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a b s t r a c t

Dimensionality reduction aims at providing low-dimensional representations of high-dimensional data

sets. Many new nonlinear methods have been proposed for the last years, yet the question of their

assessment and comparison remains open. This paper first reviews some of the existing quality

measures that are based on distance ranking and K-ary neighborhoods. Next, the definition of the co-

ranking matrix provides a tool for comparing the ranks in the initial data set and some low-dimensional

embedding. Rank errors and concepts such as neighborhood intrusions and extrusions can then be

associated with different blocks of the co-ranking matrix. Several quality criteria can be cast within this

unifying framework; they are shown to involve one or several of these characteristic blocks. Following

this line, simple criteria are proposed, which quantify two aspects of the embedding quality, namely its

overall quality and its tendency to favor intrusions or extrusions. They are applied to several recent

dimensionality reduction methods in two experiments, with both artificial and real data.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Research about dimensionality reduction (DR) deals with
techniques that provide a meaningful low-dimensional represen-
tation of a high-dimensional data set. Linear DR is well known,
with techniques such as principal component analysis [13] and
classical metric multidimensional scaling [44,35]. On the other
hand, nonlinear dimensionality reduction (NLDR) [22] emerged
later, with nonlinear variants of multidimensional scaling
[32,17,33], such as Sammon’s nonlinear mapping (NLM) [29].
For the past 25 years, this field of research has deeply evolved
and after some interest in neural approaches [14,16,26,7,24],
the community has recently focused on spectral techniques
[31,34,27,3,10,41]. Modern NLDR encompasses the domain of
manifold learning and is also closely related to graph embedding
[9] and spectral clustering [4,28,25,5].

In the most general setting, DR transforms a set of N

high-dimensional vectors, denoted N ¼ ½ni�1pipN , into N low-
dimensional vectors, denoted X ¼ ½xi�1pipN . In manifold learning,
it is assumed that the vectors in N are sampled from a smooth
manifold. Under this hypothesis, the goal of NLDR is then to
re-embed the manifold in a space of the lowest possible
ll rights reserved.
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dimensionality, without modifying its topological properties.
For this purpose, the embedding theorem [43] can help deduce
the lowest embedding dimensionality, which is related to the
manifold intrinsic dimensionality [11].

In practice, however, neither the intrinsic dimensionality nor
the topological properties can easily be identified, starting from a
set of points. Therefore, the goal of NLDR is most often to preserve
the structure of the data set, which is indicated for instance by
some sort of neighborhood relationships [14], such as proxi-
mities or similarities. In other words, NLDR provides some low-
dimensional representation that is meaningful in some sense,
with respect to those specific relationships. As a well-known
example, proximities can be obtained by measuring pairwise
distances [29,7,8] in the data set N, with some metric. Sometimes
the coordinates in N are unknown and the collected data consist
of pairwise distances. If the data set does not specify all distances,
then the problem can elegantly be modeled using a graph,
in which edges are present for known entries of the pairwise
distance matrix. The edge weights can be binary- or real-valued,
depending on the data nature. Some NLDR techniques also involve
a graph even if all pairwise distance are available. For instance,
a graph can be used to focus on small neighborhoods [27] or to
approximate geodesic distances [34,20] with weighted shortest
paths. This illustrates that NLDR and graph embedding share
many similarities.

As a matter of fact, the scientific community has been focusing
on the design of new NLDR methods and the question of quality
assessment remains mostly unanswered. As most NLDR methods
optimize a given objective function, a simplistic way to assess
the quality is to look at the value of the objective function after
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convergence. Obviously, this allows us to compare several runs
with e.g. different parameter values, but makes the comparison of
different methods unfair. Another obvious criterion is the
reconstruction error. If an NLDR technique provides us with a
mapping M such that x ¼MðnÞ, then the reconstruction can be
written as the expectation

Erec ¼ Efðn�M�1
ðMðnÞÞÞ2g. (1)

The reconstruction error is a universal quality criterion, but it
requires the availability of M and M�1 in closed form, whereas
most NLDR methods are nonparametric (they merely provide
values of M for the known vectors ni). The minimization of the
reconstruction error is the approach that is followed by PCA and
nonlinear auto-encoders [16,26]. Still another approach men-
tioned in the literature consists in using an indirect performance
index, such as a classification error (see for instance [30,42] and
other references in [36]). Obviously, this works only for labeled
data. Eventually, a last possibility consists in sticking to the
intrinsic goal of NLDR and we can try to assess the preservation of
the data set structure. Quality assessment then relies on the same
principles as those that guide the design of an objective function.
However, as the objective function is usually intended to be
optimized by typical techniques such as gradient descent, it must
fulfill some requirements as to continuity and differentiability. In
contrast, these constraints can be relaxed in the definition of a
quality criterion, as it just needs to be evaluated. This opens the
way to potentially more complex quality criteria that more
faithfully assess the preservation of the data set structure. First
attempts in this direction can be found in the particular case of
self-organizing maps (SOMs) [14]; see for instance the topo-
graphic product [1] and the topographic function [40]. More
recently, new criteria for quality assessment have been proposed,
with a broader applicability, such as the trustworthiness and
continuity (T&C) measures [37], the local continuity meta-
criterion (LCMC) [6], and the mean relative rank errors (MRREs)
[22]. All these criteria analyze what happens in K-ary neighbor-
hoods, for a varying value of K . In practice, these neighborhoods
result from the ranking of distance measures. This is a funda-
mental difference, compared to older quality criteria that
classically quantify the preservation of pairwise distances, with
a stress function [17,29].

The first aim of this paper is to review some of these recent
rank-based criteria. The definition of a co-ranking matrix [23]
allows us to compare them from a theoretical point of view,
so that a unifying framework can emerge. Eventually, this
framework also provides us with arguments to propose new
measures.

This paper is organized as follows. Section 2 introduces the
notations for distances, ranks, and neighborhoods. Section 3
reviews existing rank-based criteria. Section 4 unifies the different
approaches and proposes new ones. Section 5 shows some
experimental results. Finally, Section 6 draws the conclusions.
2. Distances, ranks, and neighborhoods

Most NLDR techniques involve distances in a more or less
direct way. The symbol dij denotes the distance from ni to nj in the
high-dimensional space. Similarly, dij is the distance from xi to xj

in the low-dimensional space. Notice that we assume that dij ¼ dji

and dij ¼ dji, although this hypothesis is not always required. For
instance, it does not hold true if dij and dji stem from distinct
experimental measurements. No assumption is made as to the
metrics that are associated with the high- and low-dimensional
spaces, which can be different. Starting from distances, we can
compute ranks.
The rank of nj with respect to ni in the high-dimensional space
is written as rij ¼ jfk : dikodij or ðdik ¼ dij and kojÞgj, where j � j
denotes the set cardinality. Similarly, the rank of xj with respect to
xi in the low-dimensional space is rij ¼ jfk : dikodij or ðdik ¼ dij

and kojÞgj. Hence, reflexive ranks are set to zero ðrii ¼ rii ¼ 0Þ
and ranks are unique, i.e. there are no ex aequo ranks: rijarik for
kaj, even if dij ¼ dik. This means that nonreflexive ranks belong to
f1; . . . ;N � 1g. The nonreflexive K-ary neighborhoods of ni and xi

are denoted by nK
i ¼ fj : 1prijpKg and nK

i ¼ fj : 1prijpKg, respec-
tively.

The co-ranking matrix [23] can then be defined as

Q ¼ ½qkl�1pk;lpN�1 with qkl ¼ jfði; jÞ : rij ¼ k and rij ¼ lgj. (2)

Computing Q requires 2N sorting operations and therefore the
time complexity is OðN2 log NÞ with a typical sorting algorithm.

The co-ranking matrix is the joint histogram of the ranks and is
actually a sum of N permutation matrices of size N � 1. With an
appropriate gray scale, the co-ranking matrix can also be
displayed and interpreted in a similar way as a Shepard diagram
[32]. Historically, this scatterplot has often been used to assess
results of multidimensional scaling and related methods [8]; it
shows the distances dij with respect to the corresponding
distances dij, for all pairs ði; jÞ, with iaj. The analogy with a
Shepard diagram suggests that meaningful criteria should focus
on the upper and lower triangle of the co-ranking matrix Q .
Following this line, we define the rank error to be the difference
rij � rij. We call an intrusion the event of a positive rank error for
some pair ði; jÞ. In other words, for values of K such that rijpKorij,
the jth vector is an intruder in the K-ary neighborhood nK

i , with
respect to the genuine neighborhood nK

i . Similarly, an extrusion

denotes the event of a negative rank error. The amplitude of an
intrusion or extrusion refers to the absolute value of the
corresponding rank error.

In order to focus on K-ary neighborhoods, we also define a
K-intrusion (resp. K-extrusion) to be the conjunction of an
intrusion (resp. extrusion) for some pair ði; jÞ with the event
rijoK (resp. rijoK). We can further distinguish mild and hard
K-intrusions. The former correspond to the event rijorijpK ,
whereas the latter is associated with the event rijpKorij. Similar
definitions for mild and hard K-extrusions can easily be deduced.
Intuitively, mild K-intrusions and mild K-extrusions correspond to
vectors that are, respectively, ‘‘promoted’’ and ‘‘downgraded’’, but
still remain in both nK

i and nK
i .

The various types of intrusions and extrusions can be
associated with different blocks of the co-ranking matrix. For this
purpose, we divide the co-ranking matrix into four blocks that
separate the first K rows and columns. If we define FK ¼ f1; . . . ;Kg
and LK ¼ fK þ 1; . . . ;N � 1g, the index sets of the upper-left,
upper-right, lower-left, and lower-right blocks are

ULK ¼ FK � FK ; URK ¼ FK � LK ,

LLK ¼ LK � FK ; LRK ¼ LK � LK . (3)

Similarly, the block covered by ULK can be split into its main
diagonal and lower and upper triangles:

DK ¼ fði; iÞ : 1pipKg, (4)

LTK ¼ fði; jÞ : 1oipK and joig, (5)

UTK ¼ fði; jÞ : 1pioK and j4ig. (6)

According to this division, K-intrusions and K-extrusions are
located in the lower and upper trapezes, respectively (i.e. LTK [

LLK and UTK [URK ). Hard K-intrusions and K-extrusions are
found in the blocks LLK and URK , respectively. In a similar way,
mild K-intrusions and K-extrusions are counted in the triangles
LTK and UTK , respectively.
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3. Rank-based criteria

This section reviews some of the recently published criteria
that rely on ranks. Beside the definition found in the literature, we
give an equivalent expression in terms of the co-ranking matrix.

The T&C measures [37,38] are defined as

MTðKÞ ¼ 1�
2

GK

XN

i¼1

X
j2nK

i
nnK

i

ðrij � KÞ ¼ 1�
2

GK

X
ðk;lÞ2LLK

ðk� KÞqkl, (7)

MCðKÞ ¼ 1�
2

GK

XN

i¼1

X
j2nK

i
nnK

i

ðrij � KÞ ¼ 1�
2

GK

X
ðk;lÞ2URK

ðl� KÞqkl, (8)

where the normalizing factor

GK ¼
NKð2N � 3K � 1Þ if KoN=2;

NðN � KÞðN � K � 1Þ if KXN=2

(
(9)

considers the worst case [36], i.e. ranks are reversed in the low-
dimensional space and the co-ranking matrix is anti-diagonal.
Both the T&C can theoretically vary between 0 and 1, although the
worst case is seldom encountered in practice. Notice that the
embedding quality is described by two criteria, which distinguish
two types of errors. Faraway vectors that become neighbors
decrease the trustworthiness, whereas neighbors that are em-
bedded faraway from each other decrease the continuity. As can
be seen, the reformulation in terms of the co-ranking matrix
shows that the trustworthiness is related to the hard K-intrusions,
whereas the continuity involves the hard K-extrusions, with some
weighting.

The MRREs [22] rely on the same principle as the T&C. They are
defined as

WnðKÞ ¼
1

HK

XN

i¼1

X
j2nK

i

jrij � rijj

rij

¼
1

HK

X
ðk;lÞ2ULK[LLK

jk� lj

l
qkl, (10)

WnðKÞ ¼
1

HK

XN

i¼1

X
j2nK

i

jrij � rijj

rij
¼

1

HK

X
ðk;lÞ2ULK[URK

jk� lj

k
qkl, (11)
T&CLCMC

Unweighted

Fig. 1. For all (pairs of) quality criteria, a schematic illustration of the co-ranking matri

block ULK is covered twice. The second row corresponds to the pairs fUNðKÞ;UXðKÞg an
where the normalizing factor

HK ¼ N
XK

k¼1

jN � 2kþ 1j

k
(12)

considers the worst case, like that of T&C. The differences between
the MRREs and the T&C are found in the weighting of the
elements qkl and the blocks of Q that are covered. The MRREs
involve the first K rows and columns of Q . Hence, the first error
involves all K-intrusions (hard and mild), along with the mild
K-extrusions. The second error takes into account all K-extrusion
and the mild K-intrusions.

The LCMC [6] is defined as

ULCðKÞ ¼
1

NK

XN

i¼1

nK
i \ n

K
i

�� ��� K2

N � 1

 !
¼

K

1� N
þ

1

NK

X
ðk;lÞ2ULK

qkl,

(13)

where the subtracted term is a ‘‘baseline’’ that corresponds to the
expected overlap between two subsets of K elements out of N � 1.
In contrast to the MRREs and T&C, the LCMC yields a single
quantity that is computed over the block ULK of Q . Notice also
that the elements qkl in the block ULK are not weighted in the
sum and that the normalization is simpler.

From an intuitive point of view, T&C and MRREs try to detect
what goes wrong in a given embedding, whereas the LCMC
accounts for things that work well. The prominent strength of T&C
and MRREs is their ability to distinguish two sorts of undesired
events. On the other hand, in contrast to the LCMC, they cannot
directly express the overall performance of an NLDR method by
means of a single scalar. All these observations are visually
summarized in Fig. 1, which illustrates the blocks of the co-
ranking matrix that are covered by the various quality criteria.
4. Unifying framework

The error and quality measures described in the previous
section can be related to the concepts of precision and recall (P&R)
MRREs

Weighted

x is shown: the blocks that are taken into account are shaded. For the MRREs, the

d fWv;w
N ðKÞ;W

v;w
X ðKÞg, which are defined in Section 4.
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in the domain of information retrieval [39]. The precision is the
proportion of relevant items among the retrieved ones, whereas
the recall is the proportion of retrieved items among the relevant
ones. For rank-based criteria, relevant items are the indices that
belong to nK

i , whereas nK
i contains the retrieved indices. The P&R

are themselves related to the concepts of false positive and false
negative in classification. False positive decrease the precision and
false negatives decrease the recall. If we compare the retrieved
neighborhoods to the relevant ones, the blocks of Q covered by
ULK , LLK , URK , and LRK contain the true positives, the false
positives, the false negatives, and the true negatives, respectively.
Hence, the LCMC quantifies the true positives, the T&C focus on
the false positives and false negatives, and the MRREs encompass
the positives (true and false) and negatives (true and false).
Obviously, as nK

i and nK
i have the same size, the numbers of false

positives and false negatives are the same. Each element of nK
i that

is missed in nK
i (a false negative) is replaced with an incorrect

neighbor (a false positive). Formally, this can also be demon-
strated by observing that Q is a sum of N permutation matrices,
and thus

8k;
XN�1

l¼1

qkl ¼ N and 8l;
XN�1

k¼1

qkl ¼ N. (14)

As we compute ranks starting from N reference points, we have
always N kth neighbors. Therefore, we have

X
ðk;lÞ2ULK[LLK

qkl ¼
X

ðk;lÞ2ULK[URK

qkl ¼ KN (15)

and

X
ðk;lÞ2LLK

qkl ¼
X

ðk;lÞ2URK

qkl. (16)

This shows that the numbers of hard K-intrusions and hard
K-extrusions are equal. As a corollary, without an appropriate
weighting of the elements qkl, we would end up with the
equalities MTðKÞ ¼ MCðKÞ and WnðKÞ ¼WnðKÞ. On the other hand,
the absence of weighting in the LCMC is obviously not critical.

At this point, we see that the analogy between T&C on one side,
and false positives and negatives on the other side, must be
interpreted carefully. Hence, T&C do not aim at counting the
average number of false positives/negatives in K-ary neighbor-
hoods. Instead, the goal consists in estimating how bad data
vectors are misranked. This suggests that meaningful criteria
should be computed on both sides of the diagonal of the co-
ranking matrix Q , in order to optimally reveal the dominance of
either intrusions or extrusions. For instance, weighted averages
that take into account all K-intrusions and K-extrusions can be
written as

Wv;w
N ðKÞ ¼

1

CK

X
ðk;lÞ2LTK[LLK

ðk� lÞv

kw qkl, (17)

Wv;w
X ðKÞ ¼

1

CK

X
ðk;lÞ2UTK[URK

ðl� kÞv

lw
qkl, (18)

where

Cv;w
K ¼

NK if v ¼ w ¼ 0

N
PK
k¼1

maxf0;N � 2kgv

kw if vX1

8><
>: . (19)

The integer exponents v and w are such that vXwX0 and can be
adjusted in order to emphasize large rank differences, relatively to
the reference rank. The normalization is based on the worst case.
For vX1, it corresponds to a co-ranking matrix that is anti-
diagonal. For v ¼ w ¼ 0, if ei denotes the ith basis vector, then the
normalization considers the two circulant matrices4 generated by
vectors Ne2 for Wv;w

N ðKÞ and NeN�1 for Wv;w
X ðKÞ.

Choosing v ¼ 1 and w ¼ 1 gives the same weighting as in
MRREs, whereas the combination v ¼ 1 and w ¼ 0 leads to a
similar weighting as that of T&C. Looking at the blocks they are
covering (see Fig. 1), the two proposed criteria occupy an
intermediate position between T&C and MRREs: they involve
more elements than the former, but fewer than the latter.

In order to obtain a single and global quality criterion, we can
define

Qv;w
wNX ¼ 1�

Wv;w
N ðKÞ þWv;w

X ðKÞ

2
, (20)

which increases if both numbers of intrusions and extrusions
diminish. Information about the overall quality can be completed
by the quantity

Bv;w
wNX ¼Wv;w

N ðKÞ �Wv;w
X ðKÞ, (21)

which reveals the ‘‘behavior’’ of a DR method. For vX1, positive or
negative values, respectively, indicate that the produced embed-
ding is ‘‘intrusive’’ or ‘‘extrusive’’. Being intrusive or extrusive is
thus related with the occurrence of large rank errors that are
highly penalized in either Wv;w

N ðKÞ or Wv;w
X ðKÞ. Nevertheless, the

weighting scheme involved in Wv;w
N ðKÞ and Wv;w

X ðKÞ can be
questioned. As a matter of fact, choosing values for v and w

proves to be somewhat arbitrary. This can be shown by
considering the combination v ¼ w ¼ 0. In this case indeed, the
weighting factors degenerate, all rank errors are on the same
footing, and only the numbers of intrusions and extrusions are
relevant. Due to the properties of the co-ranking matrix, we can
see that these numbers are actually related. For this purpose, let
us consider some neighborhood size K5N and a single permuta-
tion matrix P among those constituting the co-ranking matrix.
Starting from P equal to the identity, imagine that we observe a
hard K-intrusion, that is, we have rijpKorij for some i and j.
The resulting permutation matrix compensates for the hard
K-intrusion with one hard K-extrusion and ðK � rijÞ mild
K-extrusions, as illustrated in Fig. 2. The numbers of
hard K-intrusions and K-extrusions are equal, as expected.
Intuitively, the intrusion at some rank k shifts back all subsequent
neighbors ðrij4kÞ; their rank is increased by one unit and the last
neighbor is thus evicted from the K-ary neighborhood. As a matter
of fact, the occurrence of a single hard K-intrusion translates into
several mild K-extrusions, whose number is proportional to the
severity of the K-intrusion. Hence, on top of the observation that
the numbers of hard K-intrusions and hard K-extrusions are equal
comes the paradoxical conclusion that the number of mild
K-intrusions measures the severity of hard K-extrusions, and
vice versa. If we write the fractions of mild K-intrusions and mild
K-extrusions as

UNðKÞ ¼
1

KN

X
ðk;lÞ2LTK

qkl and UXðKÞ ¼
1

KN

X
ðk;lÞ2UTK

qkl (22)

then we can define a behavior indicator as

BNXðKÞ ¼ UXðKÞ � UNðKÞ ¼W0;0
X �W0;0

N ¼ �B0;0
wNXðKÞ. (23)

Its value is positive for intrusive embeddings and negative for
extrusive ones. The second and third equalities results from (16)
and the definitions of Wv;w

X and Wv;w
X . In particular, the second
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equality guarantees that BNXðKÞ is equal to the difference between
the fractions of all K-extrusions and all K-intrusions (both mild
and hard ones). Keeping the focus on quantities computed inside
K-ary neighborhoods and following the same idea as that behind
the LCMC, we can write the fraction of vectors that keep the same
rank in both neighborhoods nK

i and nK
i as

UPðKÞ ¼
1

KN

X
ðk;lÞ2DK

qkl (24)

and an overall quality criterion as the sum

QNXðKÞ ¼ UPðKÞ þ UNðKÞ þ UXðKÞ ¼ ULCðKÞ þ
K

N � 1
, (25)
Mild K-intrusions

Hard K-intrusions 

Mild K-extrusions Hard K-extrusions

N-1

N-1

K

K

1

1 rij

�ij

Fig. 2. Intuitive illustration of the relationship between the severity of hard

K-intrusions and the number of mild K-extrusions. Transposition of the matrix

easily shows that a similar relationship also exists for hard K-extrusions and mild

K-intrusions. Shaded cells indicate the elements that were nonzero before the

occurrence of the hard K-intrusion at rij ¼ 8 and rij ¼ 3.

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

{BNX (K), QNX (K)}

NLM noisefree
NLM noisy
CCA noisefree
CCA noisy

Fig. 3. Quality assessment for the embeddings of the hollow sphere: QNX
where the second equality shows the relationship with the LCMC.
Because only hard K-extrusions and hard K-intrusions make it
decrease, this last quality criterion is more permissive than QwNX.
Inequality QNXðKÞXQ0;0

wNXðKÞ formally translates this statement.
In the same spirit as the pairs fQNXðKÞ;BNXðKÞg and fQv;w

wNXðKÞ;

Bv;w
wNXðKÞg, the distinction between overall quality and behavior can

be extended to the other criteria. For this purpose, one can
consider the following quantities:

QTCðKÞ ¼
MTðKÞ þMCðKÞ

2
, (26)

BTCðKÞ ¼ MCðKÞ �MTðKÞ (27)

for T&C, and

QnnðKÞ ¼ 1�
WnðKÞ þWnðKÞ

2
, (28)

BnnðKÞ ¼WnðKÞ �WnðKÞ (29)

for the MRREs. All quality and behavior criteria can be drawn
in simple diagrams as curves with respect to the neighborhood
size K.
5. Experiments

The next subsections describe two experiments that illustrate
and compare the various above-mentioned quality criteria.
The first one involves artificial data, all criteria, and two
NLDR methods. The second experiment investigates a larger set
of methods that are applied to an image database.

5.1. Artificial data: the hollow sphere

For this experiment, 1000 points are randomly drawn from a
hollow sphere whose radius is equal to one. Two data sets are
formed. The first one comprises the noisefree points, whereas
0 10 20 30 40
0.2

0.4

0.6

0.8

1

QNX (K)

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

BNX (K)

ðKÞ and BNXðKÞ for NLM and CCA, for noisefree as well as noisy data.
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Gaussian noise with standard deviation equal to 0.05 is added in
the second set. Next, the manifold has been embedded in a two-
dimensional space with Sammon’s NLM [29] and curvilinear
0 200 400 600 800 1000

0

0.2
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Fig. 4. Quality assessment for the embeddings of the hollow sphere: Q1;1
wNX
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Fig. 5. Quality assessment for the embeddings of the hollow sphere: Qnn
component analysis (CCA) [8]. Notice that we have implemented
the version of CCA described in [12], which proves to be more
robust against noise. The literature indicates [22,38] that NLM is
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known to ‘‘crush’’ the manifold (faraway points can become
neighbors), whereas CCA can ‘‘tear’’ the manifold (some close
neighbors can be embedded faraway from each other). In
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Fig. 6. Quality assessment for the embeddings of the hollow sphere: Q1;0
wNX
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Fig. 7. Quality assessment for the embeddings of the hollow sphere: QTC
other words, this means that NLM tends to produce
‘‘intrusive’’ embeddings whereas CCA rather works in an
‘‘extrusive’’ way.
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In order to present results that can be easily compared, the
following quantities are displayed:
�

Fig
righ
Fig. 3: QNXðKÞ and BNXðKÞ.

�
 Fig. 4: Q1;1

wNXðKÞ and B1;1
wNXðKÞ.
�
 Fig. 5: QnnðKÞ and BnnðKÞ.

�
 Fig. 6: Q1;0

wNXðKÞ and B1;0
wNXðKÞ.
�
 Fig. 7: QTCðKÞ and BTCðKÞ.
Each figure thus includes as many pairs of curves as there are
methods to be compared. Each pair of curves refers to an overall
quality criterion and a behavior indicator. In each figure, the left
diagram shows the whole curves, for 1pKpN � 1; the upper right
diagram focuses on the quality criterion for small values of K ,
whereas the last one does the same for the behavior indicator. In
Fig. 3, the dotted ascending line represents the LCMC baseline and
highlights the connection with QNXðKÞ.

Considering that K is a sort of scale parameter, one can
interpret the figures as follows. As DR intends to preserve local
vicinities, one method outperforms the other if it has the highest
value of the quality criterion for a wide range among the smallest
values of K. Similarly, the smallest absolute value of the behavior
indicator is desirable for the lowest values of K . As to its sign,
experiments show that methods that can produce extrusive
Fig. 8. Some faces randomly d

. 9. The face database embedded in a two-dimensional space by CDA. The left panel

t panel is a geometric graph that illustrates the K-ary neighborhoods ðK ¼ 4Þ.
embeddings usually attain higher values of the quality criterion.
Up to which value of K should we look at the curves is a difficult
question, whose answer depends on properties of the data set,
such as its size, (intrinsic) dimensionality, and noise variance.

As can be seen, all five pairs of curves show that (i) CCA
outperforms NLM and (ii) these two methods have antagonist
behaviors, as previously mentioned. Looking specifically at
quantities that involve a weighting of the co-ranking matrix
elements, we can confirm that for small values of K similarities
exist between the MRREs and fW1;1

N ðKÞ;W
1;1
X ðKÞg on the one hand,

and between T&C and fW1;0
N ðKÞ;W

1;0
X ðKÞg on the other hand. For

larger values, we can see that the common weighting shared by
the MRREs and fW1;1

N ðKÞ;W
1;1
X ðKÞg gives a higher importance to

local errors; as a consequence, the curves essentially remain flat
when K grows. On the other hand, the similar weightings of T&C
and fW1;0

N ðKÞ;W
1;0
X ðKÞg put all ranks errors on the same footing.

This explains why for those criteria the curves of NLM and CCA
rejoin or cross each other as K grows. As to noise, its absence or
presence has little influence on the four pairs of weighted
averages, although a slight difference can be observed in favor
of the noisefree data set.

Unreported experiments on the same data sets allow us to
briefly describe the influence of parameters v and w in Qv;w

wNXðKÞ

and Bv;w
wNXðKÞ as follows. The special case where v ¼ w ¼ 0 has been

investigated in the previous section. Increasing v or w flattens the
rawn from the database.

shows the same embedding with the appropriate faces attached to each point. The
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curves of Qv;w
wNXðKÞ and Bv;w

wNXðKÞ: they span a narrower and
narrower interval over the range of K. This conclusion can easily
be drawn by looking at (17) and (18): if v and/or w are increased,
the largest weighting factors tend to concentrate in the lower left
and upper right corner of the co-ranking matrix. This means that
if K grows, only smaller and smaller contributions are added to
the weighted sums Qv;w

wNðKÞ and Qv;w
wX ðKÞ.

At this point, an important result is the ability of QNXðKÞ and
BNXðKÞ to distinguish the antagonist behaviors of NLM and CCA
without any (arbitrary) weighting of the co-ranking matrix
elements. For instance, QNXðKÞ shows that if CCA succeeds in
preserving local neighborhoods better than NLM, this is at the
expense of sacrificing the preservation of the global manifold
shape. This is illustrated by the crossing of CCA and NLM curves
for K � 500 in Fig. 3. Unweighted averages also clearly identify the
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Fig. 10. Quality assessment for the face database with fQNXðKÞ;BNXðKÞg. The embeddin

Sammon’s NLM (with Euclidean and geodesic distances), CCA, CDA, Kohonen’s SOM, loc

gives an overview of the whole curves for 1pKpN, whereas the smaller plots on the r
effect of noise. For NLM as well as CCA and for small values of K , a
marked gap separates the curves associated with the noisy and
noisefree data sets. This gap then vanishes as K grows. This is
expected and corresponds to noise flattening on small scales. In
particular, the evolution of BNXðKÞ for the noisy data set embedded
with CCA conveys interesting information. This method is known
to be ‘‘extrusive’’ and it indeed tears the sphere. Locally, however,
noise must be flattened, what corresponds to an intrusive
behavior. Such a behavior reversion is nicely rendered by BNXðKÞ,
not by the other criteria. The explanation resides in the fact that
noise flattening generates many small-amplitude intrusions,
whereas tearing a manifold generally causes a few large-
amplitude extrusions. Hence, depending on the weighting of the
rank errors, the contributions of either intrusions or extrusions
can dominate. Obviously, weighted averages give too much
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importance to intrusions or extrusions associated with large rank
errors.
5.2. Real data: face images

For this experiment, the face database has been provided by
B.J. Frey. It has already been exploited in [27], for instance. There
are 1965 pictures of the same face, with different poses and
various expressions. Some of them are illustrated in Fig. 8. Each
face is 20 pixels wide and 28 pixels high. Each image is converted
into a single 560-dimensional vector that gathers the gray values
of all pixels.

The considered NLDR methods are PCA [13], Isomap [34],
Sammon’s NLM [29] (with both Euclidean and geodesic distances
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Fig. 11. Quality assessment for the face database with fQ nnðKÞ;BnnðKÞg. The embedding

Sammon’s NLM (with Euclidean and geodesic distances), CCA, CDA, Kohonen’s SOM, lo

gives an overview of the whole curves for 1pKpN, whereas the smaller plots on the r
[19,21], NLM and GNLM), CCA [8], cuvilinear distance analysis
(CDA) [19], Kohonen’s SOM [15], locally linear embedding (LLE)
[27], Laplacian eigenmaps (LE) [2,3] , and Isotop [18]. The number
of neighbors K was equal to 4 for GNLM, CDA, and Isotop. For LLE
and LE, K is equal to 12 and 6, respectively. The numbers of
iterations are 60 for the SOM, 100 for NLM, GNLM, CCA, and CDA,
and 200 for Isotop. The SOM consists of a rectangular grid of 1961
prototypes ð37� 53Þ; the grid rows are shifted so that each
prototypes has six equidistant neighbors.

The objective is to embed the database in a two-dimensional
space, for visualization purposes. Hence, the embedding dimen-
sionality is chosen regardless of the actual intrinsic dimension-
ality, which is probably higher, considering that the degrees of
freedom of facial expressions are presumably numerous. As an
examples, Fig. 9 illustrates the result of CDA. Two representations
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Fig. 12. Quality assessment for the face database with fQ TCðKÞ;BTCðKÞg. The embedding dimensionality is equal to two. The considered NLDR methods are PCA, Isomap,
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are given. The first one is intuitive and includes thumbnails that
show the faces corresponding to the embedded data points. The
second representation is a geometric graph whose vertex
coordinates are determined by the embedding, whereas the edges
stem from (symmetrized) K-ary neighborhoods in the 560-
dimensional face space, with K ¼ 4.

As to the quality assessment, only fQNXðKÞ;BNXðKÞg,
fQnnðKÞ;BnnðKÞg, and fQTCðKÞ;BTCðKÞg are shown in Figs. 10–12. All
quality measures agree as to the best and worst methods in this
experiment: CDA clearly outperforms all methods, whereas PCA
(the only linear method on the stage) delivers the weakest
performance. Iterative methods such as NLM, GNLM, CCA, and
CDA lead to rather good results; the use of geodesic distances
increases the quality for GNLM as well as CDA. Spectral methods
(Isomap, LLE, and LE) are not among the best performers. Isomap
works better than LE, which in turn systematically outperforms
LLE. All spectral methods actually turn out to be equivalent to
classical metric MDS [44,35] with a non-Euclidean and/or data-
driven metric. In the case of LLE and LE, this metric is implicitly
determined by the construction of a sparse matrix of pairwise
similarities. This induces a non-Euclidean metric that can be
related to the diffusivity [28,25] across the data set. Such a metric
is well suited for clustering [4,5] and this explains why those two
methods fail in a visualization task: large clusters are individua-
lized, but smaller neighborhoods are not well preserved. On the
other hand, Isomap relies on a metric (i.e. shortest paths in a
graph) whose geometrical interpretation in terms of manifold
geodesics is straightforward. This simpler and more pragmatic
approach proves to be more successful in the considered
visualization task.
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Compared to the majority of other methods, the SOM produces
an atypical picture: small neighborhoods are pretty well recov-
ered, but the performance indexes steeply decrease as K grows.
Isotop shows a similar but somewhat reduced performance drop
as the SOM. The explanation holds in the fact that, unlike most
other methods that explicitly rely on distance preservation, the
SOM as well as Isotop loosely try to preserve small neighborhoods
[22]. Hence ranks can change a lot beyond the scope of these small
neighborhoods. In the case of the SOM, the stronger performance
decrease is also due to the likely discrepancy between the
rectangular SOM grid and the irregular shape of the data swarm.

Looking at the behavior of the various methods shows that PCA
is the most intrusive. On the other hand, CDA and the SOM to a
lesser extent are the most extrusive methods. In the case of the
SOM, this behavior directly results from the method principle:
once the grid is fitted to the data swarm, some folds can abut and
appear away from each other in the two-dimensional representa-
tion. Notice, however, that this explanation holds for large folds
only and the SOM remains intrusive for the lowest values of K.

At this point, it seems reasonable to conclude that an extrusive
method such as CDA can provide better performance than
techniques that tend to be intrusive. Being extrusive allows CDA
to better ‘‘unroll’’ the underlying manifold, at the moderate
expense of loosing a few neighborhood relationships.

Concerning the three different pairs of quality measures, we
can see that the unweighted averages QNXðKÞ and BNXðKÞ provide
useful information over the whole range 1pKpN. On the other
hand, the weighting involved in the MRRE reduce the variability of
the curves, which are nearly flat. The T&C occupies an inter-
mediate place. Notice also that for small values of K , QNXðKÞ is
more discriminatory than the other corresponding quality criteria.
6. Conclusions

This paper has reviewed several quality criteria for the
assessment of DR. All of them rely on distance rankings in both
the high- and low-dimensional spaces. The definition of the co-
ranking matrix allows us to cast them within a unifying frame-
work.

The literature often reports the connection of these rank-based
criteria with fundamental concepts taken from information
retrieval (precision and recall) or classification (false positives
and false negatives). Properties of the co-ranking matrix show,
however, that these analogies should, be considered carefully.
Instead, the interpretation of the co-ranking matrix could be
based on its similarities with a Shepard diagram. Therefore,
quality criteria should focus on the rank errors that are distributed
on both sides of the co-ranking matrix diagonal, namely
intrusions and extrusions. According to this observation we have
proposed weighted and unweighted averages that are computed
on various blocks or triangles of the co-ranking matrix.

The experiments have involved embeddings of both synthetic
and real data, with some salient characteristics. They have been
produced by various DR methods that are known in the literature
to show some specific strengths or properties. The efficiency of
the various quality criteria has then be assessed by examining
their ability to put forward antagonist characteristics of the
embeddings. In particular, they show that computing unweighted
averages of the co-ranking matrix elements over specific
blocks provides detailed information about the embedding quality
for different neighborhood sizes. In fact, any weighting in the
quality measures inevitably turns out to be arbitrary: weighted
averages tend to purposely emphasize some types of embedding
errors but therefore they can also fail to detect others. Eventually,
the co-ranking matrix proves to be a useful tool to design
simple and discriminatory quality criteria with a straightforward
interpretation.

References

[1] H.-U. Bauer, K. Pawelzik, Quantifying the neighborhood preservation of self-
organizing maps, IEEE Transactions on Neural Networks 3 (1992) 570–579.

[2] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for
embedding and clustering, in: T. Dietterich, S. Becker, Z. Ghahramani (Eds.),
Advances in Neural Information Processing Systems (NIPS 2001), vol. 14, MIT
Press, Cambridge, MA, 2002.

[3] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Computation 15 (6) (2003) 1373–1396.

[4] Y. Bengio, P. Vincent, J.-F. Paiement, O. Delalleau, M. Ouimet, N. Le Roux,
Spectral clustering and kernel PCA are learning eigenfunctions, Technical
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