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Abstract

The Double Vector Quantization (DVQ) method, a long-term forecasting method based on the self-organizing maps algorithm, has
been used to predict the 100 missing values of the CATS competition data set. An analysis of the proposed time series is provided to
estimate the dimension of the auto-regressive part of this nonlinear auto-regressive forecasting method. Based on this analysis
experimental results using the DVQ method are presented and discussed. As one of the features of the DVQ method is its ability to
predict scalars as well as vectors of values, the number of iterative predictions needed to reach the prediction horizon is further observed.
The method stability for the long term allows obtaining reliable values for a rather long-term forecasting horizon.
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1. Introduction

Time series prediction is a problem encountered in
many fields: from engineering (predictive control of
industrial processes) to finance (forecasting returns of
shares or stock markets) this general problem has already
been studied by a large community of researchers. Models
and prediction methodologies have been proposed by
statisticians, mathematicians and engineers, as well as
people from econometrics and more recently from the
neural network community. Whatever the time series,
whatever the method used to predict the series, the
methodology always first consists in constructing a model
of the time series. This model is then used to predict
the future of the series. In this paper, this general
methodology will be applied, using a nonlinear auto-
regressive model, namely the Double Vector Quantization
(DVQ) method [14].
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This paper concerns the prediction of the CATS bench-
mark proposed as a time series competition at IJCNN
2004. As explained in the descriptive paper [13], the CATS
competition prediction problem consists in predicting 100
missing values distributed in five gaps of 20 data points
within a time series of 4900 data points. Each gap is
preceded by 980 known values. The data set starts with 980
known data and the last gap is at the end of the time series.
In this paper, a global model able to predict the 100 missing
values is developed. To set the parameters of the model
(number of prototypes in the quantization steps, choice of
the preprocessing and of the block prediction horizon), an
extended cross-validation procedure is used.

The DVQ nonlinear auto-regressive [14] method is based
on Kohonen’s self-organizing maps (SOMs) [11]. Two
SOMs are used and linked by a stochastic model. The two
SOMs are used here as a clustering tool for prediction even
if the SOM algorithm is usually considered as a classifica-
tion or feature extraction tool. Nevertheless, some previous
attempts have already tried to use the SOM algorithm for
time series prediction. For example, Cottrell et al. [3] uses
SOMs to create clusters in the regressor space, Walter et al.
[18] and Vesanto [16] associate each cluster to a linear local
model and Dablemont et al. [7] associates each cluster to a
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nonlinear one. Another approach is to split the problem
into the predictions of, respectively, a normalized curve
and the curve mean and standard deviation [6]. Using the
recursive SOMs approach [17] (and pioneer work on leaky
integrators [2]) one tries to learn sequences of data, as
applied in [10] for speech recognition problems. Recursive
SOMSs can be further combined with local linear models, as
n [12]. The DVQ method is rather different from these
previous works since it aims at predicting long-term trends
instead of providing short-term accurate predictions.
Furthermore, as long-term predictions are the main
concern, a theoretical proof of the DVQ stability at long-
term has been proposed recently [14]. Considering that a
gap of 20 values is a long-term horizon when compared to
the usual one-step-ahead framework, the DVQ method
is used to forecast the 100 missing values of the CATS
data set.

Another original aspect of the DVQ method is its ability
to predict vectors of values in a single step. This general-
ization from scalar to vector cases will be used and studied
on the CATS data set: the DVQ method can recursively
predict 20 times a one-step-ahead scalar forecast, or a
vector of 20 values in one single prediction step, or any
other intermediate situation. Note that, as a consequence,
the size of the prediction vectors is a parameter of the DVQ
model. This parameter will be optimized by cross-valida-
tion in the experiments.

In the following sections of this paper, we first present an
analysis of the CATS data set. In this analysis the
correlation dimension of the CATS time series is estimated.
The goal of this analysis is to determine the size of the
regressors for the DVQ nonlinear auto-regressive model. In
Section 3 a short reminder on the basic concepts about the
SOMs is followed by the description of the forecasting
method for the scalar case. Its extension to vectors is briefly
sketched, and some general comments on the DVQ method
and its use in practice are given. Section 4 is devoted to the
description of the experimental methodology that has been
specifically developed and used for the CATS series.
Section 5 presents the results, before a concluding
discussion.

2. Analysis of the CATS data set

As mentioned in the Introduction, the model implemen-
ted by the DVQ method is a NAR model. As usual with
(N)AR models, the key point is to determine the order of
the AR part, i.e. to evaluate the size of the regressor. More
formally, having at disposal a time series of x(#) values with
1<t<n, predicting the values for z>n can be defined as
follows:

[e(r+1),....x(t +d)] = f(x(0),....x(t —p+1),0) + &,
(1
where d is the size of the vector of values to be predicted, f

is the model of the data generating process (considered here
as a nonlinear one), p is the number of past values to be

considered, 0 are the model parameters and ¢, is the noise.
The past values are gathered in a p-dimensional vector
called regressor. Both p and d must be chosen. As
mentioned above, d will result from a compromise between
scalar predictions with repetitions and a larger vector of
values to predict as a whole; in practice, the choice of d will
be determined by extensive simulations.

Concerning the value p of the regressor size, it is possible
to have insights about a plausible value (or range of values)
by an in-depth examination of the series. In this paper, the
search for the regressor size p is based on Grassberger—
Procaccia’s [9] correlation dimension; the procedure is for
example summarized in [1].

Grassberger—Procaccia’s procedure allows estimating
the, correlation dimension D, [9] of a time series. Then,
according to Takens’ theorem [15], a regressor of size p =
2% D, 4+ 1 will describe the data in an embedding space
containing enough information to allow a modeling of the
manifold described by the time series values.

In short, the Grassberger—Procaccia procedure computes
the correlation dimension D, of vector data x, according
to:

. In(C(r)
De =lim = 05

2
where C(r) is the correlation integral [9] defined as follows:
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Function /(.) takes a value equal to 1 if its expression into
parenthesis is true and 0 otherwise.

Intuitively, the idea in relation (3) is to count the number
of data x, in a hypersphere centered in x; with radius r.
This operation is repeated for each data x,. Then the limit
for n tends to oo is taken, i.e. the definition is given for an
infinite number of data x, (in the series). Finally, the ratio
between the log of this number of data and the log of
the corresponding radius is observed in relation (2), as the
radius r tends to zero. In other words while estimating the
correlation integral (3), one tries to count the number of
data x, that are at most at distance r from x,, given an
infinite number of data. The correlation integral thus
expresses the asymptotic proportion of data pairs whose
distance is less than r, with respect to the total number
n(n—1)/2 of pairs. The correlation dimension (2) is
therefore obtained as the limit of the correlation integral
values obtained when the radius r is decreased to zero. As
mentioned in [1] the correlation dimension is given by the
slope in the linear part of the curves. This follows the initial
assumption by Grassberger and Procaccia [9] that the
correlation integral C(r) behaves as a power law of r for
small values of r. In other words, C(r)~ rP. The
correlation dimension is therefore obtained as the slope
of the D, x In(r) curve.

In practice of course, we do not have an infinite number
of data at our disposal. Therefore, the left and right parts
of the In(C(r)) against In(r) diagram will not be reliable, so
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that the most informative slopes between those extremes in
the diagram have to be identified. When the size of the data
space increases, it will reach the dimension where it is
effectively possible to compute the correlation dimension
(obviously, working in a too low-dimensional space does
not allow to estimate a large dimension). As this dimension
is unknown, the experience must be carried out for
increasing dimensions of the data space; when the required
level is reached or exceeded, the estimated correlation
dimensions will remain identical (i.e. the curves will be
parallel, which can be observed on the curves as a
saturation effect).

Fig. 1 shows the results obtained with the 4900 known
values of the CATS time series. With respect to Grass-
berger—Procaccia’s procedure described above, the data x,
are now the p-dimensional regressors defined in (1). The
figure shows a plot of In(C(r)) against In(r) for increasing
dimensions of the data space (i.e. increasing sizes p of the
regressors). The expected saturation effect [1] is clear for
values of In(r) between 5 and §; the correlation dimension
seems to be around 1.

Another representation of the correlation dimension can
be given in plotting the estimation of the correlation
dimension as in Fig. 2. A flat region can be seen around
In(r) = 6 to 7 where the correlation, dimension is again
approximately one. In conclusion, according to Takens’
theorem, any regressor for the CATS time series should be
at most of size 3.

Note that the correlation dimension estimation is only a
preliminary rough calculation, in order to get a first insight
into the series. Indeed, because of the high correlation
between successive values in the series (or in other words its
‘smoothness’), it may happen that the correlation dimen-
sion estimation just catches this correlation, and not the
dynamics of the series. In Fig. 1, this could be seen in the
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Fig. 1. Estimation of the correlation dimension using the Grassberger—
Procaccia procedure; log of the correlation integral C(r) versus the log of
the hypersphere radius r.
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Fig. 2. Correlation dimension obtained for various values of the hyper-
sphere radius r (in log scale) for the CATS time series.

form of two saturation effects in the slopes, as detailed
above: one when the correlation between successive values
is caught, the other one when the true dimensionality of the
series is reached. According to the very low value (one)
found for the correlation dimension in the CATS series,
this risk does not have to be underestimated. Nevertheless,
as no other reasonable value can be found, we will consider
in the following that the value found for the correlation
dimension is reliable, and a regressor of size 3 will thus
be used.

The problem of a time series with a very low correlation
dimension is that each value only depends on the few
preceding ones. Any model built according to the above
principles is therefore restricted to a very limited amount of
information, and the prediction becomes hard and
unstable. This is for example the case in financial time
series prediction: the high sampling frequency of financial
indexes makes them extremely smooth at short term. In
such context, one usually models preprocessed series
instead of the original ones; the preprocessing can consist
in differences, returns, etc. Because of the similarities
between the correlation dimension results on such financial
series and on the CATS one, the same kind of preproces-
sing is developed here. In addition to the original series,
two preprocessed ones will be used in the experiments: the
series obtained by differences and by returns. The
difference time series is obtained as follows:

xq(t) = x(t + 1) — x(2), “4)
while the return time series is computed as follows:
x(t+1)— x(2)

x()

The correlation dimension of these two new time series can
also be computed, using the same Grassberger—Procaccia
procedure. The results are presented in Figs. 3 and 4.

)

x:(1) =
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Correlation dimension for the differences of CATS
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Fig. 3. Correlation dimension obtained for various values of the hyper-
sphere radius r (in log scale) for the difference time series.
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Fig. 4. Correlation dimension obtained for various values of the hyper-
sphere radius r (in log scale) for the return time series.

Unfortunately, in both cases, the results are not conclusive.
Indeed there is no visible saturating slope in the In(C(r))
against In(r) diagrams, contrary to the saturation in Fig. 2.
The results found on the original series will thus be kept in
the following as a rough estimation of the correlation
dimension of the CATS time series.

3. The double quantization forecasting method
3.1. Self-Organizing Maps
The SOM is an unsupervised classification algorithm

introduced in the 1980s by Kohonen [11]. Since their first
description, SOMs have been applied in many different

fields to solve various problems. Their theoretical proper-
ties are well established [5.4].

In short, a SOM map has a fixed number of units
quantifying the data space. Those units, also called
prototypes or centroids, are linked by predefined neighbor-
hood relationships that can be represented graphically
through a one- or two-dimensional grid. The grid of
prototypes has two properties. First, it defines a vector
quantization (VQ) of the input space, as any other VQ
algorithm. Secondly, because the grid relationships are
used in the learning algorithm itself, the grid representation
has a topological property: two close inputs will be
projected either on the same prototype or on two close
ones in the grid. The Kohonen map can thus be seen
as an unfolding procedure or as a nonlinear projec-
tion from the data space on a one- or two-dimen-
sional grid. The prototypes in a Kohonen map can also
be seen as representatives of their associated class (the set
of data nearer from a specific prototype than from
any other one), turning the algorithm into a classification
(or at least a clustering) tool. One of the main features
of Kohonen maps is their ability to easily project data
in a two-dimensional representation, allowing intuitive
interpretations.

3.2. The double vector quantization (DVQ) method

Though the SOM is usually considered as a classifica-
tion, feature extraction or recognition tool, there exist a
few works where the SOM algorithm is used in time series
prediction problems, as [3,6,7,12,16,18]. In most of these
situations, however, the goal is to reach a reliable one-step-
ahead prediction. In this work we are specifically looking
for longer-term ones, and more precisely to 20 steps ahead
prediction in the context of the CATS Competition.

A complete description of the DVQ method is given in
[14], together with a full proof of the method stability for
long-term predictions. A brief description of the method is
given here in the simple case of a scalar time series
prediction. Full details for the vector case can be found in
[14]. The goal of the method is to extract long-term
information or trends of a time series. The method is based
on the SOM algorithm used to characterize (or learn) the
past of the series. Afterwards a forecasting step allows
predicting future values.

3.2.1. Characterization

According to the formulation of a nonlinear auto-
regressive model (1), the method uses regressors of past
values to predict the future evolution of a time series.
Having at disposal a scalar time series of n values, the
correlation dimension D, is evaluated, leading to the choice
of p-dimensional regressors. The n known values of the
time series are then transformed into p-dimensional
regressors

xi={x(t=p+1),...,x(t —1),x(2)}, (6)
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where p<t<n, and x(¢) is the original time series at our
disposal. As one may expect n — p + 1 such regressors are
obtained from the original time series.

The original regressors x; are then manipulated such that
other regressors are created, according to

Vi = Xep1 — Xt (7

The y, vectors are called the deformation regressors,
or the deformations in short. By definition each deforma-
tion y, is associated with a single regressor x,. Of course,
n — p deformations are obtained from a time series of n
values.

At this stage of the method there exist two sets of
regressors. The first one contains the x, regressors and is
representative of the original space (of regressors). The
space containing the y, deformations is representative of
the deformation space. Those two sets of vectors, of the
same dimension p, will be the data manipulated by the
SOM maps.

Applying the SOM algorithm to each one of these two
sets results in two sets of prototypes, denoted as,
respectively, X;, with 1<i<n;, and Vs with 1<j<m,. The
classes associated to those prototypes are denoted by,
respectively, ¢; and ¢;.

Characterizing the two time series through the quantiza-
tion of the regressors and deformations is a static-only
process. The dynamics of the past evolution of the series
has to be modeled too. In fact, this is possible because the
dynamics is implicitly recorded in the deformations. The
issue is thus to build a representation of the existing
relations between the original regressors and the deforma-
tions. For this purpose, a matrix f(ij) is defined such that

its 7 element, denoted f;, is obtained as follows:

#{x;€c; and y, € cj’-}

v #{x, € ci} ' ®)
with 1<i<n;, 1<j<n,. Intuitively the probability of
having a certain deformation ;j associated to a given
regressor i is approximated by the empirical frequencies (8)
measured on the data at disposal. Each row of the f(ij)
matrix (1<j<mp) in (8) is in fact the conditional
probability that y, belongs to ¢; given the fact that x,
belongs to ¢;. Of course, elements f; (1<j<n2) sum to one

for each i.

3.2.2. Forecasting

Now that the past evolution of the time series has been
modeled, predictions can be performed. Let us define the
last known value x(#) at time ¢, with corresponding
regressor x;. The prototype xj closest to x, in the original
space is searched. According to the conditional probability
distribution defined by row k, a deformation prototype j, is
then chosen randomly among the j;, according to the f;
probability law. The prediction for instant ¢+ 1 is finally
obtained according to relation (7):

X1 =X+ 7 )

where X, is the estimate of x,,; given by the model. In
fact X,4 is a p-dimensional vector, and only one of its
components corresponds to a prediction x(z+ 1) at time
t + 1; this value is thus extracted from the X, vector and
taken as the prediction.

Once a one-step-ahead prediction (horizon A =1) is
computed, the whole procedure can be repeated to obtain
predictions for higher values of /. In practice, prediction
X(t+ 1) is used to compute X,y, through its corresponding
regressor X,,1. X(¢ + 2) is then extracted from %,,,, and so
on up to horizon h. This recursive procedure is the
standard way to obtain long-term forecasts from a one-
step-ahead method. The whole procedure up to horizon /4 is
called a simulation.

3.2.3. Comments

The goal of the DVQ method is to provide insights over
the possible long-term evolution of a series, and not
necessarily a single accurate prediction. The long-term
(horizon /) simulations are then repeated using a Monte-
Carlo procedure. The simulations distribution can be
observed, and statistical information such as variance,
confidence intervals, etc. can be determined too. The
obtained long-term predictions have been proven to be
stable [14].

Another important comment is that the method can
easily be generalized to the prediction of vectors. With
respect to the procedure described in the previous
subsection, the only difference is that deformations (7)
must be computed by differences of d-spaced values:

Vi = Xetd — X1 (10)

a direct generalization of the d =1 case in (7). Then, d
scalar values have to be extracted from the X,,, vector, and
so on. For example, two values could be extracted
(corresponding to x(¢+ 1) and X(z+2)). In this case,
repeating the procedure means to inject X(z + 1) and x(¢ +
2) to predict X(¢ + 3) and X(¢ + 4). More details about the
vector case can be found in [14].

A third comment concerns the numbers n; and n, of
prototypes, respectively, in the regressor and deformation
spaces. The major concern is that different values of ny (ny)
lead to different segmentations of the regressor and the
deformation spaces which in turn lead to different models
of the time series. The values of n; and n, should therefore
be optimized, for example, by resampling procedures
(cross-validation, bootstrap) on a predefined error criter-
ion, as the one-step-ahead error.

Finally, since the only property of the SOM used here is
the VQ, any other VQ method could have been chosen to
implement the above procedure. The SOM maps have been
chosen since they seem more efficient and faster compared
to other VQ methods despite a limited complexity [8].
Furthermore, they provide an intuitive and helpful
graphical representation. Note that in practice any kind
of SOM map could be used, but that one-dimensional
maps, or strings, are preferred here.
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4. Methodological aspects of the double quantization for the
CATS data set

As mentioned in Section 3.2 the goal of the DVQ method
is to provide insights over the possible long-term evolu-
tion of a series, and not necessarily a single accurate
prediction. In this section the methodology for the
experiments will be described having in mind that
the method has now to predict accurate values due to the
competition context.

4.1. Scalar and vector predictions

From Section 2 we know that regressor x, for nonlinear
models should contain at most three past values:

X, = {x(t = 2), x(t — 1), x(2)}. (11)

As this expression has the same form as relation (6), it
allows a direct application of the DVQ method to predict
x(t+1). This direct application of the method is an
illustration of the scalar prediction with the DVQ method.
The use of the correlation dimension to set the size of the
regressor should however be taken with care when
predicting vectors instead of scalars, as it will be the case
for the CATS series. As an example, if one wants to predict
a vector of d =2 values, namely {x(¢+ 1), x(¢ + 2)}, the
following two regressors should be, respectively, used:

{x(2 = 2), x(z — 1), x(1)}
{x(t — 1), x(2), x(t + 1)}

In order to use the DVQ method, it is suggested to merge
the two regressors and use:

{x(t —2),x(t — 1), x(¢), x(t + 1)} (13)

to predict {X(¢+ 1), x(¢t + 2)} together. Of course this is
impossible since value x(z+ 1) is unknown at time ¢.
Therefore, the regressors that will be used in the following
have the same size as in Eq. (13) but they are shifted such
that their last component now corresponds to x(z)

{x(t — 3), x(t — 2), x(t — 1), x(¢)}. (14)

In this example, deformations y, are then computed
according to

to predict X(z + 1),
to predict X(z + 2). (12)

Vi = Xt4d — Xt
= {x(t — 1), x(t), x(t + 1), x(t + 2)}
— {x(t — 3), x(t — 2), x(t — 1), x(¢)}. (15)

The same procedure can be extended for values of d greater
than 2.

To summarize, the DVQ method is directly applicable in
the scalar case. Some care must be taken in the vector case:
if vectors of d values have to be predicted then the
corresponding regressors have to be merged into a single
vector which may only contain known values. Only then,
the DVQ method in vector case can be applied.

4.2. 20 step ahead prediction strategies

As the CATS competition requires predicting block of 20
successive unknown values, several strategies can be used
to reach this prediction horizon. The first one, called the
recursive strategy, is probably the most common way to
obtain a long-term prediction. Predictions are obtained
recursively until the final time horizon #; i.e. the one-
step-ahead predictions are included one by one in the
regressor to obtain the next one-step-ahead prediction.
Formally, the last prediction X(¢ + k) is used to predict the
next one X(z + k + 1) as part of the regressor for t + k + 1
(1<k<d-1).

The second approach, called the block strategy, consists
in predicting all the / future values in one single vector.
This is made possible by the use of a vector prediction
method, as the DVQ one.

A mixed approach is a recursive-block strategy, where
blocks of intermediate size d are predicted through a
limited number of /1/d recursive steps (where / is supposed
to be a multiple of d for simplicity).

4.3. Number of prototypes

As mentioned in Section 3.2, the numbers n; and n, of
prototypes in, respectively, the regressor and the deforma-
tion spaces have to be fixed. A cross-validation procedure
is therefore used. This cross-validation procedure mimics
the competition problem.

Fifteen new gaps of length 20 have been created
randomly in the available data. As the true values for
those 300 new missing values are known they can serve as
validation set for models learned on the remaining values.
Note that the random selection was slightly constrained:
the new gaps could not overlap between them and with the
existing ones. The whole validation procedure has been
repeated 20 times, to average the dependencies to the
choice of the 300 new gaps.

To compare the different models that will be learned on
the 20 various learning sets a mean square error (MSE)
validation criterion is used. This criterion is comparable to
the one proposed in the CATS competition and is defined
as follows:

EJ;ZEVS()}I - J}r)z (16)
300 ’

where VS represents one of the 20 validation sets of 300
new missing values. The best model will be the one which
has the lowest average MSE over the 20 validation sets.

MSE =

4.4. Final predictions

Once the optimal n; and n; numbers are found, a new
learning stage is done now using all available data (i.e. the
4900 data of the original CATS time series).

To avoid problems due to the random initialization of
the prototypes, several learning procedures are performed,
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and the best one is selected according to the validation sets,
even if using the latter may lead to a small amount of
overfitting (as the validation sets are now part of the new
learning set). Simulations at final horizon are then repeated
100 times, and the mean is computed.

To refine this direct application of the DVQ method to
the CATS prediction problem, some specific heuristics have
been developed. The first one is to reverse the time series.
Indeed, for the four blocks inside the series, the prediction
can be performed from right to left (decreasing values of
time) as well as it is performed from left to right
(chronological order). For those four blocks of length 20,
the CATS Competition is a missing value problem rather
than a forecasting one. The DVQ method will therefore be
applied in both directions.

The second heuristic considers a prediction horizon up
to h =21 (instead of & = 20). Indeed, as the 21st value is
known for the four first gaps, predicting to horizon 4 = 21
allows a comparison between the true value and the 21st
predicted one. As some error in long-term trends of the
prediction is unavoidable, the comparison between these
true and predicted values leads to an error that can be
compensated at first order through a linear correction of
the simulated predictions. This correction is perfor-
med such that the 21st predicted value is made equal to
the true one.

The final predictions that were sent to the compe-
tition were obtained by the DVQ method combined with
the two heuristics explained above. More precisely, for the
four first blocks of 20 missing values, a prediction to
horizon /& = 21 was performed in both directions, resulting
from 100 DVQ simulations. As the true value for the 21st
data is known in both directions for these four cases, a
linear correction has been applied. The final predictions
were then obtained as the average of the two linearly
corrected predictions.
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Fig. 5. Corrections applied to obtain the final predictions using the two
heuristics (first block of missing values; data 981-1000). See text for
details.

Of course, as the true 21st value is unknown for the fifth
block of missing data, the above strategy cannot be
applied. The final predictions for this case were obtained
as the mean of 100 DVQ simulations.

Fig. 5 shows the various steps leading to the final
predictions for the first block of missing values. The
outmost curves are the mean of the 100 DVQ simulations
(top of the figure is the chronological order, bottom is the
reversed order). The two inner curves are the linearly
corrected values using the comparison between the 21st
true and predicted values. The fifth curve in the middle
represents the final predictions, i.e. the mean of the two
(linearly corrected) inner curves.

5. Experimental results

According to the ‘financial-like’ behavior of the CATS
time series, as discussed in Section 2, three time series
are considered in all our experiments: the initial CATS,
the difference and the return time series. Furthermore,
this ‘financial-like’ behavior already suggests that a
recursive strategy may behave poorly for a time horizon
of 20 values. Consequently, in addition to the recur-
sive strategy, where one-step-ahead predictions are re-
peated 20 times, a recursive-block strategy is used, with
blocks of size 2, 5 and 10, and finally a block strategy is
used with a bloc size equal to the time horizon /# = 20. In
the recursive-block strategy, the time horizon of 20 values
corresponds to predict 10 blocks of size d = 2, 4 blocks of
size 5, etc.

For each one of the three time series and for each one of
the block sizes, a cross-validation using the 20 validation
sets has been performed as described in Section 4.3. For
comparison purposes the new missing values in the 20
validation sets are identical in all experiments. Models with
n; and n, both ranging from 5 to 100 by incremental steps
of 5 are learned in each experiment. The MSE criterion (16)
has been used to estimate the models generalization ability
on the validation sets.

Table 1 gives a summary of the experiments. For
each time series, for each block size, n; and n, corres-
ponding to the best model in average are given, together
with the average MSE. For the difference and return time
series the MSE is of course computed by first applying the
inverse transformations on the predictions, in order to
obtain MSE values that can be compared between the
series.

From this table it seems clear that a model learned on the
initial time series is adequate; none of the two preproces-
sing methods suggested in (4) and (5) reveals anything
interesting. Indeed the MSE values obtained on the
validation sets are in both cases larger than those obtained
with the initial time series.

Furthermore, it is obvious that there exists a compro-
mise between 20 repetitions of a one-step-ahead prediction
(recursive strategy) and a single prediction of a vector
containing the 20 next values (block strategy). This
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Table 1
Experiment summary: n; and n, for the best model in average over the 20
cross-validations and corresponding MSE

Time series # Step(s) ahead m 1y MSE
Initial 1 90 5 1.66 x 10°
2 50 5 1.32 x 10°
5 25 1.36 x 10°
10 20 15 1.70 x 10*
20 65 10 2.98 x 10*
Differences 1 25 5 259 x 10°
2 90 5 1.90 x 10°
5 80 5 1.86 x 10*
10 55 5 4.67 x 10*
20 55 60 7.43 x 10*
Returns 1 10 3.39 x 10°
2 5 5 2.04 x 10°
5 55 5 1.83 x 10°
10 15 95 2.67 x 10"
20 45 55 4.01 x 10'°
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Fig. 6. True values and final predictions, first gap.

compromise seems to be somewhere between 10 predictions
of blocks of 2 values and 4 predictions of blocks of 5
values. Nowadays the MSE criterion is the lowest for
blocks of size d = 2. The corresponding model, with 50
prototypes in the regressor space and 5 in the deformation
space, is selected to give the final prediction of the 100
missing values of the CATS Competition according to the
heuristic described in Section 4.4. Figs. 6-10 show how the
DVQ method predicts the missing values for the five
20-values blocks of the CATS competition.

After the CATS Competition was closed, the results of
the 17 classified competitors out of the 24 submissions were
made available [13]. It can be seen in [13] that the DVQ
method was ranked to the fourth position on the problem

CATS time series and predicted values
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Fig. 7. True values and final predictions, second gap.
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Fig. 10. True values and final predictions, fifth gap.

of predicting the first four gaps of 20 missing data. The
value of the E; criterion in [13] (average sum of squares of
errors on first 80 missing data) is 351. Besides the efficiency
of the forecasting method, this is probably, and not
surprisingly, a consequence of the fact that taking into
account the first known value after each gap indeed
improves the prediction accuracy. This information is not
available for the fifth block of 20 missing data. The E;
criterion in [13] (average sum of squares of errors on the
100 missing data) takes into account this very different
problem. On this criterion, the DVQ method performs
slightly worse with a result of 653, and is ranked in seventh
position.

6. Conclusion

In this paper the results obtained with the DVQ method,
based on the SOM maps, applied to the CATS data set are
presented.

An analysis of the data shows some interesting aspects of
the time series. Its correlation dimension seems to be as low
as one. To take into account this particular aspect
potentially limiting for nonlinear models other time series
have been defined, i.e. the differences and the returns of the
initial CATS series.

These three time series have been modeled using various
sizes of prediction blocks corresponding to longer time
horizons, in order to make the most of the vector
prediction ability of the DVQ method.

The number of units in the SOM maps has been
discussed and selected using a cross-validation procedure
on new gaps created randomly on the CATS data set. This
procedure, together with the selected validation criterion,
has been implemented to select the best model in average in
conditions as close as possible to the competition ones.

Heuristics specifically designed in the CATS competition
context are also described.

Finally, the predictions obtained using the best selected
model and the heuristics are illustrated graphically.
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