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The classification of functional or high-dimensional data requires to select a reduced subset of features

among the initial set, both to help fighting the curse of dimensionality and to help interpreting the

problem and the model. The mutual information criterion may be used in that context, but it suffers

from the difficulty of its estimation through a finite set of samples. Efficient estimators are not designed

specifically to be applied in a classification context, and thus suffer from further drawbacks and

difficulties. This paper presents an estimator of mutual information that is specifically designed for

classification tasks, including multi-class ones. It is combined to a recently published stopping criterion

in a traditional forward feature selection procedure. Experiments on both traditional benchmarks and

on an industrial functional classification problem show the added value of this estimator.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Modeling data having specific structure properties is an
important challenge in data analysis. Structures include trees,
functions, multi-level data, graphs, and many others. Functional
data, i.e., data that are intrinsically curves (despite being usually
known through a finite sampling) form an important class of data,
as they are found in many industrial application. In particular,
functional data can consist in signals, spectra, hysteresis curves,
etc.

In practice, working with functional data means to extract a
sufficient number of appropriate characteristics (features) from
the functions, and then analyzing the features in a quite
traditional way. ‘‘Sufficient’’ and ‘‘appropriate’’ are however vague
terms, that need to be defined more precisely in the context of a
specific problem. In many contexts, it is not obvious to know a
priori which features will be useful for the problem. A possible
way of working is, firstly, to create a large set of features, and, in a
second step, to select the most useful ones for the problem
according to a relevance criterion.

Selecting features is often a need for two main reasons. First, it
helps fighting the curse of dimensionality; discarding useless
features in a regression or classification problem usually improves
the learning performances, by reducing the number of (effective)
parameters in the model, and thus reducing its variance. Secondly,
ll rights reserved.
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identifying relevant features helps the application provider
understanding how the model behaves, and which physical
features are important. Both reasons become essential when the
initial number of features extracted from the curves is very large.

Feature selection relies on two main ingredients: a criterion
aimed at measuring how a feature, or a subset of features, is
relevant for the problem, and a procedure to search the best
feature subset, among all possible subsets that could be extracted
from the initial one. These two ingredients are essentially
unrelated: most criteria can be combined to most search
procedures, resulting in a large number of possible feature
selection schemes.

About the search procedure, the number of subsets that can be
extracted from the initial set is exponential in the number of
initial features. In most cases, this results in the impossibility to
test all possible subsets, even when the relevance criterion is
simple to compute or estimate. Solutions consist in using forward,
backward or a combination of both, procedure, genetic algorithms,
heuristics, etc. The purpose of this paper is not to cover the wide
variety of search procedures; however, some comments will be
given about which families of procedures are more adequate to be
used in conjunction with the relevance criterion developed in this
paper.

About the relevance criterion, the mutual information (MI), a
concept borrowed from information theory, is now widely
accepted as an appropriate measure of relevance. The MI feature
selection criterion [2] has the advantage, over the correlation
measure, of being able to measure nonlinear relations between
variables and, besides, to evaluate the usefulness of a group of
variables instead of a single one. However, its calculation requires
to have the data probability distribution, information that is
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usually unknown; thus, probability distribution estimators, such
as [8,10,22], or more efficient methods that directly estimate the
MI must be used. Among the MI estimators that can be found in
the literature [2,5,20,24], the estimator proposed by Kraskov et al.
in [16], based on K-nearest neighbors distances, has been widely
employed for its data efficiency (working with low number of
samples) and its high estimation performances.

However, this estimator was originally proposed for regression
problems. When it is used for classification tasks, it requires to
code the classes with numerical values. This has two limitations:
first, the estimator could be made more efficient by directly
integrating the fact that outputs are discrete values; secondly, in
multi-class problems, it is necessary to design an appropriate
numerical coding of classes.

This paper introduces a new MI estimator derived from
Kraskov’s one, dedicated to classification problems. This dedicated
estimator is simpler to use than the general one, and it is adapted
to multi-class problems. Using this estimator, a procedure to
select features in a functional, multi-class classification applica-
tion is described; this procedure uses a recently published
criterion to stop the search procedure in a sound statistical way.

The following of this paper is organized as follows. Section 2
covers state-of-the-art concepts related to feature selection. It
describes the use of the mutual information as relevance criterion
for (sets of) features, and traditional ways to estimate it. It also
briefly discusses search procedures, including the use of a sound
statistical criterion to stop it. It is not the purpose of Section 2 to
cover all aspects and recent developments in feature selection;
only concepts necessary for the following developments, or other
methods that will be used for comparison in the experimental
part of the paper, are covered. Section 3 then formulates the
proposed MI estimator for classification problems. Section 4
describes a possible procedure to select features from functional
data. Section 5 gathers all experimental aspects of the paper.
Firstly, it shows the usefulness of the adopted stopping criterion in
the search procedure; secondly, it analyzes how the proposed MI
estimator improves the classification performances on some
traditional, small-size benchmarks; thirdly, it illustrates the
procedure on an industrial, functional classification examples.
Finally, Section 6 concludes the paper.
2. Feature selection

This section introduces common concepts about feature
selection. The mutual information criterion is developed, together
with traditional ways to estimate it. Then, standard procedures to
search among the possible feature subsets are briefly introduced,
and arguments are given to prefer some families of methods,
when the MI criterion is used. Finally, a recently published
statistical criterion to stop the search procedure is reminded. This
section does not include all the state-of-the-art about feature
selection; it emphasizes on the concepts necessary to introduce,
in Section 3, a new MI estimator for classification problems, and
on the methods used in the experimental part of the paper.

2.1. The ingredients of the feature selection process

Feature selection is only possible once an initial set of features
is defined. When the original data consist in curves (or functions),
the first step is thus to extract features from the curves. The basic
principle is that a set of features with maximal content of
information must be created. This means, in a generic way, to take
basic features such as rough measurements on the data (sampled
curves), and to add all features that could be relevant for the
problem at hand. Traditional possibilities include functional
approaches such as the coefficients of splines or other approx-
imators of the curves, similar extraction of the numerical (usually
first and second) derivatives of the curves, the location of maxima
and minima, the area under curve, etc. The choice of the features
is application dependent. However, the idea here is to select a
sufficient set, even if the price to pay is to increase the number of
features. Variables that could (but do not necessarily will) play a
role in the further analysis process should be taken into account.
A too high number of features increases the difficulties related to
the curse of dimensionality in the design and learning of the
classification algorithm. The problem to eliminate useless or
redundant features will however be taken into account in a
principled way in the next steps of the methodology.

When an initial set of features exists, the problem consists in
selecting those that are most relevant for the classification
problem at hand. This process has two goals. First, it reduces
the data vector dimensionality, making easier the design of the
classifier of the next stage. It is indeed known that any
classification method (or, more generally, data analysis learning
algorithm) suffers from the curse of dimensionality, a term that
gathers all phenomena related to the difficulties to learn a
process, a classification task, etc., in high-dimensional spaces. In
practice, the curse of dimensionality concerns problems related to
an excessive number of parameters in a model (therefore the
variance of the model can be too large if the number of learning
data is limited), to the difficulty to design similarity measures in
high-dimensional spaces, to the loss of intuitive and geometrical
interpretation in high-dimensional spaces, and many other
phenomena.

Second, even when no performance improvement is seen when
the number of features is reduced, a further advantage comes
from the fact that having a low number of features makes the
interpretation of the model easier. If an objective measure of the
usefulness of features is available (which is the goal of the feature
selection process), practitioners may deduce information about
the process, and even drive their next measurement campaigns
accordingly. Feature selection may therefore be of high interest,
both on the performance and interpretation point of views.

Many different feature selection procedures can be designed;
however, all of them require the combination of two key
elements: a relevance criterion and a subset search procedure.

The relevance criterion scores a feature or a group of features
according to its/their capacity for predicting the output (class).
Among the different criteria that can be found in the literature,
the mutual information measure is widely used for this purpose.
MI measures the amount of information contained in a variable X

in order to predict the variable Y . Unlike correlation, MI measures
any relation between X and Y , not only linear ones; furthermore,
the MI concept is directly applicable to groups of variable (i.e., X

and/or Y can be vectors instead of scalars), as detailed in the next
subsection. The mutual information is a well-defined concept,
directly applicable as relevance criterion for feature selection.
However, its estimation is difficult, as the MI definition relies on
the distributions of the X and Y variables, which are unknown in
practice. Estimators are thus needed. Section 2.2 will remind the
definition of MI and some widely used estimators.

When a relevance criterion is chosen (together with its
estimator), a second element is to choose which feature
subsets will be evaluated (before choosing the best one). Indeed
if variable X is N-dimensional (in other words, if N initial features
are available), there are 2N

� 1 non-empty possible subsets.
Testing all of them, even when the relevance criterion is easy to
evaluate, is impossible for large N. There is thus a need for a
greedy procedure to search among a reduced number of subsets,
while reducing the risk of missing a potentially interesting one.
Section 2.3 will briefly summarize possible search procedures, and
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it will emphasize on those that are preferred when a MI estimator
is used as relevance criterion.
2.2. Mutual information

The mutual information measures how two variables X and Y

are related one to each other. The relation is not restricted to be
linear. Let us denote the marginal density probability distributions
of X and Y as pxðxÞ and pyðyÞ, respectively, and the joint probability
distribution of X and Y as px;yðx; yÞ. The MI between X and Y is
given by [4]

IðX;YÞ ¼

Z Z
px;yðx; yÞlog

px;yðx; yÞ

pxðxÞpyðyÞ
: ð1Þ

Note that in the above definition, both X and Y can be multi-
dimensional random vectors; if X gathers a subset of features
(from the initial set) and Y is the class information, IðX;YÞ

can be directly used to measure the relevance of this subset of
features.

The problem of this relevance measure is that it relies on the
probability density functions; in any practical application, where
only a finite sample of data is known, the probability density
functions are unknown. Because of this, the MI value has to be
estimated. Many estimators can be used, among them traditional
histograms [5] and kernel-based estimators [24]. Nevertheless,
the search procedure detailed below will use vectors X of
increasing dimension, making these estimators inefficient be-
cause of the curse of dimensionality. Therefore, a direct estimation
of the MI is often preferred; for example, the MI estimator
presented in [16] directly estimates the multi-dimensional MI
through nearest neighbor counts. An interesting alternative is to
avoid computing the multi-dimensional MI, using instead a
criterion that simultaneously maximizes the relevance of
adding a feature and minimizes its redundance with the already
selected ones. In this specific case the relevance criterion is linked
to the (forward) search procedure. The minimum redundancy–
maximum relevance (MRMR) method [20], and, in particular, the
FCD (F-test correlation difference) [6,7] algorithm use this
principle.

The following of this section briefly details three estimators
that will be used in the following of this paper: an estimator based
on Parzen windows, a second one which directly estimated the MI
by nearest neighbor counts, and the FCD.
(1)
 MI estimation trough distribution estimation with Parzen

windows: A first possibility to estimate the MI is to first
estimate the pxðxÞ, pyðyÞand px;yðx; yÞ distributions, and then to
plug them in (1). Histograms could be used to estimate the
distributions, but Parzen windows provide a smoother, more
reliable estimate. The following estimator, denoted
M̂IParzenðX;YÞ, is presented in [17]; it will be used as reference
method in the experimental part of this paper. It is designed
to be exclusively applied on classification problems.
Let us consider a multi-class classification problem, where a
d-dimensional observation xn (1rnrN) has to be classified
among L classes with class labels yl (1rlrL). Then, the MI is
estimated as

M̂IParzenðX;YÞ ¼ HðYÞ � HðY=XÞ

¼ �
XL

l¼1

pðy ¼ ylÞlogðpðy ¼ ylÞÞ

þ
XN

n¼1

1

N

XL

l¼1

pðy ¼ yljxnÞlogðpðy ¼ yljxnÞÞ; ð2Þ
where Hð�Þ is the entropy estimator. Due to the fact that Y is a
discrete random variable, we have that

pðy ¼ ylÞ ¼ nl=N; l ¼ 1; . . . ; L; ð3Þ

where nl is the number of observations in class l and L the
number of classes. The conditional probability pðy ¼ yljxnÞ

results from a Parzen estimator with Gaussian window

pðy ¼ yljxnÞ

¼

P
i2yl

exp� ððxn � xiÞ
TS�1

ðxn � xiÞ=2h2ÞPL
l¼1

P
i2yl

exp� ððxn � xiÞ
TS�1

ðxn � xiÞ=2h2Þ
: ð4Þ

In this equation, h is the window width and S the data
covariance matrix. In Section 4, and following the recom-
mendations from [17], h has been set to 1=logðNÞ and S has
been defined as a diagonal matrix where the ½S�j;j element is
given by 2hsj, with sj the standard deviation of the j-th
component of the random variable X.
(2)
 Kraskov’s estimator of mutual information: Another way to
proceed is to directly estimate the MI, without first estimating
the distributions. Intuitively, this can be done with nearest
neighbors. Let us consider joint observations ðxn; ynÞ, 1rnrN,
of the random variable ðX;YÞ. When choosing a specific
observation, if its neighbors defined in the X space (only) and
in the Y space (only) correspond to the same observations,
this means that there is a strong relation between X and Y

(thus a high MI). According to this intuitive principle,
Karskov’s estimator [16] works as follows.
It is known that the MI between X and Y can be obtained by
means of

MIðX;YÞ ¼ HðXÞ þ HðYÞ � HðX;YÞ: ð5Þ

Therefore, if we had a good entropy estimator, we would only
have to replace it in the above expression to obtain an MI
estimator. This is the idea followed in [16] to propose two MI
estimators; concretely, as starting point, the Kozachenko–-
Leonenko estimator for differential Shannon entropy [15] is
used. This estimator is defined as

ĤðXÞ ¼ �cðKÞ þ cðNÞ þ logcd þ
d

N

XN

n¼1

logeðn;KÞ; ð6Þ

where cð�Þ is the digamma function, K is the number of
nearest neighbors (a parameter of the algorithm), N is the
number of samples in the data set, cd is the volume of a
unitary ball, d is the dimensionality of X and eðn;KÞ is twice
the distance from xn to its Kth neighbor. After some
mathematical manipulations, two different MI estimators
are derived (see [16] for a detailed explanation)

M̂I
ð1Þ
ðX;YÞ ¼ cðNÞ þcðKÞ

�
1

N

XN

n¼1

½cðtxðnÞ þ 1Þ þ cðtyðnÞ þ 1Þ�; ð7Þ

M̂I
ð2Þ
ðX;YÞ ¼ cðNÞ þcðKÞ �

1

K
�

1

N

XN

n¼1

½cðtxðnÞÞ þcðtyðnÞÞ�; ð8Þ

where txðnÞ and tyðnÞ are the number of neighbors within
distance eðn;KÞ=2 from xn and yn, respectively. Although both
versions show similar results, the implementation of the
second one can be found in the mutual information least-
dependent component analysis (MILCA) toolbox [1]. In the
following of this paper, this implementation will be used and
denoted as M̂IMILCA.
As it does not require the estimation of the distributions, a
difficult task when the dimension (of X) increases, the M̂IMILCA

estimator is expected to perform better than the previous one.
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Furthermore, it does not make any assumption on Y , so it can
be applied to both regression and classification tasks.
However, in classification problems, it presents two incon-
venients: (1) no use is thus made of the important informa-
tion that Y is discrete; (2) the global efficiency of the method
is reduced because, in the method itself, collisions usually
happen during the nearest neighbor search in the Y space.
Section 3 will propose a new estimator derived from M̂IMILCA,
but adapted to classification tasks.
(3)
 F-test correlation difference (FCD): Another idea is to avoid
any estimation (distribution or MI) in a high-dimensional
space. This idea naturally brings an advantage over the
previous estimators what concerns the curse of dimension-
ality, the price to pay being that it is not exactly the MI
that is estimated, but a related relevance measure. A way of
doing this is to combine two relevance criteria, one
maximizing the relevance of a feature added to the
already existing subset, and another one minimizing the
redundancy with the already selected features, such as in the
minimum redundancy–maximum relevance approach [20].
When the features are discrete variables, the relevance and
redundancy measures are usually the mutual information
values; however, when the features are continuous, the F-
statistic is employed as maximum relevance score and the
Pearson correlation coefficient as minimum redundancy
condition.
This last situation corresponds to the FCD algorithm [6,7] that
carries out a forward search maximizing the difference
between the two criteria; i.e., in tth iteration of the
algorithm, when the set of t � 1 features S ¼ fXsel

1 ; . . . ;Xsel
t�1g

have been already selected, the next selected feature, Xsel
t , is

chosen as

Xsel
t ¼ argmax

Xj

FðXj;YÞ �
1

t � 1

X
i2S

jcðXj;XiÞj

( )
; ð9Þ

where cðXj;XiÞ is the Pearson correlation value and FðXj;YÞ is
given by

FðXj;YÞ ¼

1

L� 1

PL
l¼1 nlðml � mÞ

1

N � L

PL
l¼1ðnl � 1Þs2

l

: ð10Þ

In the last equation, ml and s2
l are, respectively, the mean and

variance of the jth coordinate of the data belonging to the lth
class and m is the overall data mean.
The FCD algorithm, which combines the relevance criterion and
a forward search procedure, will be used for comparisons in the
experimental part of this paper.
2.3. Search procedure

The second ingredient of the feature selection process is the
search procedure that allows us to find the most adequate subset
of features (the ones that achieve the maximum MI value)
without evaluating all the 2N

� 1 possible subsets among N initial
features; note that this evaluation would be unfeasible for large N

from a computational time point of view.
All standard search procedures can be used, such as the

forward search (starting from an empty set and adding features
one by one according to the criterion), the backward search
(starting from the full set and removing features one by one
according to the criterion), or any combination of them (allowing
some removals in a forward search or some additions in a
backward search). Genetic algorithms can even be used too. The
literature contains a high number of references about search
procedures, applied in many contexts; see for example [23] in the
context of time-series prediction.

An important comment about these options concerns the
dimension of the feature subsets at each step of the procedure. In
the forward case the dimension of X starts from scratch, and never
exceeds the final number of selected features. In the backward
case however, its starts from N, the dimension of the initial set of
features. If one of the two first estimators (M̂IParzen or M̂IMILCA) or
an extension of them is used, the estimator itself is subject to the
curse of dimensionality. In these cases, the backward search
should definitely be avoided.

In this paper a forward–backward algorithm is used, inspired
from [21]. This algorithm works in the following way:
(1)
 The first selected feature is the one, from the set of all the
original features fX1; . . . ;XNg, that maximizes the MI with the
output variable Y , i.e.,

Xsel
1 ¼ argmax

Xj

M̂IðXj;YÞ; 1rjrN; ð11Þ

where M̂IðX;YÞ represents the MI estimator of MIðX;YÞ and
Xsel

1 denotes the first selected feature.

(2)
 The next components must be selected so that the MI

between the output Y and the selected set of variables is
maximized; in other words, if the algorithm is in t th step and
S ¼ fXsel

1 ; . . . ;Xsel
t�1g is the subset of features that have been

selected up to step t � 1, the next selected feature, Xsel
t , is

chosen as

Xsel
t ¼ argmax

Xj

M̂IðfS;Xjg;YÞ; 1rjrN; Xj=2S: ð12Þ
(3)
 After adding Xsel
t , the backward procedure consists in checking

if there is an MI increment when removing one by one any of
the previous selected components (Xsel

1 ; . . . ;Xsel
t�1). If the

removal of several variables (one by one) leads to increasing
MI, the one (Xrem

t ) that produces the largest increment is
removed, i.e.,

Xrem
t ¼ argmax

Xsel
j

M̂IðfXsel
1 ; . . . ;Xsel

j�1;X
sel
jþ1; . . . ;X

sel
t�1g;YÞ; 1rjrt;

if M̂IðfXsel
1 ; . . . ;Xsel

j�1;X
sel
jþ1; . . . ;X

sel
t g;YÞ4M̂IðfXsel

1 ; . . . ;Xsel
t g;YÞ:

ð13Þ
The above algorithm checks at each step if the addition (or
removal) of a feature increases the mutual information. Naturally,
it is stopped when the MI cannot increase anymore. The problem
with this way of working is that it is not theoretically sound, at
least what concerns the forward step (adding a feature). Indeed
simple developments from the MI definition show that the MI
cannot decrease when a feature is added to the existing subset; at
worst, the MI value remains identical. The fact that the forward
algorithm stops in practice is thus purely related to an artifact of
the estimator; for example [9] shows this effect when the M̂IMILCA

estimator is used.
To solve this problem and to stop adequately the forward

search, [9] suggests to use a permutation test [11] as follows. Let
us consider that we are in the tth iteration of the forward search,
where S ¼ fXsel

1 ; . . . ;Xsel
t�1g is the subset of already selected features,

and Xcand
t is the candidate to be added to S, i.e.,

Xcand
t ¼ argmax

Xj

M̂IðfS;Xjg;YÞ; 1rjrN; Xj=2S:
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V. Gómez-Verdejo et al. / Neurocomputing 72 (2009) 3580–35893584
Then, we can create a random permutation of Xcand
t (without

permuting the corresponding values of Y), denoted ~X
cand

t , and

evaluate M̂IðfS; ~X
cand

t g;YÞ. If ÎðfS;Xcand
t g;YÞ is significantly higher

than M̂IðfS; ~X
cand

t g;YÞ, we can claim that Xcand
t provides new

information about Y and has to be added to S; in the opposite
case, we can stop the forward search. This procedure has two
advantages. First, it relies on comparisons between MI estimations

on variables (X and ~X ) of the same dimension; the bias of the
estimator is thus reduced. Secondly, a standard statistical test may
be used to check the significance of the difference between the
two estimated MI. Details on the procedure may be found in [9].
An experimental validation of this stopping criterion is included in
the experimental section of this paper.

After a subset of features has been selected, the problem
becomes a traditional classification task. Therefore, any
nonlinear classification tool [13], such as a multi-layer perceptron
(MLP), a radial-basis function network (RBFN), a support
vector machine (SVM), etc. could be used. The question to
know which model has to be preferred exceeds the scope of this
work.

An important comment about the feature selection procedure
is that knowledge about the variables can (optionally) easily be
incorporated between the feature selection and classification
stages. In particular, one might be tempted to replace some
of the selected variables by other ones having more physical
interpretation, if the price to pay in terms of classification
performance is low. More specifically, the feature selection results
in a single set of variables. Nevertheless, nothing prevents the user
to test other sets, i.e., to evaluate their information content by
using the same MI estimator as above. Of course, all combinations
of variables cannot be tested, otherwise the benefit of the greedy
(forward–backward) feature selection would be lost. However,
one can, for example, measure the MI between all pairs of
single variables, and replace one by one non-interpretable
variables by interpretable ones, choosing the latter as to
maximize the MI with the deleted variable (they are more or
less equivalent) and in the meantime minimize the loss of MI
between the new set and the output (the replacement does not
change a lot the information content of the set). The choice is
intentionally left to the expert user, who is able to judge if the
price to pay (in terms of performance decrease) is acceptable to
gain interpretability. The use of the MI criterion makes this last
procedure possible and measurable in an objective way, if needed
by the application, without making it mandatory. It can however
be very useful in some industrial context, where the need of
interpreting features is at least as important as the need for
classification performances.
3. A specific MI estimator for classification problems

The M̂IMILCA estimator does not use the fact that Y is a discrete
variable in a classification context. As detailed above, besides
being suboptimal, the estimator could be faced to collision
problems in the nearest neighbor search when it is used with
discrete variables. To improve the efficiency of the MI estimation,
in the case of a classification task, the following estimator is
proposed. It is valid both for two-classes and multi-classes
problems.

Let us consider the multi-class classification problem defined
in Section 2.1 and remember that due to Y is a discrete random
variable, we can use the information provided by the training data
set and estimate its probability distribution as pðy ¼ ylÞ ¼ nl=N,
l ¼ 1; . . . ; L. Then, we can define the MI by means of the
conditional entropies

MIðX;YÞ ¼ HðXÞ � HðX=YÞ ¼ HðXÞ �
XL

l¼1

pðy ¼ ylÞHðX=Y ¼ ylÞ: ð14Þ

To obtain the desired expression, the entropy estimator (6) must
be substituted in (14), i.e.,

M̂IðX;YÞ ¼ ĤðXÞ �
XL

l¼1

pðy ¼ ylÞĤðX=Y ¼ ylÞ ð15Þ

¼ �cðKÞ þcðNÞ þ logcd þ
d

N

XN

n¼1

logeðn;KÞ

�
XL

l¼1

pðy ¼ ylÞ �cðKÞ þcðnlÞ þ logcdþ
d

nl

X
n2yl

logelðn;KÞ

#"
ð16Þ

¼ �cðKÞ þcðNÞ þ logcd þ
d

N

XN

n¼1

logeðn;KÞ � cðKÞ � logcd

�
XL

l¼1

pðy ¼ ylÞ cðnlÞþ
d

nl

X
n2yl

logelðn;KÞ

#
:

"
ð17Þ

In these equations eðn;KÞ is twice the distance form sample xn to
its Kth neighbor considering all the training data set, whereas
elðn;KÞ limits the set of possible neighbors to the data from
class yl.

Taking into account that pðy ¼ ylÞ ¼ nl=N, a few manipulations
lead to

M̂IðX;YÞ ¼ cðNÞ �
1

N

XL

l¼1

nlcðnlÞ

þ
d

N

XN

n¼1

logeðn;KÞ �
XL

l¼1

X
n2yl

logelðn;KÞ

" #
: ð18Þ

In practice there is no optimal way to select the value of K ,
except by time-consuming cross-validation. It is therefore sug-
gested to average the estimator over a range of possible values of
K , limiting the risk of strong under- or over-fitting. As the
proposed MI estimator has been implemented using the approx-
imate near neighbor library [18] (which returns for a fixed value of
K the distances of each data point from the first to the Kth
neighbor), this can be done without a significant computational
cost increase. The final MI estimator, which will be denoted as
M̂IClassif , is then

M̂Iclassif ¼ cðNÞ �
1

N

XL

l¼1

nlcðnlÞ

þ
d

NðKmax � Kmin þ 1Þ

XKmax

k¼Kmin

XN

n¼1

logeðn; kÞ �
XL

l¼1

X
n2yl

logelðn; kÞ

" #0
@

1
A;
ð19Þ

where Kmin and Kmax determine the range of K values. Suggested
values for Kmin and Kmax are 4 and 12, respectively. Note that if the
M̂IMILCA estimator was used instead of the M̂IClassif one, txðnÞ and
tyðnÞ would have to be calculated for each value of K what would
significantly increase the computational cost.

Finally, it is important to remark that, unlike M̂IMILCA, this
estimator does not need to codify the output variable, since it
takes advantage of the fact that outputs are discrete and,
therefore, it avoids to employ an inappropriate numerical class
coding.
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Table 1

Evaluation of the M̂IMILCA and the proposed M̂IClassif estimators embedded in a forward search with two possible stopping criteria: (1) MI maximum value and (2)

permutation test.

Problem M̂IMILCA M̂IClassif

MI maximum Permutation test MI maximum Permutation test

Breast 97.07% 96.59% 96.59% 96.59%

f3;7;10g f3;7g f3;7;6g f3;7g

Glass 47.69% 52.31% 53.83% 53.83%

f4;7;8g f4;7;8;5;3;1;6;9;2g f2;4;7g f2;4;7;3g

Letter 79.02% 85.08% 13.23% 85.01%

f13;15;8;9;11;10;12;16;7g f13;15;8;9;11;10;12;16;7;6;14;2;5;4;1;3g f11g f11;12;10;13;15;8;9;16;6;14;7;2;5;1;3;4g

Pima 74.78% 76.09% 74.78% 74.78%

f2;8;3g f2;8;3;6g f7;2g f7;2;8g

Wine 92.45% 98.11% 92.45% 100%

f7;10;13g f7;10;13;1;6;12;5;11;9;3;4g f7;10;13g f7;10;13;4;1;3;9;11g

Wave 82.80% 83.60% 79.80% 84.67%

f7;11;15;12;17;10;13;16g f7;11;15;12;17;10;13;16;6;9g f7;11;17;16;13g f7;11;17;16;13;10;12;6;8;15;9g

The classification accuracies obtained with a linear SVM and final subsets of selected features are presented.

V. Gómez-Verdejo et al. / Neurocomputing 72 (2009) 3580–3589 3585
4. Experiments

This section gathers the experimental results obtained with
the criterion and procedures described in this paper. It is
structured in three parts. The first, preliminary one, confirms by
simple experiments the interest for the forward–backward search
stopping criterion described in Section 2.3; these results corro-
borate other experimental results that can be found in [9]. The
second part shows classification results obtained after feature
selection, both with the classification-specific MI criterion
proposed in this paper and with other existing criteria. This
comparative study uses standard (non-functional) classification
benchmarks. The third part addresses a real-world industrial
problem of hysteresis curve classification. Through this last
example it is shown how to design a features selection strategy
in several stages, when application-specific information about the
features is available.
4.1. Forward search stopping criterion

As detailed in Section 2.3, a forward or forward–backward
search using mutual information as criterion is usually stopped
when the MI estimation does not increase anymore. However the
decrease of the MI estimation is purely due to the bias and
variance of the estimator, making this strategy neither sound nor
optimal. A stopping criterion based on the permutation test was
summarized in Section 2.3, based on a procedure described in [9].

To show the necessity of this stopping criterion when the
proposed M̂IClassif is employed, the classification performances
obtained on standard benchmarks from the UCI machine learning
repository [19] are reported here. A forward search with both the
M̂IMILCA and M̂IClassif estimators was used. The classification
method is a linear SVM. Although not optimal for all considered
problems, this algorithm has been chosen for its simplicity and
lack of tuning parameters (such as kernel choice in nonlinear
SVM); best classification performances are not searched for, but
only comparisons at the level of MI estimators and stopping
criteria.

Concretely, six benchmark problems from the UCI repository
have been employed: Breast, Glass, Letter, Pima, Wine, and Wave.
Because these problems do not have a predefined test partition, to
test the performance of the classifiers, we have splitted the
original training set in a 70%/30% partitions to train and test our
algorithms, respectively.

Table 1 shows the classification results obtained when the
forward search is stopped at the maximum of MI, and with the
permutation test. The table shows the classification accuracy and
the final subsets of selected features.

At the light of the results from Table 1, we can observe in the
case of the M̂IMILCA estimator, that the permutation test provides a
systematic accuracy improvement over the maximum MI value
criterion, except for Breast where a slight performance deteriora-
tion is observed. In similar way, we can observe this improvement
when the permutation test is employed with the proposed M̂IClassif

estimator; however, in this case, two different effects are
presented:
�
 First, in Wine, Wave, and Letter, the permutation test sig-
nificantly improves the classification accuracy compared to the
MI maximum value criterion; the performance improvements
are around 5% in Wave, 8% in Wine and even 70% in Letter.

�
 Secondly, in Breast, Glass, and Pima, the permutation test

results in the same accuracy than the MI maximum value
criterion, although the selected features subsets are slightly
different. It should be noted that the number of features that
differ in both cases is small (1 in each of the three cases), and
this is due to the fact that classification results obtained by any
filter method can never be optimal (the criterion, MI in this
case, never optimizes the true classification performances).

According to these results confirming the superiority of the
permutation test criterion, this way of stopping the forward–
backward search will be used in the next experiments, when the
M̂IMILCA or M̂IClassif estimator is used.

4.2. Classification performances on standard

classification benchmarks

This section evaluates the classification accuracies obtained
after feature selection with the proposed M̂IClassif estimator, and
with several other estimator described in Section 2.2: M̂IParzen and
M̂IMILCA with forward search and the FCD algorithm; both M̂IClassif
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Table 2
Evaluation of the performance achieved by different feature selection methods:

with all the original features, M̂IParzen , FCD, M̂IMILCA , and M̂IClassif .

Problem All

features
M̂IParzen

FCD M̂IMILCA M̂IClassif

Breast

Accuracy (%) 98.05 97.07 85.85 96.59 96.59

# Features 10 3 2 2 2

Glass

Accuracy (%) 52.31 53.83 53.85 52.31 53.83

# Features 9 6 4 9 4

Letter

Accuracy (%) 85.08 80.15 85.08 85.08 85.08

# Features 16 12 16 16 16

Pima

Accuracy (%) 77.39 77.83 65.22 76.09 74.78

# Features 8 5 3 4 3

Wine

Accuracy (%) 96.23 92.45 90.57 98.11 100

# Features 13 4 8 11 8

Wave

Accuracy (%) 85.60 72.47 84.80 83.60 84.67

# Features 40 4 11 10 11

The number of selected features (# features) is shown together with the accuracy

achieved by a linear SVM over each problem.
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and M̂IMILCA have been used with a forward search and the
permutation test as stopping criterion. Besides, to corroborate the
advantages of the feature selection strategies, the performance
obtained when all original features are used are also illustrated. A
linear SVM is used for the same reasons as detailed in the previous
section.

Table 2 shows the number of selected features by each method
(all the original features, M̂IParzen, FCD, M̂IMILCA, and M̂IClassif ),
together with the accuracy obtained with a linear SVM. From
these results, the following comments may be done:
�
 The Glass, Pima or Wine problems show the advantages of a
feature selection strategy: the feature selection methods
provide a significant classification accuracy improvement with
regard to employing all original features. Besides, in the
remaining problems, we can observe that some of the feature
selection methods present similar performance to the all
features approach, but using a reduced subset of features; this
is the case of M̂IParzen, M̂IMILCA, and M̂IClassif in Breast or FCD,
M̂IMILCA, and M̂IClassif in Wave. Furthermore, these methods are
able to select the complete feature set when all features are
necessary to achieve good performances (see the Letter

problem).

�
 If we analyze the performance of the proposed M̂IClassif

estimator, we can observe that, in five of the six benchmark
problems, it presents the best classification accuracy or a result
very close to the best. For instance, in Letter and Wine, the
M̂IClassif classification performance is the best one, and in
Breast, Glass and Wave it is close to the best; note the 100%
classification accuracy obtained in Wine with only eight
features. On all databases, the selection based on M̂IClassif

results in a good compromise between the classification
performances and the number of selected features.

�
 Finally, if we directly compare the use of M̂IClassif with M̂IMILCA,

we observe that M̂IClassif outperforms M̂IMILCA in three cases and
ties in two other ones. This fact is not surprising and points out
the advantage obtained by M̂IClassif that makes use of the
discrete nature of the dependent variable in a classification
problem. In fact, the only problem where M̂IMILCA presents a
higher classification accuracy than M̂IClassif is a binary problem
(Pima), where the superiority of M̂IClassif is not (or less)
expected.

4.3. Rigidity and hysteresis curves classification

In this section, the methodology described in this paper is used
to solve a specific, industrial problem of hysteresis curve
classification.

4.3.1. Original data

In order to know the validity or conformity of an elastomeric
material, each sample of material undergoes a deformation
process. First an external force is applied over the material;
secondly, this force is removed which makes the material come
back to its original state. During this process, both the rigidity and
the hysteresis of the material are measured for a number (here 23)
of deformation values, resulting in two curves, called R and H
curves, respectively, in the following. These two curves are used to
evaluate the validity of the material.

Fig. 1 shows the typical shapes of these curves. Both the x-
(deformation) and y-axes (rigidity/hysteresis) have been
normalized, both for confidentiality reasons, and because this
normalization does not influence the further processing. Each
graph can be divided into two curves: the forward curve, related
to the material deformation when the force is applied and the
return curve, linked to the force elimination process. For instance,
for the R curve, the forward deformation corresponds to the upper
part of the curve and the return deformation corresponds to the
lower one; for the H curve, the opposite is observed.

For each material, a data vector with 47 components is
measured:
�
 Component 1: temperature of the experiment.

�
 Components 2–24: values of the R curve in the material

deformation positions (12 in the forward curve and 12 in the
backward one, with the point corresponding to the largest
deformation in common).

�
 Components 25–47: values of the H curve in the same

deformation positions.

Learning samples belong to three classes and are labeled by
experts. The three classes are ‘‘conform’’, ‘‘non-conform’’ and
‘‘unknown’’; the last class is used when the experts do not know
or disagree on the validity of the material and its measure. The
training set provided by the industrial experts consists of 633 data
(where each data is formed by the above 47 components), with
483 data of the ‘‘conform’’ class, 112 of the ‘‘unknown’’ one and
the remaining 83 data of the ‘‘non-conform’’ class. In addition, a
test set with 168 data where 119 data belong to the ‘‘conform’’
class, 22 to the ‘‘unknown’’ class and 27 to the ‘‘non-conform’’
class is also provided.

4.3.2. Creation of new features

Since the R and H curves allow experts to know the validity or
not of each material, this step consists in creating a new set of
features, trying to extract the maximum information from the
curves. Previous knowledge on what exact information to extract
from the curves is not available. Therefore, according to the
guidelines given in Section 2.1, a set of 191 potentially interesting
features, which are described in the Table 3, is created.
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Fig. 1. Example of the normalized rigidity (R) and hysteresis (H) curves.

Table 3
Description of the new set of created features.

Feature description Feature number

R curve H curve

Temperature of the experiment 1

Original values 2–24 97–119

Area under the curve 25 120

Numerical first derivatives 26–47 121–142

Widths of the curve 48–58 143–153

Coefficients of fifth degree polynomial 59–70 154–165

Coefficients of linear approximation 71–74 166–169

Coefficients of quadratic approximation 75–80 170–175

Maximum and minimum points 81–88 176–183

Statistical information (moments) 89–96 184–191

Table 4

Subset of the selected features with the four feature selection method: M̂IParzen ,

FCD, M̂IMILCA , M̂IClassif .

Method Subset of selected features

M̂IParzen
f121;142;144;186;190g

FCD f131;137;145;153;160;170;173;179;182g

M̂IMILCA
f97;99;119;126;127;134;136;144;145;147;155;158;176;185g

M̂IClassif
f124;129;137;141;143;144;150;153;156g
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Uninteresting ones will be discarded in the next step of the
procedure. Basically, these features correspond to derivatives,
slopes, widths of the curves at specific deformation positions,
area between curves, mimina and maxima, coefficients of the
approximation of the curves by polynomials and basic statistical
information (mean, standard deviation, skewness and kurtosis).
The set of 191 resulting features is summarized in Table 3.

4.3.3. Feature selection

The 191 features are entered into the selection procedure
described in Section 2.3. However, because of the high number of
features in this application, a hierarchical approach is used to
reduce the computation time. The hierarchical approach consists
in applying the selection procedure independently over each
curve and, besides, over each group of features; the search
algorithm is thus divided in three substages, working over a
moderate number of features and accelerating the feature
selection process. This process has been carried with the following
four feature selection methods: the FCD method and the M̂IParzen,
M̂IMILCA and M̂IClassif estimators combined with the forward–back-
ward algorithm. Note that contrarily to the preliminary experi-
ments carried out in the previous sections, the goal is here to
obtain the best classification accuracy; therefore, the forward–
backward search is preferred, because it usually achieves better
performances than the classical forward search. To stop the
forward–backward algorithm we have used the permutation test
with the M̂IMILCA and M̂IClassif estimators and the maximum MI
value criterion for M̂IParzen.

To use M̂IMILCA estimator, classes have to be labeled numeri-
cally; the ‘‘conform’’, ‘‘non-conform’’ and ‘‘unknown’’ classes have
thus been labeled 1, �1 and 0, respectively. Note that despite this
problem is not a binary classification one (there are three classes),
this is one of the rare examples where ordering class labels is
legitimate, as the ‘‘unknown’’ class is clearly between the two
other ones for which the true class is known. In all other
circumstances (non-ordered classes), the M̂IParzen, M̂IClassif estima-
tors and the FDC method would add a supplementary advantage,
as no class ordering or binary coding is necessary.

Table 4 shows the features selected by each method after the
search procedure. The following can be observed from these results.
�
 As a result of this process, each method has chosen a different
features subset; however in all the cases, the selected features
are from the H curve.

�
 Analyzing the kind of selected features, we can observe that all

methods agree to select the features that are related to the H
curve derivatives (variables from 121 to 142) and the H curve
width (from 143 to 153).

�
 Furthermore, FCD, M̂IMILCA and M̂IClassif also coincide in

choosing some of the fifth degree polynomial coefficients.

�
 The remaining selected features correspond to statistical

information (chosen by M̂IParzen and M̂IMILCA), information
about the maximum and minimum points (features 186 and
190 in M̂IParzen or 185 in M̂IMILCA), coefficients resulting from the
approximation of the H curve with a parabola (FCD method)
or some of the original H curve points (variables 97, 99 and 119
of M̂IMILCA).

The final classification results provided by each feature subset will
allow to know which kind of information is more useful to carry
out the classification task.

4.3.4. Classification

After feature selection, the next step consists in building a
classifier; for that purpose, a support vector machine with
Gaussian kernels has been employed. The LIB-SVM toolbox [3]
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Table 5
Results achieved by the experts’ system and the four methods covered in this

paper: M̂IParzen , FCD, M̂IMILCA , and M̂IClassif .

Proposed system with Expert’s system

(%)

M̂IParzen

(%)

FCD

(%)
M̂IMILCA

(%)

M̂IClassif

(%)

Global

accuracy

79.76 85.12 83.93 87.5 76.13

C1

TPR 94.96 97.48 95.8 96.64 81.51

FPR 42.86 18.37 32.65 14.29 8

C0

TPR 40.91 45.45 45.45 54.55 65.22

FPR 6.85 6.85 6.16 5.48 21.92

C�1

TPR 44.44 62.96 62.96 74.07 62.96

FPR 2.13 4.26 1.42 4.26 2.82

In the first row, the global classification accuracy for each system is given; in the

following rows, the TPR (True Positive Rate) and FPR (False Positive Rate) linked to

each class (C1: ‘‘conformity’’, C0: ‘‘unknown’’ and C�1: ‘‘no conformity’’) are shown.
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has been used, for its powerful implementation of multi-class
classifiers based on error correcting output codes (see [14] for a
detailed explanation of its implementation). The kernel dispersion
g (defined as the g parameter in Kðxi;xjÞ ¼ expðgJxi � xjJÞ) and
penalty factor C have been optimized by 10-fold cross-validation
on the training set.
4.3.5. Experimental results

The effectiveness of the proposed feature selection methodol-
ogy and criterion is analyzed in this section. The four solutions
using the FDC method and the M̂IParzen M̂IMILCA and M̂IClassif

estimators are compared to a system designed by the experts.
Concretely, the experts have selected the set of variables that they
consider as most relevant for the problem; next, they have trained
and tested a classifier with the same data sets as those used
above. Table 5 presents the classification accuracy achieved by the
proposed systems and the experts’ system.

The application of the proposed general methodology to the
classification of the dynamic properties of elastomeric material
has provided reduced sets of features that were extracted
automatically, without expert knowledge. Table 5 clearly shows
that the extracted features are sufficient, and even much better
than the ones selected by the experts, to get an acceptable
classification accuracy; the proposed system with either M̂IParzen,
FCD, M̂IMILCA or M̂IClassif presents a classification accuracy of
79.76%, 85.12%, 83.93% or 87.5% (respectively), whereas the
expert’s system only achieves an accuracy of 76.13%.

Furthermore, Table 5 shows the improvement obtained by
using the MI estimator proposed in this paper; it presents the best
classification accuracy with only nine features (less than M̂IMILCA

or FCD). Besides the good classification results, the reduced
number of selected features also gives an added value to the
results in terms of interpretability.

Finally, it is worthy pointing out that the set of features
selected with M̂IClassif reveals that aspects related to the
derivatives, width of the H curve and some coefficients of the
fifth polynomial approximation are sufficient to solve satisfacto-
rily the classification task; conversely, the statistical information
chosen by the M̂IParzen estimator does not seem to be adequate to
solve adequately the classification task since the resulting global
performance is only 79.76%. Further measurement campaigns
could benefit from this result by avoiding the costly acquisition of
features that reveal useless at the end.
5. Conclusions

Classifying high-dimensional data often necessitates a feature
extraction preprocessing, both to decrease the number of features
therefore limiting the effects of the curse of dimensionality, and to
help interpreting the model. In the case of curve (function)
classification, feature selection is even more important, as there is
often no a priori optimal way to extract features from the curves.

In this paper, the feature selection criterion is specifically
discussed. It is shown that the mutual information is an adequate
criterion to perform feature selection, but that it suffers from the
difficulty of obtaining accurate estimations from a finite number
of data. Efficient estimators exist, but are designed for regression
problems; this paper introduces a new estimator specific for
classification tasks, including multi-class ones.

Experiments show that this criterion, embedded in a for-
ward–backward search with a sound stopping criterion, leads to
improved performances. The classification accuracy is illustrated
with standard classifiers, both on traditional benchmarks and on
an industrial curve classification problem. The latter consists in a
classification problem of the dynamic properties of elastomeric
material; the method proposed in this paper proves to improve
both the quality and the interpretation of the results. The
proposed estimator of mutual information also reveals to improve
the classification performances compared to the same experi-
ments using an estimator not specifically designed for classifica-
tion tasks.

Although the hysteresis curves classification problem shows
the advantages that the proposed estimator can provide, we
intend to continue this work applying this new MI estimator to
other real applications, such as optical character recognition,
speech recognition, image classification, . . ., where the high
number of input features and the intrinsic multi-class nature of
these problems can take the most of the proposed estimator and
show its real advantages.

Furthermore, it would be also very useful to analyze the
analytical properties of the proposed estimator, for instance,
trying to find estimation error bounds; this could help us to
understand its behavior and its sensibility with regard to
parameter K (number of neighbors) or the number of data.
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