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The problem of residual variance estimation consists of estimating the best possible generalization error

obtainable by any model based on a finite sample of data. Even though it is a natural generalization of

linear correlation, residual variance estimation in its general form has attracted relatively little attention

in machine learning.

both theoretically and experimentally to understand better their applicability in machine learning

problems. The theoretical treatment differs from previous work by being based on a general formulation

of the problem covering also heteroscedastic noise in contrary to previous work, which concentrates on

homoscedastic and additive noise.

In the second part of the paper, we demonstrate practical applications in input and model structure

selection. The experimental results show that using residual variance estimators in these tasks gives

good results often with a reduced computational complexity, while the nearest neighbor estimators are

simple and easy to implement.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Residual variance estimation and the related noise variance
estimation problems are well-known in the field of statistics
[3,25,16,23]. The problem consists of estimating the best possible
generalization error obtainable by any model based on a finite
sample of data. Thus it is a natural generalization of the Pearson
correlation and as such an attractive measure of relevance due to
its intuitive nature.

Despite the importance of the topic, it seems to be relatively
unknown in machine learning. Moreover, many of the estimators
derived in statistics fit poorly to high dimensional sparse data.
Some references in machine learning include [5,17]; however,
these works make the restrictive homoscedasticity assumption on
the noise. This shortcoming has been addressed in [7,15], where a
practical estimator with good convergence properties is derived
and analyzed.

The goal of this paper is two-fold. Firstly, we show how the
residual variance can be estimated using simple and robust
methods. We also analyze the convergence properties of the
methods to understand better their weaknesses in real-world
problems. The asymptotic consistency results are more general
than previous theoretical results as the general heteroscedastic
case is examined. Moreover, we analyze a locally linear estimator
ll rights reserved.

: +358 9 4513277.

).
introduced in the statistics community [23], but not known in the
field of machine learning. The theoretical part summarizes and
extends our earlier conference [13,14] and journal contributions [15].

The second goal is to show, how residual variance estimators
can be used in applications. Here we demonstrate applications in
input selection and model structure selection, both of which are
important topics. The application in model structure selection has
been investigated in [12,17,10] using two different estimators.
There has also been research on input selection [26,19,22,10].
In this work the applications are combined with the theoretical
results extending and summarizing our earlier publications
[12,19,22].

The outline of the paper is as follows. In Section 2 the residual
variance estimation problem is introduced. In Section 3 some
theoretical results for nearest neighbors are derived and in
Section 4 estimators of the residual variance are derived and
analyzed using the results in Section 3. To complement the
analysis, experimental results are given in Section 5.

The application to model structure selection is introduced in
Section 6 and the experimental analysis is in Section 7. Next the
input selection problem is introduced in Section 8 and the
corresponding experiments are in Section 9.
2. Residual variance estimation

Residual variance estimation means estimating the lowest
possible expected mean squared error (MSE) in a given regression

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.07.004
mailto:elia.liitiainen@hut.fi
mailto:elia.liitiainen@hut.fi
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problem based on data. An abstract formulation of the problem is
the goal of this section. Our approach corresponds to that in [5]
with the distinction that the covariates do not have to be
identically distributed.

2.1. Statement of the problem

To fix the statistical setting and notation, consider the set of
random variables ðZiÞ

1
i¼1 ¼ ðXi;YiÞ

1
i¼1 of which a finite subsample

ðZiÞ
M
i¼1 ¼ ðXi;YiÞ

M
i¼1 models a finite data set. The basic setting is

stated in the following assumption:
(A1)
 ðZiÞ
1
i¼1 ¼ ðXi;YiÞ

1
i¼1 is a sequence of independent (but not

necessarily i.i.d.) random variables taking values in
½0;1�n � ½0;1�. Moreover, the variables ðXiÞ

1
i¼1 possess densi-

ties with respect to the Lebesgue measure on ½0;1�n.
The assumption of boundedness is not essential; here it is made to
simplify some proofs. The individual components of vectors will
be referred to in the form XðjÞi (j-th component of Xi). Notationally,
we do not distinguish between vectors, matrices and scalars but
the difference should always be clear from the context.

In the regression problem the goal is to build a model that
relates the variables ðXiÞ

M
i¼1 to ðYiÞ

M
i¼1 with minimum possible error.

In theory one would like to find the function g that minimizes the
generalization error

LðgÞ ¼
1

M

XM
i¼1

E½ðYi � gðXiÞÞ
2
�:

Here g is often parametrized for example as a linear or neural
network model.

Let us denote the density functions of the variables ðXiÞ
M
i¼1 by pi.

Then the theoretically optimal solution is given by the following
well-known theorem.

Theorem 1. When (A1) holds, the functional L achieves its minimum

for the function

mðxÞ ¼
XM
i¼1

E½YijXi ¼ x�pðXiÞPM
i¼1 pðXiÞ

:

Moreover, if

E½YijXi� ¼ E½YjjXj� ð1Þ

for all i; j40, then we may simplify

mðxÞ ¼ E½Y1jX1 ¼ x�:

The residual variance estimation problem is the inverse of the
regression problem: instead of trying to find the optimal model,
we try to estimate the smallest achievable generalization error. In
mathematical terms, the goal is to estimate VM defined by

VM ¼ inf
g

LðgÞ;

where the infimum is over square integrable functions. It turns
out that estimating VM is actually much easier than trying to
reconstruct the function g based on a finite sample.

2.2. The difference between homogenous and heterogenous noise

Even though residual variance estimation can be viewed as
estimating the minimum of the cost function L, it can be also
viewed in a slightly different but trivially equivalent way.
By setting

ri ¼ Yi �mðXiÞ

we may always write

Yi ¼ mðXiÞ þ ri;

that is, the output is generated by a model with additive noise.
By definition, the residual variance is the (mean) variance of the
noise:

VM ¼
1

M

XM
i¼1

E½r2
i �:

However, even though

E½rif ðXiÞ� ¼ 0

for any bounded function f (see [21]), the noise variable ri is in
general not independent of Xi. Hence the variance function

sðxÞ ¼ 1

M

XM
i¼1

Var½r2
i jXi ¼ x�

is not necessarily constant. When s does not depend on x, the
noise is called homogenous, whereas the general case is referred
to as heterogenous noise.

In practice, many tasks like variable selection require estima-
tors that cope with heterogenous noise. In this paper we prove
consistency in a general heteroscedastic case for the methods
we discuss; however, strongly heterogenous noise may still
affect the performance of some of the methods. It seems
that this (at least theoretically) important point has been
mostly neglected in previous work in machine learning including
[5,17].

To avoid the use of technically complicated arguments, we
assume from now on that the stationarity condition (1) holds with
m and s continuous functions on ½0;1�n. Moreover, we assume that
the residual variance s is independent of M:
(A2)
 For any i; j40, it holds that

E½YijXi� ¼ E½YjjXj�

and

Var½YijXi� ¼ Var½YjjXj�:

Moreover, the functions mðxÞ ¼ E½Y1jX1 ¼ x� and sðxÞ ¼
Var½Y1jX1 ¼ x� are assumed to be continuous with respect
to x.
Because of (A2), the subscript M can be dropped from VM and we
simply write V for the residual variance.
3. On nearest neighbor distances

The concept of nearest neighbor is well known in machine
learning [5]. As the estimators of residual variance to be
introduced in the next section are based on using k nearest
neighbors, we discuss some relevant definitions and results.

The formal definition of the nearest neighbor index of the point
Xi is

N½i;1� ¼ argmin
1rjrM;iaj

JXi � XjJ

and the k-th nearest neighbor index is defined recursively as

N½i; k� ¼ argmin
1rjrM;j=2fi;N½i;1�;...;N½i;k�1�g

JXi � XjJ;
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E. Liitiäinen et al. / Neurocomputing 72 (2009) 3692–37033694
that is, the closest point after removal of the preceeding
neighbors. The corresponding distances are defined as

di;k ¼ JXi � XN½i;k�J:

The next theorem derived in [14] bounds the average k-th nearest
neighbor distance. Notice that the bound is suboptimal in the
sense that rather rough approximations are used in the proof;
however, it is sufficient for our purpose as it shows that the
distances are on average at most of order OðM�a=nÞ.

Theorem 2. Assumption (A1) implies that for 0oarn,

1

M

XM
i¼1

dai;kr32ak2ana=2M�a=n:

Proof. The proof can be found in [14]. However, because there is a
slight mistake in the constants, we repeat the proof here.

The proof starts by fixing a realization of the sample ðXiÞ
M
i¼1 and

a point x 2 ½0;1�n. Suppose that x belongs to the open ball BðXj; dj;kÞ

for some 0ojrM. Then, if we define the new sample ð ~X iÞ
Mþ1
i¼1 as

the union of x and ðXiÞ
M
i¼1 with ~X Mþ1 ¼ x, we know that in this new

sample x ¼ ~X ~N ½j;l� for some 0olrk, where the l-th nearest

neighbor is taken in the augmented sample. However, for any

choice of r, the number of elements in the set

Ix;r ¼ f0oirM : ~X ~N ½i;r� ¼ xg ð2Þ

is bounded by 3nr [5]. This, on the other hand, implies that the

number of elements in the set

Ix ¼ f0oirM : ~X ~N ½i;r� ¼ x; for some 0orrkg ¼
[k
r¼1

Ix;r ð3Þ

is bounded by (with the notation j � j for cardinality)

jIxjr
Xk

r¼1

jIx;r jr
1

2
kðkþ 1Þ3nrk23n: ð4Þ

Thus, if we pick a point x, it can belong to at most k23n different k-

th nearest neighbor balls BðXj; dj;kÞ.

Let us define Sn as the volume of the unit ball. Denoting by IBðx;rÞ

the indicator function of the ball Bðx; rÞ and observing that

da;k ¼
1

M

XM
i¼1

dai;k

can be written as an integral, we have (using di;kr
ffiffiffi
n
p

)

dn;k ¼
S�1

n

M

XM
i¼1

Z
R

n
IBðXi ;di;kÞ

ðxÞdx

¼
S�1

n

M

Z
Bð0;2

ffiffi
n
p
Þ
XM
i¼1

IBðXi ;di;kÞ
ðxÞdxr

32nnn=2k2

M
: ð5Þ

By Jensen’s inequality [21] it can be shown that

da;krda=n
n;k ; ð6Þ

which implies that da;kr32ana=2k2a=nM�a=n finishing the

proof. &

It is of interest to ask, if the exponent a=n is optimal. As shown
in [5], this is indeed the case when the intrinsic dimensionality of
the data is n. However, for data lying in a low dimensional
manifold, the nearest neighbor distances approach zero faster
than the theorem would imply as shown in [11].
4. Estimators of residual variance

There exists certainly a wide variety of choices for estimating
the residual variance. It is not our purpose to review all of these;
instead we have chosen four different methods with different
properties. These methods are simple and have relatively well
understood properties; moreover, the Gamma test is a rather well
established method. The goal is to provide a practical solution for
applications in input and model structure selection.
4.1. The 1-NN estimator

The first nearest neighbor estimator (also referred to as the
Delta test) is based on the idea that similar inputs should produce
outputs close to each other. The estimator can be written as [10]

V̂
1

M ¼
1

2M

XM
i¼1

ðYi � YN½i;1�Þ
2:

The idea is that the approximation (rN½i;1� refers to noise
corresponding to YN½i;1�)

Yi � YN½i;1� � ri � rN½i;1� ð7Þ

is valid for M large enough. On the other hand, independence
yields for any M40,

E½rirN½i;1�� ¼ 0; ð8Þ

and combining Eqs. (7) and (8) leads to

E½V̂
1

M� �
1

2
V þ

1

2M

XM
i¼1

E½r2
N½i;1��:

Because XN½i;1� is close to Xi, it is seems likely that for M large
enough

E½r2
N½i;1�� � V :

Moreover, this certainly holds for homoscedastic noise as well as
for a large class of distributions for the covariates. The following
theorem formalizes the discussion.

Theorem 3. Under (A1) and (A2), the estimator V̂
1

M is asymptoti-

cally unbiased in the sense that

jE½V̂
1

M� � V j-0

as M-1.

Proof. By a straightforward algebraic manipulation, V̂
1

M may be
represented as

E½V̂
1

M� ¼ I1 þ I2 þ I3;

with (see also Eq. (8))

I1 ¼
1

2M

XM
i¼1

E½ðri � rN½i;1�Þ
2
� ¼

1

2
V þ

1

2M

XM
i¼1

E½r2
N½i;1��;

I2 ¼
1

M

XM
i¼1

E½ðri � rN½i;1�ÞðmðXiÞ �mðXN½i;1�ÞÞ�;

I3 ¼ E
1

2M

XM
i¼1

ðmðXiÞ �mðXN½i;1�ÞÞ
2
�:

"

By the basic properties of conditional expectations, we

may conditionalize with respect to the sample ðXiÞ
M
i¼1 to obtain
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(see [21])

E½ðri � rN½i;1�ÞðmðXiÞ �mðXN½i;1�ÞÞ� ¼ E½ðri

� rN½i;1�ÞE½ðmðXiÞ �mðXN½i;1�ÞÞjX
M
1 ��

¼ E½ðmðXiÞ �mðXN½i;1�ÞÞE½ri

� rN½i;1�jX
M
1 ��

¼ 0

and it follows that I2 ¼ 0. Let us show that I3 converges to zero.

By continuity, for any d40 there exists e40 such that

jmðxÞ �mðyÞjod

when Jx� yJoe and x; y 2 ½0;1�n. Thus we have by Chebyshev’s

inequality

jI3jrd2
þ

1

M

XM
i¼1

Pðdi;14eÞrd2
þ

1

eM
XM
i¼1

di;1:

Now an application of Theorem 2 shows that indeed I3-0 when

M-1.

To finish the proof, we must show that I1 approaches V in the

limit M-1. Using again the basic properties of conditional

expectations we get the result

E½r2
N½i;1�� ¼

XM
j¼1

E½r2
j IðN½i;1� ¼ jÞ�

with I denoting the indicator function. Conditionalization with

respect to the sample ðXiÞ
M
i¼1 yields

E½r2
j IðN½i;1� ¼ jÞ� ¼ E½E½r2

j jX
M
1 �IðN½i;1� ¼ jÞ� ¼ E½IðN½i;1� ¼ jÞsðXjÞ�:

Thus to finish the proof we need to show that

1

M

XM
i¼1

E½sðXN½i;1�Þ�-
1

M

XM
i¼1

E½sðXiÞ�:

However, this follows exactly in the same way as the previous step

of the proof because s is bounded and continuous. &

In Theorem 3 we analyzed the bias of the algorithm; What
about the variance? Without going into details, the law of large
numbers in [6] (Theorem 1.2) implies that under Assumptions
(A1) and (A2),

Var½V̂
1

M�rcM�1;

where the constant c depends only on the dimensionality n.
See also [5] (Section 5) on L-dependent random variables,

where another proof technique is used. In practice, the variance
does not pose as much trouble as the bias as will be demonstrated
by experiments. Notice that mean square convergence implies
convergence in probability, but not almost sure convergence. It is
possible to prove almost sure convergence, but it is outside the
scope of this paper.

Another important question is the rate of convergence of the
algorithm. For homoscedastic noise an answer is given by the
following theorem. For the proof and concrete examples see [13].

Theorem 4. In addition to Assumptions (A1) and (A2), assume that

m has bounded partial derivatives and that s is a constant. Then

lim sup
M-1

Mminf2=n;1gjE½V̂
1

M� � V j40:

The rate OðM�2=nÞ is actually optimal as demonstrated in [13].
Thus it seems that convergence is fast for small n, say nr2,
whereas it slows down quickly when n grows. Also, strongly
heteroscedastic noise may in theory weaken the performance.
From the theoretical point of view the 1-NN estimator is not
entirely satisfying in this sense as proving rates of convergence for
heteroscedastic noise is difficult.

4.2. The Gamma test

In Section 4.1 we observed that while the 1-NN estimator is a
simple method, it suffers badly from the curse of dimensionality.
One attempt to improve its properties is the Gamma test [5,10]. To
derive the method, let us examine the quantities

d2;k ¼
1

M

XM
i¼1

d2
i;k;

gk ¼
1

2M

XM
i¼1

ðYi � YN½i;k�Þ
2:

Let us assume homoscedastic noise and the existence of a
gradient rm. For M large enough to ensure the validity of the
linear approximation to m and that gk and E½gk� are close to each
other, we have by similar logic as in Section 4.1,

gk � V

þ
1

2M

XM
i¼1

ðmðXiÞ

�mðXN½i;k�ÞÞ
2
� V þ

1

2M

XM
i¼1

ððXi � XN½i;k�Þ
TrXi

mÞ2:

Let us define

AðM; kÞ ¼

1

M

PM
i¼1ððXi � XN½i;k�Þ

TrXi
mÞ2

dk
:

The Gamma test is based on the assumption that AðM; kÞ

approaches to a constant A independent of k when M-1. While a
rigorous theoretical analysis of this assumption has not been
done, some convincing arguments can be found in [5,8]. Thus it
seems reasonable to assume a linear relation between gk and d2;k

when k varies between 1 and some small number l (l ¼ 10 is used
in this paper). This results in a regression problem

argmin
a;b

Xl

k¼1

ðgk � a� bd2;kÞ
2:

The Gamma test approximation to the noise variance is simply
a. The following theorem gives an asymptotic consistency result
for the Gamma test. Notice that the required conditions are more
restrictive than those of the 1-NN estimator; this reflects the fact
that as a more sophisticated method, it is not expected to be as
robust. The proof is given in [14].

Theorem 5. If (A1) and (A2) hold and

lim inf
M-1

sup
0okrl�1

d2;kþ1

d2;k
41 ð9Þ

almost surely, then the Gamma test estimate V̂
2

M converges in

probability to V.

Certainly it would be possible to prove almost sure conver-
gence, but this would require some additional arguments which
we do not consider relevant for this paper.

When is Condition (9) valid? The following proposition shows
that for continuous data it is likely to hold in practice.

Theorem 6. In addition to Assumptions (A1) and (A2), assume that

the points ðXiÞ
M
i¼1 are i.i.d. on a convex compact set with a continuous
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E. Liitiäinen et al. / Neurocomputing 72 (2009) 3692–37033696
and positive density possessing bounded partial derivatives. Then

(9) holds.

Proof. The proof can be found in [5,8]. &

We may conclude that at least in the i.i.d. case the Gamma test
is consistent. The rate of convergence is a more difficult topic; in
[13] we conjectured that the bias is of order OðM�3=nÞ without a
theoretical proof. It seems likely that in mildly nonlinear
problems convergence is actually much faster.

4.3. A locally linear estimator

Many practical problems are more or less linear; hence
estimators performing well in linear problems seem attractive.
In this section we analyze such a method introduced in [23]. It is
shown that the estimator is very attractive especially for nearly
homoscedastic noise.

Let us assume a homoscedastic model

Yi ¼ mðXiÞ þ ri

and for each i40, introduce the weights oi;1; . . . ;oi;l, which are
positive functions of the sample ðXiÞ

M
i¼1. Here l should be chosen

larger than n; the choice l ¼ nþ 1 is fine and it is used in the
experimental section. For M large enough, we approximate

mðXN½i;k�Þ �mðXiÞ � ðXN½i;k� � XiÞ
TrXi

m:

Now if

Xl

k¼1

oi;k ¼ 1; ð10Þ

then

E Yi �
Xl

k¼1

oi;kYN½i;k�

 !2
������XM

1

2
4

3
5

� E
Xl

k¼1

oi;kðXN½i;k� � XiÞ
TrXi

mÞ

2
0
@

������XM
1

3
5

2
4

þE ri �
Xl

k¼1

oi;krN½i;k�

 !2
������XM

1

2
4

3
5

¼ E
Xl

k¼1

oi;kðXN½i;k� � XiÞ
TrXi

mÞ

2
0
@

������XM
1

3
5þ V 1þ

Xl

k¼1

o2
i;k

 !
:

2
4

Notice the important role of homoscedasticity in the derivation
of the last equality. Here we used basic properties of conditional
expectations, which imply for example the following two
equalities:

E½oi;krirN½i;k�jX
M
1 � ¼ 0; ð11Þ

E½o2
i;kr2

N½i;k�� ¼ VE½o2
i;kjX

M
1 �: ð12Þ

Now a natural restriction would be to require

Xl

k¼1

oi;kðXN½i;k� � XiÞ ¼ 0; ð13Þ

because then

V̂
3

M ¼
1

M

XM
i¼1

Yi �
Pl

k¼1 oi;kYN½i;k�

� �2

1þ
Pl

k¼1 o2
i;k

ð14Þ

would be unbiased except for the contribution of higher order
terms.
For each i, (13) and (10) yield nþ 1 equations for k weights. As
discussed in [23], under the condition that the covariates possess
a density with respect to the Lebesgue measure, there exists a
solution to the set of equations almost surely when kZnþ 1.
Actually, if k is strictly larger than nþ 1, the solution is not unique.
In this case one may choose the weights with the smallest
Euclidean norm.

Clearly the estimate V̂
3

M shares similar asymptotic consistency
properties as the 1-NN estimate. Moreover, it is unbiased in a class
of linear problems; this is a very nice property when working with
real world data. The following theorem summarizes these
properties:

Theorem 7. Under Assumptions (A1) and (A2), V̂
3

M is a consistent

estimator in the sense that

jV̂
3

M � V j-0

in probability as M-1. Moreover, if the sample ðXi;YiÞ
M
i¼1 is

generated from a linear model

Yi ¼ wT Xi þ ri

with homoscedastic noise, then

E½V̂
3

M� ¼ V :

Proof. The proof is similar to that in Section 4.1 and we give here
only a short sketch. As before, it is possible to show that for any
e; k40,

1

M

XM
i¼1

PðjYN½i;k� � Yi � rN½i;k� þ rij4eÞ-0

as M-1. Moreover, each term in Eq. (14) is bounded;
consequently

E½V̂
3

M�-
1

M

XM
i¼1

E ~o0;kri �
Xl

k¼1

~oi;krN½i;k�

 !2

�

2
4 ð15Þ

as M-1. Here, we defined

~oi;k ¼
oi;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
Pk

i¼1 o2
i;k

q

and ~o i;0 ¼ ð1þ
Pk

i¼1 o2
i;kÞ
�1=2. Using formulas such as (11) and

(12) we can represent the terms in the right side of Eq. (15) as

E ~o0;kri �
Xl

k¼1

~oi;krN½i;k�

 !2

� ¼ E ~o2
0;ksðXiÞ þ

Xl

k¼1

~o2
i;ksðXN½i;k�Þ

" #2
4

¼ E sðXiÞ þ
Xl

k¼1

~o2
i;kðsðXN½i;k�Þ � sðXiÞÞ

" #
:

The integrand being bounded, it remains to show that

1

M

XM
i¼1

PðjsðXN½i;k�Þ � sðXiÞj4eÞ-0

as M-1. However, this is true by continuity and Theorem 2 using

the Chebyshev’s inequality again in the same way as in Section 4.1.

Thus we have proven asymptotic unbiasedness and it remains to

show the convergence of the variance to zero. This analysis is

omitted here, see [5] on the variance of functions of nearest

neighbors.

The second claim of the theorem follows straightforwardly by

the discussion earlier in this section. &

For an extensive analysis of the speed of convergence under
homoscedastic noise, see [23]. Intuitively it seems that the local
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linear estimator is never significantly worse than 1-NN while in
most cases it tends to be much more accurate. However, again a
good performance for heteroscedastic noise is not guaranteed
even in linear problems.

4.4. The modified 1-NN estimator

The three estimators discussed so far share the problem of a
weak theoretical background concerning heteroscedastic noise.
While in practice this might not always be a problem, it is of
interest to have a method with better properties in this sense.
Here we discuss the method in [7,15] defined by the formula

V̂
3

M ¼
1

M

XM
i¼1

Yi �
1

k

Xk

l¼1

YN½i;2l�

 !
Yi �

1

k

Xk

l¼1

YN½i;2lþ1�

 !
:

In [15], the method was stated for k ¼ 1 and we will adopt the
same convention here. The idea behind the estimator is rather
simple. Recall that we may always write

Yi ¼ mðXiÞ þ ri:

As before, we approximate mðXN½i;k�Þ �mðXiÞ � 0 for k ¼ 1;2
to get

1

M

XM
i¼1

E½ðYN½i;2� � YiÞðYN½i;1� � YiÞ� �
1

M

XM
i¼1

E½ðrN½i;2� � riÞðrN½i;1� � riÞ�

¼ V :

The difference to the 1-NN estimator is that we did not require
E½r2

N½i;k�� ¼ E½r2
i �. This ensures that the variance function s does not

affect the rate of convergence as demonstrated by the following
theorem. Again we do not discuss the variance of the estimator
rigorously due to additional technical complications; however, it
is intuitively clear that it is not much higher than that of the 1-NN
estimator.

Theorem 8. In addition to Assumptions (A1) and (A2), assume that

m is Lipschitz continuous with a Lipschitz constant L40. Then

lim sup
M-1

Mminf2=n;1gjE½V̂
1

M� � V j40:

Proof. By Lipschitz continuity,

jE½V̂
1

M � � V jr
1

M

XM
i¼1

jmðXN½i;1�Þ �mðXiÞjjmðXN½i;2�Þ

�mðXiÞjr
L

M

XM
i¼1

d2
i;2:

The proof is finished by an application of Theorem 2. &

Actually, it seems that convergence tends to be faster than that
implied by the previous theorem. To see this, write

E½V̂
1

M � � V ¼
1

M

XM
i¼1

ðmðXN½i;1�Þ �mðXiÞÞðmðXN½i;2�Þ �mðXiÞÞ

�
1

M

XM
i¼1

Di;1Di;2di;1di;2;

where we define

Di;k ¼
ðXN½i;k� � XiÞ

TrXi
f

di;k
:

Thus Di;1 is simply proportional to the cosine of the angle
between the gradient of m and the nearest neighbor vector. When
M is large enough, this variable is expected to be approximately
independent of the variables Di;2, di;1 and di;2 with an expectation
value close to zero. While this claim is a rather strong one and
requires analysis of nearest neighbor distributions, it will be
verified experimentally. Remark that for the ordinary 1-NN
estimator, the bias enters as D2

i;1d2
i;1 and thus the same discussion

is not valid.
To summarize, it seems that the modified 1-NN estimator is

equally simple and robust as the ordinary 1-NN residual variance
estimator while it has some attractive theoretical properties. The
practical value of the theoretical considerations will be verified by
simulations.

4.5. Conclusion

As a conclusion, it can be stated that in terms of accuracy, the
1-NN estimator is inferior to the others. Compared to the modified
1-NN estimator, it does not seem to have additional advantages.
The modified 1-NN estimator has rather nice theoretical proper-
ties especially for heteroscedastic noise, while it considerably
simpler than the Gamma test. Thus, of the three estimators, the
use of the modified 1-NN estimator should be preferred in
theoretical grounds.

The locally linear estimator has the advantage of being
unbiased in linear problems. However, obtaining tight error
bounds for this method seems tedious and thus a good
performance is hard to guarantee theoretically. As such, the
method is attractive in high dimensional problems, where other
methods tend to fail.
5. Experiments on residual variance estimators

The residual variance estimators are compared on two
experiments. As a general preprocessing step, all the input data
sets are set to unit variance and zero mean; the output variable
was not preprocessed as it would not affect the result. This
preprocessing is used in all the experiments in this paper.

5.1. The smoothed parity function

The first experiment is made with smoothed parity functions.
The output Y is related to the covariate ðXð1Þ;Xð2ÞÞ by

Y ¼ sinðpXð1ÞÞsinðpXð2ÞÞ þ r;

with r�Nð0;0:1Þ and X�Nð0; IÞ. The results are illustrated in Fig. 1;
as a measure of performance, the mean absolute deviation of the
estimated noise variance from the true value is calculated. All the
estimators are approximately equal in this example. It can be seen
that the estimators have rather similar convergence properties,
but the Gamma test gives the best results. The modified 1-NN
estimator is slightly worse, but not significantly. Slightly
surprisingly the local linear estimator is the worst in this example.

5.2. A linear combination of smoothed parity functions

The second experiment is made with a linear combination of
smoothed parity functions. The output Y is related to the covariate
X by

Y ¼ 1
2 sinðpXð1ÞÞsinðpXð2ÞÞ þ 1

2sinðpXð3ÞÞsinðpXð4ÞÞ þ r; ð16Þ

with r�Nð0;0:1Þ and X�Nð0; IÞ. The results are illustrated in Fig. 2.
In this example we have some differences between the methods.
The Gamma test is the best, but the modified 1-NN estimator has
rather similar convergence properties. It is slightly surprising that
the local linear estimator is worse than 1-NN even for quite large
number of samples. Thus it seems that this estimator has some
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Fig. 2. Toy example 2: residual variance estimation. The dashed line corresponds

to the Gamma test, the dotted to the modified 1-NN, the solid to the 1-NN and the

solid-dotted to the local linear estimator.
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Fig. 3. Toy example 3: residual variance estimation. The dashed line corresponds

to the Gamma test, the dotted to the modified 1-NN, the solid to the 1-NN and the

solid-dotted to the local linear estimator.
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Fig. 1. Toy example 1: residual variance estimation. The dashed line corresponds

to the Gamma test, the dotted to the modified 1-NN, the solid to the 1-NN and the

solid-dotted to the local linear estimator.
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difficulties in nonlinear problems unless the number of samples is
high.
5.3. Heteroscedastic noise

To examine the behavior of the estimators under heterosce-
dastic noise, we generate examine the toy example

Y ¼ 1
2 ð1þ rÞsinðpXð1ÞÞsinðpXð2ÞÞ þ 1

2ð1þ rÞsinðpXð3ÞÞsinðpXð4ÞÞ; ð17Þ

again with r�Nð0;0:8Þ and X�Nð0; IÞ. The only difference to
Eq. (16) is that the noise is multiplicative with variance 0:1.
As our theoretical considerations led as to expect, all the methods
are again consistent as seen from Fig. 3 and the accuracy is about
the same as in the previous toy example. In terms of bias, the
situation is rather similar to the previous toy example as indicated
by the modified 1-NN estimator, which cannot suffer from any
additional bias by our theoretical analysis. Thus this example
leads to the interesting experimental conclusion, that all the
estimators are insensitive to heteroscedasticity.
6. Choosing structural parameters for a learning machine

In this section we demonstrate an important application of
residual variance estimators: model structure selection. For
example in multilayer perceptron networks (MLP) this means
choosing the number of neurons in the hidden layers, whereas an
alternative is to use a complex model with regularization. Another
example is least-squares support vector machines (LS-SVM),
where two hyperparameters must be chosen. The idea is to set a
target (the residual variance) that the training error should reach
thus avoiding the need of leave-one-out (LOO) or alternative
estimators of the generalization error.

6.1. MLP

The MLP is a widely used model, which has the uniform
approximation capability. Here we address the problem of
choosing the number of neurons to obtain the least possible
generalization error.

By training an MLP for a number of neurons increasing from 1
to L for some L40, a set of models with increasing complexity is
obtained. In principle, if local minima are avoided, the training error
is a decreasing function of the number of neurons approaching to
zero as the model complexity grows. However, of course in practice
this is not always true as local minima may be difficult to avoid.

The problem of overfitting occurs when the number of neurons
is too high. This means that the model becomes overly complex
with a poor generalization performance. Recall now that the
residual variance is the best possible generalization error obtain-
able; this means that a model with a training error higher than it
tends to underfit, whereas in the opposite case, overfitting is
likely. Thus we would like the training error be close to the
residual variance motivating the following algorithm:
1.
 Choose L40 and train an MLP for the number of neurons 1 . . . L.

2.
 Calculate an estimate of the residual variance.

3.
 Of the resulting models, choose the one that has the least

number of neurons among those networks that have a training
error below the estimated residual variance.

The advantage of the proposed method is that it is faster than
the traditional k-fold cross-validation method by the factor k.
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Table 1
Toy example: test errors after model structure selection using cross-validation.

MLP (10-fold CV) 0.278 (5)

LS-SVM (10-fold CV) 0.270

The number of neurons is in parentheses.

Table 2
Toy example: test errors of the model structure selection using residual variance

estimators.
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Moreover, it is less prone to local minima as the performance goal
is always met.

6.2. LS-SVM

The least-squares support vector machine (LS-SVM) is a well-
known modification of the common support vector machine.
By using the least-squares cost function, an analytic global
solution in the training phase is obtained for fixed hyperpara-
meter values. The LS-SVM model is defined in the primal space by

Y ¼ oTfðXÞ þ b;

where the fixed function f maps the input vector X into a high
dimensional space. The idea is to find the free parameters o and b

as the solution of

argmin
o;b;e

1

2
oToþ 1

2
g
XM
i¼1

e2
i subject to Yi ¼ oTfðXiÞ þ bþ ei; i ¼ 1; . . . ;M:

Because f cannot be computed explicitly (as it is a mapping to
a high or infinite dimensional space), this optimization problem is
solved in the dual space leading to a solution of the form

m̂ðxÞ ¼
XM
i¼1

aiKðx;XiÞ þ b:

The kernel function K is defined by f; any kernel satisfying the
Mercer’s condition can be chosen. In the experiments we will use
the Gaussian kernel given by

Kðx; yÞ ¼ e�Jx�yJ2=s2 :

While the weights ðaiÞ
M
i¼1 can be solved analytically, the

hyperparameters ðg;sÞ are rather difficult to find. A commonly
used method is grid search (implemented in the LS-SVM toolbox
[2]), which, however, is time consuming. An alternative, faster,
method based on the use of noise variance estimators, is discussed
here (see also [18]).

The selection of the pair ðg;sÞ is a two-dimensional optimiza-
tion problem: for each pair, there is the corresponding cross-
validation error (we will use 10-fold CV). The idea is to convert it
into a one-dimensional problem by selecting gðsÞ in such a way
that the training error is the same as the estimate of the residual
variance. To see that this is possible, observe that for each fixed
kernel bandwidth s, the training error is a continuous decreasing
function of g approaching to zero as g-0 and the variance of the
output as g-1. Thus, for some g40 the training error must be
the same as the residual variance. The resulting one-dimensional
problem is solved by grid search, which is now easier than the
search in a two-dimensional space.
1-NN Gamma LL Mod. 1-

NN

MLP 0.278 (5) 0.278 (5) 0.278 (5) 0.278 (5)

LS-SVM 0.276 0.282 0.282 0.279

The number of neurons is in parentheses.

Table 3
Toy example: the estimated noise variances.

1-NN Gamma LL Mod. 1-

NN

Estimate 0.26 0.27 0.27 0.26
7. Experiments on model structure selection

The experimental section on model structure selection consists
of simulations on three different data sets.

7.1. Toy example

The first experiment is made using data generated by the
model

Y ¼ sinð2pXð1ÞÞsinð2pXð2ÞÞ þ r;

with the residual r following the normal distribution and X

uniform on ½0;1�2. The number of points in the training set is
chosen as 1000 and for the test set, 10 000 realizations are
generated. To compare different models, the mean squared error is
calculated. The variance of the residual is 0.25.

As a first step, results using 10-fold cross-validation (CV) to
choose the model structure for the MLP and LS-SVM were
calculated. For the MLP this means choosing the number of
neurons to minimize the CV error and correspondingly for the LS-
SVM the hyperparameters (regularization, kernel bandwidth) are
chosen. The test errors are reported in Table 1. In this problem
they are very close to the residual variance. To optimize the MLP,
50 different initial conditions are used for each training together
with Levenberg–Marquardt optimization to avoid local minima as
much as possible. Of the resulting MLPs, the one giving the lowest
training error is chosen. The number of neurons varies from 1 to
20. To optimize the LS-SVM, the gridsearch method implemented
in [2] is used.

Next results for the model structure selection method using
residual variance estimators are calculated. The training of the
MLP is implemented in a similar way as described before with the
number of neurons varying between 1 and 20. Each estimator is
used to pick up one model from the 20 different models; thus the
test errors are the same when the same number of neurons is
picked. As explained in Section 6.2, the optimization problem of
finding the hyperparameters of the LS-SVM is reduced to a one-
dimensional problem, which can be solved rather easily. Here,
gridsearch is used to solve the resulting nonlinear optimization
problem. The results of this experiment are in Table 2.

We can see that the normalized mean squared test errors are
essentially the same in Tables 1 and 2; thus in this example the
gain in computational speed does not come at the cost of
decreased performance. Table 3 shows that the estimated noise
variances are rather close to the true value.

7.2. Stereopsis

The stereopsis data set is a well-known benchmark originating
from the Evaluating Predictive Uncertainty Challenge organized
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Table 8
Boston: model structure selection using residual variance estimators.

1-NN Gamma LL Mod. 1-

NN

MLP 0.088 (2) 0.088 (2) 0.076 (3) 0.088 (2)

LS-SVM 0.17 0.18 0.13 0.17

The selected number of neurons is in parentheses.

Table 9
Boston the estimated value of the noise-to-signal ratio Var½r�=Var½Y�.

1-NN Gamma LL Mod. 1-

NN

Estimate 0.16 0.17 0.088 0.15
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by the PASCAL network of excellence [1]. It consists of
192 samples for training and 300 for testing. The number of
variables is four.

The results in Table 4 correspond to the training using 10-fold
cross-validation and the corresponding results for the residual
variance based training methods are in Table 5. The training is
performed in a similar fashion as in Section 7.1.

In this example we see some decrease in performance
depending on the chosen estimator of residual variance. Clearly
the local linear estimator gives the best results, whereas the
simple 1-NN estimator is not accurate enough. Moreover, the
training based on the use of residual variance estimators resulted
in less complicated models for the MLP. Table 6 gives more
interesting details about the reason behind the obtained values:
the local linear estimator gives much smaller estimates than the
other ones. This is because it tends to be less unbiased in problems
with a small amount of samples.
7.3. Boston housing data

The Boston housing data set is another well-known bench-
mark. The data consists of 506 points, the output describing the
median value of homes in American towns in USD and the input
consisting of a set of attributes [9]; here the original data set is
permuted randomly.

As a first step we trained the MLP and LS-SVM using 10-fold
CV; the results are shown in Table 7. It can be seen that
the obtained accuracy is not high. The results with residual
variance estimators are shown in Tables 8 and 9. Again, a similar
Table 4
Stereopsis: model structure selection using cross-validation.

MLP (10-fold CV) 0.014 (18)

LS-SVM (10-fold CV) 0.00013

The reported values are the MSEs on the test set. The selected number of neurons

is in parentheses.

Table 5
Stereopsis: model structure selection using residual variance estimators (NMSE on

the test set).

1-NN Gamma LL Mod. 1-NN

MLP 0.0013 (1) 0.0013 (1) 0.0013 (1) 0.0013 (1)

LS-SVM 0.088 0.014 0.0020 0.0064

The selected number of neurons is in parentheses.

Table 6
Stereopsis: the estimated value of the noise-to-signal ratio Var½r�=Var½Y �.

1-NN Gamma LL Mod. 1-

NN

Estimate 0.10 0.015 0.0017 0.0063

Table 7
Boston: model structure selection using cross-validation (NMSE on the test set).

MLP (10-fold CV) 0.33 (11)

LS-SVM (10-fold CV) 0.24

The selected number of neurons is in parentheses.
procedure as in the previous section was made to try to avoid local
minima for the MLP. Surprisingly the NMSE values are much lower
than in Table 7. Again the local linear estimator seems to be a good
choice. Thus in this example not only we have a speed-up in
computation, but also the obtained models are much more
accurate.

The results are comparable to other results like those in [24].
One must note that here we did not perform input selection; in
general input selection helps to avoid the curse of dimensionality.
8. Input selection

To define the problem of input selection, let us assume that the
data is generated by the model

Y ¼ mðXÞ þ r ¼ mðXð1Þ; . . . ;XðlÞÞ þ r:

In practical modelling tasks, the number of variables in
X ¼ ðXð1Þ; . . . ;XðlÞÞ may be high bringing problems with the curse
of dimensionality and computational complexity. For example,
especially distance-based methods suffer from a fast decrease in
performance when l grows as demonstrated in [13]. Thus it is of
importance to find a small subset of inputs ðXðj1Þ; . . . ;XðjkÞÞ that
would still allow us to model Y.

To perform input selection, one needs a measure of relevance
to evaluate different combinations of inputs. Here we propose the
use of the residual variance as such a measure. At first sight a good
idea would seem to be to evaluate a large amount of subsets of
inputs and then take the one that minimizes the residual
variance; however, this approach contains one important flaw:
the combination that minimizes the residual variance is taking all
the variables.

However, in practice all the estimators are biased. So one way
to avoid the monotonicity is to use an estimator that has an
exploitable bias. In [4] it has been proven that the 1-NN estimator
is such an estimator: adding too many variables tends to increase
the estimated residual variance. In a simple case this can be stated
as follows:

Theorem 9. Assume that the sample ðXiÞ
M
i¼1 is generated by the

linear model

Y ¼ wT X þ bþ e;

with e independent noise and X a uniform random variable. Let I be

the set of indices

I ¼ fi : wðiÞa0g
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and let ÎM be the subset that minimizes the 1-NN estimator. Then

PðÎM ¼ IÞ-1

as M-1.

Moreover, it seems that this theorem can be generalized to the
nonlinear case, even though this has not yet been proven
theoretically. The idea is that, while the estimator converges to
the true value, choosing too many variables tends to give a too
large value. Thus we may conclude that the 1-NN estimator can be
used to select inputs. However, many theoretical issues as the rate
of convergence remain a topic of future research.

Is it possible to use some of the other estimators in a similar
way? The answer to this question is negative as will be seen in the
experimental section.
Table 11
Tecator: results without input selection (NMSE on the test set).

LS-SVM (10-fold CV) 0.069

Table 12
Tecator: results with input selection (NMSE on the test set).

MLP (10-fold CV) 0.013

LS-SVM (10-fold CV) 0.040

The selected inputs are 951, 952, 984, 990 and 991 nm.

Table 13
Computer activity data: the features.

Attribute Short description

1� Reads (transfers per second ) between system memory and user

memory

2 Writes (transfers per second) between system memory and user

memory

3� Number of system calls of all types per second

4 Number of system read calls per second

5� Number of system write calls per second

6� Number of system fork calls per second

7� Number of system exec calls per second

8� Number of characters transferred per second by system read calls

9� Number of characters transferred per second by system write calls

10 Number of page out requests per second

11 Number of pages, paged out per second

12 Number of pages per second placed on the free list
9. Experiments on input selection

In this section, input selection using residual variance
estimators is demonstrated through three experiments on
different data sets.

9.1. Toy example

We generated data from the model

Y ¼ Xð1ÞXð2Þ þ sinXð3Þ þ e;

with Gaussian noise e and the covariate X an eight-dimensional
random vector on the unit cube. To perform the input selection, all
combinations of inputs are tried and the one minimizing the
estimator is selected. A good input selection method should be
able to pick up the first three ones with a high probability.

The results of the experiment are shown in Table 10.
The number of samples is 1000 and the variance of the noise is
varied (the values 1/600, 1/200 and 3/200 were tried). Because the
number of variables is low, we were able to test all possible input
combinations with each residual variance estimator.

The superiority of the 1-NN based method is clear as expected;
the rest of the methods are not able to solve this simple toy
example. The conclusion is that there is only one method that can
be used for input selection. The performance of input selection
seems dependent on the level of noise as expected, but the 1-NN
method is rather robust. However, it is interesting to notice that
the Gamma test and the local linear estimator are always able to
choose the right combination, but tend to pick up too many
variables.

9.2. Tecator

The tecator data set is well-known in the field of chemometry
[20]. The input consists of a set of continuous spectra discretized
at the frequency interval 950..1050 nm, the dimension of the
discretized space being 100. The output is the fat content of meat
samples.
Table 10
Toy example: the percentage of the correct input combination.

Var½e� 1/600 1/200 3/200

1-NN 100 (100) 100 (100) 86 (100)

Mod. 1-NN 40 (90) 17 (88) 8 (92)

Gamma 0 (100) 0 (100) 0 (100)

LL 21 (100) 8 (100) 3 (100)

In parentheses, the number of runs, where the correct inputs were a subset of the

selected variables.
As a first step, the LS-SVM is trained on the whole data set
without input selection. The MLP is not trained, because without
regularization it overfits. The obtained result is in Table 11. Next
the input selection procedure was performed using the 1-NN
estimator. To find the minimizing subset of variables, 10 different
initial conditions were tried one being the empty set and the rest
random subsets. As the search algorithm, we used forward–
backward selection (see for example [22]), which proceeds at each
iteration by removing or adding a variable in such a way that the
cost function decreases as much as possible. Such a stepwise
method is prone to local minima; thus trying many initial
conditions is recommended.

The selected frequencies are 951, 952, 984, 990 and 991 nm.
In Table 12 we have trained models with these inputs using cross-
validation. Compared to the results in [20], the results of the
LS-SVM are worse. This may be due to the grid search method
used in the optimization phase which may find suboptimal
solutions. Also, in [20], a spline compression method is used to
reduce the dimensionality of the input space prior to input
selection. However, especially the result of the MLP reveals that
the select input variables indeed contain relevant information of
the fat content as the prediction accuracy is rather good.

9.3. Computer activity data

The computer activity data consists of a collection of computer
systems activity measures obtained from a Sun Sparcstation
13 Number of pages checked if they can be freed per second

14 Number of page attaches per second

15� Number of page-in requests per second

16 Number of pages paged in per second

17� Number of page faults caused by protection errors (copy-on-writes)

18� Number of page faults caused by address translation

19 Process run queue size

20� Number of memory pages available to user processes

21� Number of disk blocks available for page swapping

22 Portion of time that cpus run in user mode

The selected inputs by the 1-NN estimator are marked by (*). Notice that feature 22

corresponds to the output to be predicted.
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Table 14
Computer activity data: results without input selection (NMSE on the test set).

LS-SVM (10-fold CV) 0.18

MLP (10-fold CV) 0.028

Table 15
Computer activity data: results with input selection (NMSE on the test set).

LS-SVM (10-fold CV) 0.064

MLP (10-fold CV) 0.025
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20/712 with 128 Megabytes of memory. The data consists of
22 attributes explained in Table 13. The task is to predict the
portion of time that cpus run in user mode. As many real world
data sets, the computer activity measurements are temporally
correlated making the regression task more difficult.

As a first step, we trained the LS-SVM and MLP without input
selection with the results in Table 14. Again model selection was
made using 10-fold cross-validation. Secondly, we added variable
selection using the 1-NN estimator; the results are shown in
Table 13. We can see that 12 inputs were chosen. The test
results using these variables together with 10-fold CV are found in
Table 15.

It can be seen that the performance of the LS-SVM was
improved significantly, whereas the MLP is equally good in both
cases. Thus we may conclude that in this experiment, we were
able to reduce model complexity without compromising the
prediction accuracy.
10. Conclusion

In this paper, we discussed the concept of residual variance.
Efficient methods for estimating it were surveyed and theoretical
results were given. The theoretical analysis led to conclusions that
were supported by experimental analysis; the 1-NN estimator is
the least accurate, whereas the modified 1-NN and Gamma test
estimators are the best in terms of accuracy.

Two important applications of residual variance estimators in
machine learning were presented, model structure selection and
input selection. For model structure selection, it is essential to use
an accurate estimator such as the modified 1-NN estimator or the
Gamma test. The experimental results show that using residual
variance estimation to choose the structural parameters of a
model lead to good models while at the same time the
computational complexity is reduced compared to minimizing a
cross-validation error.

When doing input selection with residual variance estimators,
we recommend using the 1-NN estimator. Experimental results
reveal that the monotonicity of residual variance leads to bad
solutions even in simple problems when other estimators are
used. A recent theoretical result [4] reveals that the 1-NN
estimator does not suffer from the same problem as the other
estimators and this conclusion is supported by our experiments,
where good input combinations were consistently selected. We
obtained significant reduction in model complexity while at the
same time, prediction accuracy was not compromised.

As a topic of future research, we find the case of sparse high
dimensional data important. However, based on the experiments
we may conclude that the modified 1-NN and Gamma test
estimators perform rather well even in this case.
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[13] E. Liitiäinen, F. Corona, A. Lendasse, Nearest neighbor distributions and noise
variance estimation, in: ESANN 2007, European Symposium on Artificial
Neural Networks, Bruges, Belgium, 2007.
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