion 0 1 16 66 17
Table 3

Number of feature subsets that contain the specified number of irrelevant
features obtained by the stopping criterion of Section 4.2

Number of uninformative features 0 1 2

Stopping criterion 75 22 3

selection of too large feature sets that would reduce its
practical benefit. The utility of the method is further
illustrated below on a well-known data set from the UCI
Machine Learning Repository (Housing), on a high-
dimensional nitrogen spectra data and on a high-dimen-
sional data set from the Delve repository.

5.2. The Housing data set

The goal with the Housing data set is to predict the value
of houses (in k$) described by 13 attributes representing
demographic statistics of the area around each house. The
data set contains 506 instances split into 338 learning
examples and 169 test ones.

The optimal value (on the learning set) of k, searched
between 1 and 20, is found to be 18.

The forward search procedure described in the previous
section is run with 50 permutations on the learning
examples. The threshold P-value is set to 0.05. When the
mutual information is below the 95% percentile of the
permutation distribution, the procedure is halted.

Fig. 6 displays the mutual information as a function of
the forward search iterations. The horizontal lines
correspond to the critical values (i.e. the 95% perce-
ntile of the permutation distribution) while the circles
represent the mutual information between the selected
subset and the value to predict. Four features are
selected (X, X3, X1 and X4). Interestingly, the procedure
does not stop when the peak in mutual information is
observed.

A RBFN model was built using the selected features and
optimized by 5-fold cross-validation on the learning set,
according to the method described in [4]. The root mean
squared error (RMSE) on the test set is 9.48. By
comparison, the RMSE on the test set with all the set of
features is 18.97, while the RMSE with the first two
features, corresponding to the peak in mutual information,
is 19.39.
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Fig. 6. The evolution of the mutual information in a forward feature
subset search on the Boston Housing data set. Thresholds (horizontal
lines) are computed as the 95% percentile of the permutation distribution;
the actual values of the mutual information are represented with circles.
The procedure stops after four features have been selected (dashed line).

5.3. The nitrogen data set

The nitrogen data set originates from a software contest
organized at the International Diffuse Reflectance Con-
ference' held in 1998 in Chambersburg, Pennsylvania,
USA. It consists of scans and chemistry gathered from
Fescue grass (Festuca elatior). The data set contains 141
spectra discretized to 1050 different wavelengths, from 400
to 2498 nm. The goal is to determine the nitrogen content
of the grass samples (ranging from 0.8 to 1.7 approxi-
mately). The data can be obtained from the Analytical
Spectroscopy Research Group of the University of
Kentucky.?

The data set is split into a test set containing 36 spectra
and a training set with the remaining 105 spectra. We apply
moreover a functional preprocessing, as proposed in [29]:
this consists in replacing each spectrum by its coordinates
on a B-spline basis, which is itself selected by minimizing a
leave-one-out criterion (see [29] for details). The purpose of
this functional preprocessing is to reduce the huge number
of original features (1050) to a more reasonable number:
the optimal B-spline basis consists indeed in 166 B-splines
of order four.

Fig. 7 illustrates the behavior of the forward feature
selection with resampling on this data set. The optimal
number of neighbors is 12. It leads to the selection of 25
variables (among the 166 B-spline coordinates). The
RMSE on the test set, using a RBFN model built on those
features, is 0.6649.

Maximizing the mutual information leads to a smaller
feature set with six features. The RMSE on the test, using a

"http://www.idrc-chambersburg.org/index.htm
2http://kerouac.pharm.uky.edu/asrg/cnirs/shoot_out_1998/
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Fig. 7. The evolution of the mutual information in a forward feature
subset search on the nitrogen data set. Thresholds (horizontal lines) are
computed as the 95% percentile of the permutation distribution; the
actual values of the mutual information are represented with circles.
Twenty-five features are selected.

RBFN model built on those features, is 0.7753. As a
reference, the RMSE on the test set when all features are
used is 3.1197.

5.4. The Delve Census data set

The Delve Census data set, available directly from the
University of Toronto,” comprises data collected during
the 1990 US Census. Each of 22,784 the data elements
concerns a small survey region and is described by 139
features measuring demographic information like the total
person count in the region, the proportion of males, the
percentage of people aged between 25 and 64, etc. The aim
is to predict the median price of the houses in each survey
region. This problem can be considered as a large scale
version of the Housing data set.

For the sake of this analysis, we used only 104 of the 139
original features. We indeed discarded the features that are
too much correlated with the value to predict like the
average price, the first and third percentiles, etc. In the data
set, 52 regions were found to have a median house price of
zero; they were considered to be erroneous and removed
from the analysis.*

Of the 22,732 remaining observations, 14,540 are used
for the test set. The 8192 remaining observations are split
into eight subsets and used for training. This corresponds
to the classical splitting for this data set; it allows one to
study the variability of the feature selection procedure
while retaining enough data both for learning and testing.
For each observation subset, the optimal feature subset is

3http://www.cs.toronto.edu/~ delve/data/census-house/desc.html
“The preprocessed data can be downloaded from the UCL Machine
Learning Group website: http://www.ucl.ac.be/mlg
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determined using the proposed approach and a RBFN
model is built using a 3-fold cross-validation procedure.
The RBFN model is then applied on the test set and the
results are compared with those obtained using the peak in
mutual information and using all features.

Fig. 8 displays the evolution of the mutual information
and of the thresholds found by permutation over each
iteration of the forward search procedure. Fig. 8 shows the
results of the first of the eight learning sets. The number of
selected features is eight, while the maximum of mutual
information is observed for six features.

Table 4 shows the RMSE of the model on the test set, for
each learning subset. The permutation approach always
selects either 8 or 9 features, while stopping the forward
procedure at the peak of mutual information gives from 2
to 6 features. Except for subset number 2, the results
obtained with the permutation are either equivalent or far
better than those obtained with features selected by taking
the peak of mutual information.
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Fig. 8. The evolution of the mutual information in a forward feature
subset search on the first subset of the Delve data set. Thresholds
(horizontal lines) are computed as the 95% percentile of the permutation
distribution; the actual values of the mutual information are represented
with circles. Eight features are selected.

Table 4

5.5. Discussion

The three real-world examples illustrate the gain in
prediction performances that can be obtained when using a
well-chosen subset of features. Simulations show the
significant improvements obtained when using the pro-
posed method for selecting the subset, rather than using as
traditionally the peak of the mutual information, or the full
set of features.

It appears therefore that the proposed strategy allows
the automatic selection of good subsets of the original
feature set. Moreover, it could easily be combined with a
simple wrapper approach that compares the feature set that
maximizes the mutual information with the one obtained
by the proposed method. This would further increase the
robustness of the feature selection process without leading
to the enormous computation time that would be required
by a full wrapper forward selection process.

6. Conclusions

Combining the use of the mutual information and a
forward procedure is a good option for feature selection. It
is indeed faster than a wrapper approach (that uses the
prediction model itself for all evaluations) and still make
very few assumptions about the data as it is nonlinear and
nonparametric. The major drawback of this approach is
that the estimation of the mutual information is often
difficult in high-dimensional spaces, i.e. when several
features have already been selected.

Nearest neighbor-based mutual information estimators
are one of the few sustainable options for such estimation.
However, two issues must be addressed. The first one is the
choice of the parameter of the estimator, namely the
number of neighbors. This number must be chosen
carefully, especially with high-dimensional subsets. The
second one is the number of features to select, or,
equivalently, when to halt the forward procedure.

These two parameters of the approach could be
optimized with respect to the performances of the
prediction model, but this would require a large amount
of computations. Rather, resampling methods can be used.

Root mean square error on the test set obtained by the RBFN built on each learning subset

Subset number Using permutations

Using the peak All features

# Features Test RMSE (x10%) # Features Test RMSE (x10%) Test RMSE (x10%)

1 8 1.3286 6 1.3223 1.4304
2 9 1.0748 6 0.9472 1.5393
3 8 1.2883 3 2.5643 1.4338
4 8 1.2214 2 2.3125 1.419

5 9 1.2575 3 1.1799 1.4628
6 8 0.9504 5 2.363 1.4146
7 8 1.1987 2 2.2381 2.1855
8 9 1.1929 3 L.19 1.5314
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In this paper, the K-fold and permutation resamplings
are used in a combined way to obtain an estimate of the
variance of the estimator both in the case of relevant
features and of independent ones. The optimal number of
neighbors is then chosen so as to maximize the separation
between the two cases.

Once the number of neighbors is chosen, the forward
procedure may begin. It is halted when the added feature
does not significantly increase the mutual information
compared with the estimation of the mutual information if
the same feature was independent from the value to
predict. This is done using the permutation test.

Combining the forward feature selection procedure, the
mutual information to estimate the relevance of the input
subsets and resampling methods to estimate the reliability
of the estimation thus brings a feature selection methodol-
ogy that is faster than a wrapper approach and only
requires the user to choose a significance level; all other
parameters are set in an automated way.

The method is illustrated on a synthetic data set, as well
as on three real-world examples. The method is shown to
perform better than choosing the peak in mutual informa-
tion. The test error of a RBFN built with the features
selected by the method is always much lower than if the
whole set of features is used and significantly lower than if
the features up to the peak in mutual information are used.

Although the procedure described here uses a forward
feature selection, it could be used as well with other
incremental search methods like backward feature elimina-
tion, or add-r remove-s methods that remove and/or add
several features at each step. Adaptive methods could be
used also to detect when performing more permutations is
not necessary (for instance the variance in the permuted
data gets to a stable value). Furthermore, this paper
focusses on mutual information because it has been shown
to be well adapted to forward feature selection, but the
methodology could be applied to quadratic mutual
information [19] or to the Gamma test [33] as well.
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