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Abstract

Delay selection for time series phase space reconstruction may be performed using a mutual information (MI) criterion. However, the

delay selection is in that case limited to the estimation of a single delay using MI between two variables only. A high-dimensional

estimator of the MI may be used to select more than one delay between more than two variables but this approach is rather time

consuming. In this paper, an alternative fast criterion is proposed to optimize all delays for a high-dimensional phase space

reconstruction: the distance-to-diagonal (DD) criterion, based on a geometrical heuristic. The use of the distance to diagonal criterion is

illustrated and compared to MI on artificial and benchmark time series.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time series are encountered in many fields of applica-
tion. In some situations the application goal consists in
forecasting future values; in other ones, extracting a model
of the series without forecasting goal is searched. In both
cases, a preliminary analysis of the time series may provide
useful information for the design of the forecasting or
regression model. Many techniques have been developed in
physics, statistics, mathematics and econometrics in order
to characterize a series as periodic (or not), stationary (or
not), chaotic (or deterministic), homoscedastic (or hetero-
scedastic), etc. Analysing a time series also gives other
useful information as the presence and the amount of
noise, the intrinsic dimension of the series and the delay
between successive values that are best inserted as inputs to
the model. The last two characteristics can greatly influence
the quality of the model under design.
e front matter r 2007 Elsevier B.V. All rights reserved.
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The dimension and the delay are mandatory information
for the phase space reconstruction, or embedding [17], of a
series. Knowing or estimating these two values allows the
construction of state vectors. The state vectors, also called
the regressors, contain all the information available about
the state of the process at a given time. They are also
considered as the vectors that provide the most useful
information in order to forecast the next state of the
process. Since the publication of theoretical results about
the dimension needed to reconstruct the structure of a
series through an embedding in its phase space [22,17]
many methods have been developed for estimating this
dimension: correlation dimension [9], false neighbours [12],
Box–Couting [17], minimum dimension [5], etc. Concern-
ing the selection of the delay common approaches are the
use of the autocorrelation of the series, or the mutual
information (MI) [8]. The goal is to select variables as
regressor components that are as uncorrelated or indepen-
dent as possible. Consequently each variable in the
regressor will provide useful information not provided by
the other variables. Wrapper methods, i.e. methods using
the outputs of e.g. a prediction model, can also be
used to select regressor components; nevertheless, wrapper
methods are supervised, and usually result in a huge
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computational load when nonlinear models are used. In
this paper, we are interested in unsupervised methods that
do not make use of a prediction model; phase state
reconstruction is the goal, for which no supervision is
available. In addition, we concentrate on nonlinear
approaches: in [8], it was shown that the MI is superior
to other filter methods like the autocorrelation, as further
confirmed e.g. in [1,14]. This paper focuses on filter
approaches that do not make any assumption (for example
linearity) about a data model.

The correlation is a linear measure of dependency. It is
adapted when a linear model is built, but does not provide
the required information in a nonlinear context. The MI is
a non-parametric measure of dependency between vari-
ables, able to detect any relation, whether the latter is linear
or not. Though MI is a criterion commonly used for delay
selection it suffers from two limitations in that context. The
first one is that MI is usually computed between two
variables only: it detects the relations between two
regressor values, but fails in that context to provide the
information about high-dimensional relationships between
all regressor values. The second limitation arises from the
fact that a unique delay is selected. The regressors are then
constructed using variables that are equally distributed in
time (at multiples of the chosen delay). This approach
artificially constrains the regressors: the delay is selected
according to two-dimensional information while the
regressors themselves can be multi-dimensional.

A more general approach would be to select different
delays for the various variables taken into account in the
regressors. The selection of these delays should ideally be
performed in a space which has the same dimensionality as
the regressors. A first attempt to solve this more general
problem is to use a high-dimensional MI estimator, as the
one provided recently in [13]. This specific MI estimator
has already been used in some previous works. In
[21,20,10,16] it is used for feature selection in a supervised
context where the model output is taken into account. In
[18] it is used to observe the effect of the dimension on the
delay selection, using a unique delay in an unsupervised
context. The high-dimensional MI estimator is used in this
paper as a generalization of the unsupervised two-dimen-
sional case. However, one of the main limitations of this
estimator is its computation time in OðN2Þ, where N is the
number of values in the series. As the number of possible
combinations of variables in a regressor increases expo-
nentially with the regressor size, testing all the possibilities
with an algorithm in OðN2Þ becomes rapidly unfeasible in
practice.

In this paper, an alternative to the unsupervised
approach based on high-dimensional MI is also proposed
for delay and multiple delay selection: the distance-to-
diagonal criterion (DD for short). The DD criterion is a
geometrical heuristic based on the regressor distribution in
the state space: the DD criterion measures the portion of
the space filled by the regressor distribution. The DD
criterion is justified in a geometrical way: it is shown that if
the regressor distribution does not fill a large portion of the
state space, it means that their components are highly
correlated, therefore that their global information content
is low. Maximizing the portion of the space filled by the
regressor distribution is thus a way to maximize the
information content of the regressors, before using the
latter e.g. in a prediction model. It will be shown that the
MI and DD criterion provide qualitatively the same
information, with an obvious advantage to the DD
criterion in terms of computation load, making the
selection of delays in high-dimensional regressors feasible
in practice.
In addition, to its use to the selection of a single delay in

high-dimensional regressors, it is also shown that the DD
criterion may be used for multiple delay selection. Finally,
it is shown that all these properties are obtained within an
algorithm with a computation time in Oðp �NÞ where p is
the regressor size. These properties will be illustrated on
artificial and benchmark time series.
This paper is organized as follows. Section 2 explains the

regressor reconstruction in a phase space in relation with
the embedding theory. Section 3 recalls the approach of
delay selection using MI in the usual two-dimensional
unsupervised case. Then, the general framework of multi-
ple delay selection using high-dimensional MI is intro-
duced. The high-dimensional MI estimator used for this
unsupervised multiple delay selection is briefly explained.
Section 4 then introduces the DD criterion and compares it
to the high-dimensional MI. Section 5 presents the time
series, the regression model, the methodology and the
experimental results. Section 6 concludes this paper and
discusses future developments of the proposed method.

2. Embedding, phase space reconstruction and regression

A time series S is a series of scalar values xðtÞ, 1ptpN,
measured at a (usually) constant sampling rate from a time
varying process. The temporal data xðtÞ are ordered
according to the time index.
From a theoretical point of view the embedding [17] of a

time series S is a one-to-one relation between the original
(temporal) structure of the time series and the reconstruc-
tion of the structure in a phase space. Theoretical results
ensure the existence of this one-to-one relation provided
that the dimension of the reconstruction space is strictly
larger than two times the intrinsic dimension of the original
series [22,17]. Note that in this paper the term structure of a
time series is preferred to attractor as the latter is more
specifically related to chaotic systems; in practice, although
all systems are not chaotic, they all show a characteristic
structure once reconstructed in their phase space.
As mentioned in the introduction, many methods designed

for estimating the dimension of the original structure have
been proposed in the literature: correlation dimension [9],
false neighbours [12], Box–Couting [17], minimum dimension
[5], etc. The estimation of the dimension of the structure is a
necessary step for determining the dimension of the phase
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space or embedding space [17]. The estimation of the
structure dimension is not considered in this paper; in the
experimental section several possible dimensions will be
considered for each time series.

In practice, the embedding of a time series is achieved by
reconstructing the series in its phase space. So-called
delayed vectors in the phase space are defined as

xt ¼ fxðtÞ;xðt� tÞ;xðt� 2 � tÞ; . . . ;xðt� ðpþ 1Þ � tÞg, (1)

where t is the delay and p is the dimension of the
reconstructed phase space. Consequently a forecasting or
regression model f of a time series S can be built on these
delayed vectors as:

x̂ðtþ 1Þ ¼ f ðxðtÞ; xðt� tÞ;xðt� 2 � tÞ; . . . ; xðt� ðpþ 1Þ � tÞÞ.

(2)

Note that model f can be either linear, as simple ARX
models, or nonlinear, as neural networks for example.
Obviously the vectors of model inputs needed for the
regression in Eq. (2), called the regressors, correspond in
fact to the state vectors. In the remaining of this paper, the
terms regressors, state vectors and delayed vectors will be
used indifferently.

Once the dimension p of the regressors is known or
estimated for instance through the intrinsic dimension
estimators listed above, the value t of the delay has to be
estimated. This can be performed in an unsupervised way
using MI as described in Section 3.

It should be noted that according to Taken’s theorem
[22], only the dimension of the regressors is important to
reconstruct them in the phase space. Therefore, in theory, a
delay value of one could be adopted in all situations.
However, a theoretical delay of one may be too restrictive
for some practical aspects of time series analysis and
forecasting. In practice, time series values (therefore
regressors) are sampled using an a priori chosen frequency.
Furthermore, they are often noisy and their number is
limited by the finite size of the series. Therefore, one has to
face the problem of using as much information as possible
contained in a limited number of regressors (whose size has
been fixed in advance). It is then obvious that any
methodology able to extract the highest content of
information in these vectors is desirable. An example of
such methodology is to select an adequate delay value in
order to maximize the information content in the
regressors [8]. But this approach is limited to the case of
two-dimensional regressors. More general methodologies
suited for high-dimensional regressors are presented in this
paper in Sections 3.2 and 4.

3. Unsupervised delay selection using MI

In this section the common unsupervised two-dimen-
sional approach for single delay selection is first recalled.
The methodology, first described in [8], is based on the MI
between two variables. Then, the methodology is general-
ized in the framework of multiple delay selection in high-
dimensional space. This methodological generalization is
based on a k-nearest neighbours (k-NNs) based high-
dimensional MI estimator proposed recently [13]. The MI
estimator is briefly described and its use for unsupervised
multiple delay selection is introduced.
3.1. Single delay selection using two-dimensional MI

The goal of delay selection using the MI criterion is to
select variables xðt� i � tÞ, with 0pipp� 1, that are as
independent as possible for the regressor reconstruction.
The traditional two-dimensional approach consists in
selecting a delay t such that the MI between variable xðtÞ

and the delayed variable xðt� tÞ is minimum. As several
local minima may be found, the delay corresponding to the
first local minimum is usually considered. This approach is
similar to its linear counterpart where the delay t is usually
selected as the first minimum of the autocorrelation
function. However, the delay selection using MI has been
proved to be more efficient than using the autocorrelation
function [8]. Indeed, the delay selected by MI is smaller
than the one obtained using the autocorrelation. This last
property leads to regressors that are more compact in time,
providing more information content for a subsequent
prediction. In the following of this paper the MI will be
used as criterion to select the delay t.
The MI between two variables X 1 and X 2 can be defined

as [6]

MIðX 1;X 2Þ ¼

Z
P½X 1;X 2� log

P½X 1;X 2�

P½X 1�P½X 2�

� �
dX 1 dX 2,

(3)

where P½:� denotes the probability. This criterion is a
nonlinear measure of how much information on X 1 can be
deduced from the knowledge of X 2 and vice versa. In the
context of regressor reconstruction, variables X 1 and X 2

are xðtÞ and xðt� tÞ, respectively. In practice, the MI is
computed for several delays t. The graph of the MI versus
the delay is then plotted and the delay corresponding to the
first minimum is selected. Fig. 1 shows the use of the MI on
a time series obtained from the Lorenz equations [11,1], in
the p ¼ 2 case. The left part shows the MI with respect to
the lag t. According to this plot, t ¼ 11 is chosen. The
reconstructed two-dimensional phase space is shown on the
right of Fig. 1.
The main limitation of this approach is that the MI is

computed between two variables xðtÞ and xðt� tÞ only.
This fact leads to constrained regressors in Eq. (1); indeed,
in the case of multi-dimensional regressors, variables
xðt� 2 � tÞ, xðt� 3 � tÞ, y, etc. will be automatically
selected, without care of the information content added
by these variables to the information already contained in
xðtÞ and xðt� tÞ. Two more interesting paths could be
followed: either to evaluate the information contained as a
whole by all variables in (1), or to allow more freedom by
removing the constraint that delays are multiple one from
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Fig. 1. Left: MI for the Lorenz time series. Right: reconstructed two-dimensional phase space (the selected lag is t ¼ 11).
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another

xt ¼ fxðt� t0Þ;xðt� t1Þ; xðt� t2Þ; . . . ;xðt� tp�1Þg. (4)

In both cases there is a need for a multi-dimensional
criterion. The high-dimensional MI estimator based on k-
NN, presented in Section 3.2, may be used for this purpose.
An alternative is the DD criterion introduced in Section 4.
After presenting these two criteria it is shown that the DD
one is an advantageous alternative to the high-dimensional
MI in a regressor reconstruction context.

3.2. Multiple delay selection using high-dimensional MI

Eq. (3) can easily be generalized to any dimension. One
can indeed define the MI for m variables X 1; . . . ;X m as

MIðX 1; . . . ;X mÞ

¼

Z
P½X 1; . . . ;X m� log

P½X 1; . . . ;X m�

P½X 1� . . .P½X m�

� �
dX 1; . . . ; dX m,

ð5Þ

where variables X 1; . . . ;X m are, respectively, xðtÞ, y,
xðt� ðp� 1Þ � tÞ, for example, in the context of regressor
reconstruction.

High-dimensional MI, as defined in Eq. (5), is however
difficult to estimate in practice; the unknown probability
densities cannot be estimated accurately in a high-dimen-
sional space. Estimating the MI in a high-dimensional
space should thus be performed using another approach.
Recently, Kraskov et al. have proposed a suitable
estimator based on k-NN [13]. This estimator has been
used in [21,20,10,16] for supervised feature selection: the
group of features that maximizes the MI with the model
desired output is selected. It has also been used in a
preliminary study in [18] for the unsupervised selection of a
single delay in high-dimensional regressors.

Shortly, the idea of the high-dimensional MI estimator is
to rely on the fact that the MI is a measure of the
discrepancy between the probability density of the joint
variables and the product of the marginal densities (see
Eq. (5)). Local densities around each vector (here
regressors) can be estimated by counting the number of
its neighbours up to a predefined distance or, conversely,
by measuring the distance to its k-NN. Marginal densities
can be estimated in the same way, provided that marginal
variables are used instead of the joined ones. A way to
estimate the MI is thus to estimate the joint density by a
k-NN technique, and relate this measure to a similar k-NN
estimation of the marginal densities. In the estimator [13],
the relation is built by estimating the distance to the k-NN
in the joint space, and counting the number of neighbours
in the marginal spaces, up to a projection in these spaces of
the previously estimated distance. If a relation exists
between the variables, the numbers of neighbours esti-
mated in this way will be related too. This reasoning is
extended to the limit of small distances. Technical details
about two variants of this principle may be found in [13],
where it is explained that the two variants behave similarly
except for different biases without consequence on the
search for minima. The first version with a smaller bias in
[13] is used in this paper. In practice, the most interesting
property of the k-NN based MI estimator is that X and Y

are not restricted to be scalar variables. As the estimator is
based on distance measures variables X and Y may be
multi-dimensional vectors. An implementation of this
method is available online [2].
The high-dimensional MI estimator can be used as

unsupervised criterion to select the delay(s). Generalizing
the two-dimensional unsupervised methodology in [8], the
delays for regressor reconstruction are selected such that
they minimize the high-dimensional MI between the
variables in (4). The variables that are selected are thus
deemed to carry, as a whole, the highest possible
information content for reconstructing the series in the
phase space.

4. Regressor reconstruction using the distance-to-diagonal

criterion

The theoretical complexity of the above detailed high-
dimensional MI estimator is OðN2Þ where N is the number
of data [13]. Indeed the operation with the highest
computational cost is the computation of all distances in
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order to find the nearest neighbours. Implementations
more efficient than OðN2Þ may be used (see for example
[13]); even in this case though, the estimation remains
costly, especially in a feature selection context when many
estimations of the MI for different sets of variables have to
be performed. Furthermore, the MI estimator in [13]
remains an estimator, loosing its accuracy when the
dimension p of the regressors increases. A much simpler
and faster criterion can be found to perform regressor
reconstruction with comparable results but reduced com-
putational cost. This criterion is DD.

As a reminder concerning the motivation of this work,
the sampling frequency of a time series has a large impact
on the information contained in the regressors. Indeed a
too high sampling frequency leads to successive values that
are highly dependent. This fact can be seen in Fig. 2 where
two- and three-dimensional regressor distributions for a
time series obtained from the Lorenz equations [11,1] are
plotted. In both left and right figures it can be seen that the
regressor distributions are limited to a portion of the space
that is concentrated around its main diagonal. This
problem is well known; delaying the values in the
regressors by t instead of 1 is a way to decrease the
dependencies between variables in the regressor. As
dependencies are decreased, it is reasonable to think that
the information content in the regressor is increased (for a
fixed regressor dimension). Delaying the variables in order
to avoid the concentration of the regressors around the
main diagonal is the geometrical concept at the basis of the
DD heuristic detailed below.

Intuitively, maximizing the information content of a
regressor should lead to a regressor that is far from the
main diagonal of the phase space. Indeed, for regressors
lying on or near the diagonal, it would mean that the
regressor components are highly correlated, therefore that
their global information content is low. Considering now
all regressors in the phase space, their distribution should
occupy the largest possible region and not be concentrated
around the diagonal as illustrated in Fig. 2. In practice,
measuring the part of the space filled by the regressor
distribution can be performed by measuring how far each
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Fig. 2. Left: two-dimensional regressor distribution for the Lorenz time series.

In both cases, a delay t ¼ 1 has been used.
regressor is from the main diagonal of the phase space. The
DD criterion is then the sum of all the distances between
the regressors and the main diagonal.
More formally, for a time series S, the p-dimensional xt

regressors are constructed using either Eq. (1) or (4). Then,
the sum of distances DðSÞ of the regressors to the main
diagonal of the state space, i.e. to a line defined by the p-
dimensional origin ð0; 0; . . . ; 0Þ and the unit vector
ð1; 1; . . . ; 1Þ ¼ 1T, is given by:

DðSÞ ¼
XN�pþ1

t¼1

kxtk
2 � ððxtÞ

T
� 1Þ2. (6)

In this equation, each term simply measures the difference
between the norm of xt and the norm of the projection of xt

on the line passing through the unit vector 1.
The DD criterion is illustrated in Fig. 3 in the two-

dimensional case. The left figure presents the DðSÞ values
for the two-dimensional regressor distributions obtained
using several delays t. An adequate delay corresponds to a
maximum in this graph. The value selected for the
regressor reconstruction in the right figure is t ¼ 31. This
value is the first local maximum of the DD criterion.
Indeed, reaching the global maximum of the graph should
not be considered as a unique goal. If two maxima are
close, it is suggested to select the first one, corresponding to
the lowest value of the delay. Too large delays could indeed
lead to regressors that are useless e.g. when a further goal is
to use the regressors in a time series prediction context: the
advantage given by a small increase of the DD criterion
could be largely balanced by the fact that values further
away in time would be used for the prediction. Therefore, a
good practice is to select local maxima or smaller lags in a
plateau (for example a delay between t ¼ 22 and t ¼ 30
could have been selected).
The main advantage of the proposed DD criterion is its

ability to select directly multiple delays for the regressor
reconstruction. Furthermore, regressors may be con-
structed using either a single delay as in Eq. (1) or multiple
delays as in Eq. (4).
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Right: three-dimensional regressor distribution for the Lorenz time series.
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In comparison to the high-dimensional MI estimator, the
DD criterion has a reduced computational complexity.
Indeed the computation of the distance of a point to a line
is of order OðpÞ with p the space dimension. As this
operation is repeated N � pþ 1 times for the regressors
obtained from a time series S of N values, the theoretical
complexity is strictly bounded by Oðp �NÞ. Furthermore,
as p increases, there are more and more components in the
regressors. As a consequence, there are more and more
possible combinations of past values to construct regres-
sors. All these combinations have to be considered, for the
DD criterion as well as for any other one, in order to select
the regressor with delay(s) that reconstruct adequately the
time series structure. A reduced computation time of the
criterion corresponding to a single combination is thus
even more advantageous as the number of possible
regressors increases dramatically while the regressor size
grows large.

As a summary, the selection of optimal delays in time
series regressors may be performed in two ways. First, the
traditional two-dimensional MI criterion may be extended
to high-dimensional regressors, thanks to recently pub-
lished estimators. The computational complexity of this
approach is in OðN2Þ; even if this complexity may be
reduced by efficient neighbour search algorithms, the
computational load remains high; furthermore, the MI
estimator may loose its accuracy when the dimension of the
regressors increases. The other approach is the use of the
DD criterion, a geometrical heuristic introduced in this
paper, which has a reduced computation time in Oðp �NÞ.
As it will be illustrated in Section 5.3 on artificial and
benchmark time series, the regressors reconstructed using
the DD criterion are comparable to those obtained using
high-dimensional MI.

5. Experimental results

In this section, both the high-dimensional MI and the
DD criteria are used to select multiple delays for regressor
reconstruction. In addition, to prove empirically the
adequateness of the DD criterion in this context with
respect to the MI approach, radial basis function networks
(RBFN [4]) are used to forecast several times series. The
aim is to show that, although the regressors obtained using
the DD criterion are not exactly identical to the ones
obtained using high-dimensional MI, the RBFN models
built using the regressors selected by both criteria lead to
comparable prediction errors. The regressors obtained
using the DD criterion are therefore as useful for
prediction as those obtained using the high-dimensional
MI criterion in terms of information content, with the
advantage of being obtained with a reduced computational
cost.

5.1. The time series

In all experiments artificial and benchmark time series
have been used. Here is a brief description of these series:
�
 Autoregressive model, AR(3):

xðtÞ ¼ a1 � xðt� 1Þ þ a2 � xðt� 2Þ

þ a3 � xðt� 3Þ þ eðtÞ. ð7Þ

2500 data have been generated; the first 500 data have
been discarded to remove any bias due to initial
conditions. The values of the ai coefficients are
a1 ¼ 0:302, a2 ¼ 0:898 and a3 ¼ 0:251. et has been
generated using a normal distribution with zero mean
and 0.1 variance.

�
 Artificial:

xðtÞ ¼ sinðxðt� 1ÞÞ þ 2 � xðt� 4Þ

� 4 � xðt� 8Þ þ eðtÞ. ð8Þ

As above, et has been generated using a normal
distribution with zero mean and 0.1 variance.

�
 Lorenz system [11,1]:

_xðtÞ ¼ 10ðyðtÞ � xðtÞÞ,

_yðtÞ ¼ 28xðtÞ � yðtÞ � xðtÞ � zðtÞ,

_zðtÞ ¼ xðtÞ � yðtÞ � 8
3

zðtÞ. (9)

4000 data have been generated using an integration step
of 0.015. The first 2000 data have been discarded to
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remove any transient state and let the trajectory fall to
the attractor.

�
 The Santa Fe A time series [23] was proposed in the

Santa Fe time series prediction and analysis competition
in 1991. The data were collected from a Far-Infrared-
Laser in a chaotic state. The data set proposed for the
competition, with 1000 data, has been used here.

5.2. The RBFN as regression model

RBFN [4] are used here as a regression model in order to
forecast the time series. Details concerning the learning of
the RBFN model can be found in [15,3]. In this work, the
centers of the Gaussian kernels have been determined by a
vector quantization algorithm. The width of the kernels is
the width of the clusters (obtained by the vector quantiza-
tion algorithm) multiplied by a common Width Scaling
Factor optimized on the learning set. The weights of the
kernels are determined by solving a system of linear
equation.

The model accuracy in one-step-ahead prediction is
evaluated using the usual generalization error Egen defined as

Egen ¼ lim
M�41

PM
i¼1ðxðtþ 1Þ � x̂ðtþ 1ÞÞ2

M
, (10)

where M is the size of the test set.
In order to select the best model for a given time series, a

model selection strategy has been used to optimize the
number of Gaussian kernels used in the RBFN models.
The model selection strategy used here is the Bootstrap [7].
This procedure gives an estimation of the generalization
error Egen using a data set of finite size M. In all the
experiments below, the estimate of the generalization error
Egen is obtained as the mean of the generalization errors
obtained on 100 bootstrap samples.

5.3. Experiments, results and comments

The section begins with the results obtained on the Santa
Fe A time series. The experiments with this time series are
detailed in depth. Such a study is aimed at discussing
practical considerations about the use of the high-dimen-
sional MI and the DD criteria. The Santa Fe A time series
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

Delay τ

M
u

tu
a

l 
In

fo
rm

a
ti
o

n

Santa Fe A time series (2D)

-2 0 2 4 6
-2
-1
0
1
2
3
4
5

x (t)

x
 (

t-
2

)

2-D regressor distribution (Santa Fe A)

. 4. From left to right: MI with respect to delay and two-dimensional regre

delay and two-dimensional regressor distribution with delay selected using
has been chosen as a first example due to the illustrative
power of its characteristic structure.
The two-dimensional case is first illustrated. The left plot

in Fig. 4 presents the MI between xðtÞ and the delayed
variable xðt� tÞ. The two-dimensional regressor distribu-
tion with t ¼ 2 is also shown in Fig. 4. This approach
corresponds to the two-dimensional methodology as in [8]
where the first local minimum is selected as delay. The
results obtained using the DD are presented in the two
right parts of Fig. 4. Here, the selected delay corresponds
to the first local maximum of the DD. It can be noticed
that the selected delays are very close (respectively, t ¼ 2
and t ¼ 3) although the regressor distributions slightly
differ.
For the three-dimensional case, the results are presented

in Figs. 5 and 6. In Fig. 5, the three-dimensional MI is
plotted for the various regressors. The regressors are
ordered according to the variables they contain: the left
figure presents the MI for regressors ðxðtÞ;xðt� 1Þ;
xðt� 2ÞÞ; ðxðtÞ;xðt� 1Þ;xðt� 3ÞÞ; ðxðtÞ; xðt� 1Þ;xðt�
4ÞÞ; . . . ; ðxðtÞ; xðt� 2Þ;xðt� 3ÞÞ; ðxðtÞ;xðt� 2Þ; xðt� 4ÞÞ;
etc. All the regressors containing three delayed variables
with delay t 2 ½1; 50� have been tested. A zoom of the MI
for the 200 first regressors is provided. The same has been
done using the DD criterion in the two last plots of Fig. 5.
For the MI criterion, the plot reflects the contents of the
regressors: all regressors containing xðtÞ and xðt� 1Þ are in
the first peak; all regressors containing xðtÞ and xðt� 2Þ are
in the second one, and so one. In each peak, the first local
minimum has been selected, leading to the regressors in
Table 1. In the same table, the four regressors with the
largest values of DD have also been reported. Many
similarities can be observed in this table. The regressor
distributions obtained using the best combination of
delays, for each criterion, have been plotted in Fig. 6.
For comparison purposes, the regressor distribution
obtained using the methodology of [8] is also presented in
the left part. It can be noticed that the regressor
distributions are very similar. In the following, we only
consider high-dimensional MI and DD criteria.
In higher dimensions, the figures obtained using the

high-dimensional MI and DD criteria are comparable to
the ones obtained in three-dimensions and presented in
Fig. 6. The only difference is that there are many more
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Fig. 5. From left to right: three-dimensional MI for various regressors and a zoom of the MI values for the first 200 regressors; three-dimensional DD for

various regressors and a zoom of the DD values for the first 200 regressors. See text for details.
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Fig. 6. Three-dimensional regressor distributions reconstructed using, from left to right, the two-dimensional MI with multiple of the selected delay, the

high-dimensional MI and the DD criteria, respectively.

Table 1

Four best regressors obtained using the high-dimensional MI and the DD

criteria

Pos. High-dimensional MI Distance-to-diagonal

1. ðxðtÞ; xðt� 2Þ; xðt� 6ÞÞ ðxðtÞ; xðt� 2Þ; xðt� 5ÞÞ

2. ðxðtÞ; xðt� 3Þ; xðt� 9ÞÞ ðxðtÞ; xðt� 3Þ; xðt� 5ÞÞ

3. ðxðtÞ; xðt� 4Þ; xðt� 10ÞÞ ðxðtÞ; xðt� 4Þ; xðt� 9ÞÞ

4. ðxðtÞ; xðt� 1Þ; xðt� 5ÞÞ ðxðtÞ; xðt� 1Þ; xðt� 4ÞÞ
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possible combinations for the regressor contents, as it can
be seen from Fig. 7 where high-dimensional MI and DD
for a few thousands of regressor contents are provided.
Analysing these figures in dimensions 4–6 lead to the
selection of the optimal regressor contents according to
each criterion. These regressors are given in Table 2. It can
be observed from Table 2 that the variables chosen by the
criteria for the regressor reconstruction are very similar. In
this example, it can be noted that the regressors obtained
using the DD criterion are always more compact in time
than the ones obtained with the high-dimensional MI (the
only exception is the two-dimensional case).

Using the best regressors as in Table 2 prediction
experiments can be performed with a one-step-ahead goal.
The RBFN model complexity, corresponding to the
number of Gaussian kernels in the model, has been
optimized using a fast-Bootstrap strategy. The plots of
the estimations of the generalization error obtained using
the best regressor for each criterion are provided in Fig. 8
with, from left to right, top to down, two- to six-
dimensional regressors, respectively. Table 3 summarizes
the results obtained for the best models in each experiment.
Each line summarizes the model complexity and the
corresponding estimate of the generalization error obtained
with the Fast-Bootstrap. The model structures differ
slightly, a fact obviously expected as the variables in the
regressors are not exactly the same. However, in terms
of generalization error, the high-dimensional MI and
the DD criteria perform equivalently in one-step-ahead
prediction.
Note that, as mentioned earlier, there are more and more

possible combinations to construct regressors as the
regressor size p increases. This fact can be seen from Figs.
4, 5 and 7. As an extensive search has to be performed
through all possible regressor combinations, for all
criterions, it is obvious that reasonable values of p have
to be considered.
The same methodology has been applied to the three

other time series. Tables 4–6 summarizes the best regressors
obtained for each time series, using the various criteria.
The results presented here are limited to dimensions two to
four. For the three times series it can be noticed once again
that the regressors reconstructed using both criteria are
similar. The one-step-ahead prediction has also been
performed for these series with the best regressors
presented in Tables 4–6. As for the Santa Fe A time series,
the estimates of the generalization error are summarized in
Tables 7–9 for the AR(3), artificial and Lorenz time series,
respectively. Note that, for the artificial time series, the
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Fig. 7. Examples of the high-dimensional MI and the DD criteria obtained with four-dimensional regressors.

Table 2

Best regressors for each criterion in two- to six-dimensional space for the Santa Fe A time series

p High-dimensional MI Distance-to-diagonal

2 ðxðtÞ; xðt� 2ÞÞ ðxðtÞ;xðt� 3ÞÞ

3 ðxðtÞ; xðt� 2Þ; xðt� 6ÞÞ ðxðtÞ;xðt� 2Þ;xðt� 5ÞÞ

4 ðxðtÞ; xðt� 3Þ; xðt� 5Þ; xðt� 9ÞÞ ðxðtÞ;xðt� 2Þ;xðt� 4Þ;xðt� 6ÞÞ

5 ðxðtÞ; xðt� 1Þ; xðt� 5Þ; xðt� 6Þ;xðt� 11ÞÞ ðxðtÞ;xðt� 3Þ;xðt� 4Þ;xðt� 6Þ; xðt� 9ÞÞ

6 ðxðtÞ; xðt� 1Þ; xðt� 2Þ; xðt� 5Þ;xðt� 6Þ;xðt� 11ÞÞ ðxðtÞ;xðt� 2Þ;xðt� 4Þ;xðt� 5Þ; xðt� 6Þ; xðt� 9ÞÞ
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Fig. 8. Estimate of the generalization error using a bootstrap procedure for RBFN models with increasing number of kernels. From left to right, top to

down: two- to six-dimensional regressors. Plain lines: results obtained with the best regressors selected using high-dimensional MI; dashed lines: results

obtained with the best regressors selected using DD.
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high-dimensional MI sometimes gives negative values. This
fact does not penalize the search for a minimum as the
estimator is known to be biased, as mentioned earlier in
Section 3.2. From these last three tables, it can still be
observed that the high-dimensional MI and the DD criteria
perform equivalently: no criterion is always better than the
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other; there is sometimes an advantage for one or the other
approach depending on the used time series and the
considered dimension.

From Fig. 8 and Tables 7–9, it can be observed that the
high-dimensional MI and DD criteria lead to comparable
performances. Indeed, it can be seen that both the
generalization error estimates Egen and the numbers of
Gaussian kernels are roughly identical. Non-significant
differences are observed though, due to the fact that the
regressors obtained after applying the MI and DD criteria
are not exactly identical. The same comments can be
deduced from Tables 7–9.
Table 3

Summary of the generalization error estimates for the best RBFN models

in each dimension and for each criterion

p High-dimensional MI Distance-to-diagonal

Number of kernels Egen Number of kernels Egen

2 70 44.537 130 49.292

3 60 18.545 70 32.590

4 130 43.912 90 23.251

5 70 21.652 100 36.483

6 60 31.732 50 55.160

See text for details.

Table 4

Best regressors for each criterion in two- to four-dimensional space for the

AR(3) time series

p High-dimensional MI Distance-to-diagonal

2 ðxðtÞ; xðt� 3ÞÞ ðxðtÞ; xðt� 1ÞÞ

3 ðxðtÞ; xðt� 3Þ; xðt� 8ÞÞ ðxðtÞ; xðt� 5Þ; xðt� 8ÞÞ

4 ðxðtÞ; xðt� 1Þ; xðt� 4Þ; xðt� 9ÞÞ ðxðtÞ; xðt� 1Þ; xðt� 4Þ; xðt� 9ÞÞ

Table 6

Best regressors for each criterion in two- to four-dimensional space for the Lo

Dimension High-dimensional MI

2 ðxðtÞ;xðt� 11ÞÞ

3 ðxðtÞ;xðt� 4Þ; xðt� 15ÞÞ

4 ðxðtÞ;xðt� 6Þ; xðt� 11Þ; xðt� 20ÞÞ

Table 5

Best regressors for each criterion in two- to four-dimensional space for

the artificial time series

p High-dimensional MI Distance-to-diagonal

2 ðxðtÞ;xðt� 5ÞÞ ðxðtÞ;xðt� 3ÞÞ

3 ðxðtÞ;xðt� 1Þ;xðt� 8ÞÞ ðxðtÞ;xðt� 2Þ;xðt� 4ÞÞ

4 ðxðtÞ;xðt� 1Þ;xðt� 8Þ;xðt� 10ÞÞ ðxðtÞ;xðt� 2Þ;xðt� 3Þ;xðt� 5ÞÞ
6. Conclusions

In this paper, an extension of the usual approach of
single delay selection for regressor reconstruction using
mutual information (MI) is proposed. A high-dimensional
mutual information estimator, based on the k-nearest
neighbours (k-NN) algorithm, is used to select different
delays in higher than two-dimensional spaces.
Furthermore the Distance-to-Diagonal (DD) criterion is

introduced as an alternative to the high-dimensional
mutual information. This alternative is based on a
geometrical heuristics.
Table 7

Summary of the generalization error estimates for the best RBFN models

in each dimension and for each criterion, AR(3) time series

Dimension High-dimensional MI Distance-to-diagonal

Number of kernels Egen Number of kernels Egen

2 4 7.323 4 3.701

3 7 7.538 7 9.497

4 10 3.758 10 3.758

Table 8

Summary of the generalization error estimates for the best RBFN models

in each dimension and for each criterion, artificial time series

Dimension High-dimensional MI Distance-to-diagonal

Number of kernels Egen Number of kernels Egen

2 10 878.99 10 959.86

3 10 851.89 20 871.78

4 10 856.66 20 824.04

renz time series

Distance-to-diagonal

ðxðtÞ;xðt� 31ÞÞ

ðxðtÞ;xðt� 3Þ; xðt� 33ÞÞ

ðxðtÞ;xðt� 13Þ; xðt� 15Þ; xðt� 30ÞÞ

Table 9

Summary of the generalization error estimates for the best RBFN models

in each dimension and for each criterion, Lorenz time series

Dimension High-dimensional MI Distance-to-diagonal

Number of

kernels

Egen Number of

kernels

Egen

2 200 153.35 130 253.93

3 160 32.181 200 40.144

4 180 22.173 200 57.165
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Both criteria have been used to select delays for regressor
reconstruction. The methods have been compared in a one-
step-ahead prediction context on various artificial and
benchmark time series. It is shown that the high-dimen-
sional mutual information and the DD approaches are
comparable in the delays they select. They also lead to
comparable performances in a one-step-ahead prediction
context, with an advantageous to the DD criterion with
respect to its lighter computational cost.

Further work includes a theoretical study of the DD
criterion as well as the use of these high-dimensional
mutual information and DD criteria in a multiple step-
ahead prediction framework.
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[13] A. Kraskov, H. Stögbauer, P. Grassberger, Estimating mutual

information, Phys. Rev. E 69 (6) (2004) 066138.

[14] J.M. Nichols, J.D. Nicholsb, Attractor reconstruction for non-linear

systems: a methodological note, Math. Biosci. 171 (1) (2001) 21–32.

[15] M.J. Orr, Optimising the widths of radial basis functions, in:

Proceedings of Fifth Brazilian Symposium on Neural Networks,

Belo Horizonte, Brazil, December, 1998.

[16] N. Reyhani, J. Hao, Y. Ji, A. Lendasse, Mutual information and

gamma test for input selection, in: Proceedings of European

Symposium on Artificial Neural Networks, ESANN 2005, Bruges,

Belgium, April 26–28, 2005, pp. 503–504.
[17] T. Sauer, J. Yorke, M. Casdagli, Embeddology, J. Statist. Phys. 65

(1991) 579–616.

[18] G. Simon, M. Verleysen, Lag selection for regression models using

high-dimensional mutual information, in: Proceedings of European

Symposium on Artificial Neural Networks, ESANN 2006, Bruges,

Belgium, April 26–28, 2006, pp. 395–400.

[20] A. Sorjamaa, J. Hao, A. Lendasse, Mutual information and k-nearest

neighbors approximator for time series predictions, in: W. Duch, J.

Kacprzyk, E. Oja, S. Zadrozny (Eds.), Proceedings of International

Conference on Artificial Neural Networks, ICANN’05, Warsaw,

Poland, September 11–15, Artificial Neural Networks: Formal

Models and Their Applications, Lecture Notes in Computer Science,

vol. 3697, Springer, Berlin, 2005, pp. 553–558.

[21] A. Sorjamaa, N. Reyhani, A. Lendasse, Input and structure selection

for k-NN approximator, in: J. Cabestany, A. Prieto, F. Sandoval

(Eds.), Proceedings of International Workshop on Artificial Neural

Networks, IWANN 2005, Barcelona, Spain, June 8–10, Computa-

tional Intelligence and Bioinspired Systems, Lecture Notes in

Computer Science, vol. 3512, Springer, Berlin, 2005, pp. 985–991.

[22] F. Takens, Detecting strange attractors in turbulence, in: D.A. Rand,

L.S. Young (Eds.), Dynamical Systems and Turbulence, Lecture

Notes in Mathematics, vol. 898, Springer, Berlin, 1981.

[23] A. Weigend, N. Gershenfeld, Time Series Prediction: Forecasting the

Future and Understanding the Past, Santa Fe Institute, MA,

Addison-Wesley Publishing Company, New York, 1994.

Geoffroy Simon was born in 1978 in Dinant,

Belgium. He received the M.Sc. degree in

Computer Sciences in 2002 from the Facultés

Universitaires Notre Dame de la Paix (Namur,

Belgium). He is now working as Ph.D. student at

the Microelectronic Laboratory of the Electrical

Engineering Department of the Université cath-
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