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This paper presents a framework for nonlinear dimensionality reduction methods aimed at projecting
data on a non-Euclidean manifold, when their structure is too complex to be embedded in an Euclidean
space. The methodology proposes an optimization procedure on manifolds to minimize a pairwise
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1. Introduction

Measuring and collecting large numbers of data and features
become nowadays increasingly easy. For this reason system
identification, machine learning, data mining and other industrial
and research domains have more and more to deal with high-
dimensional data. Before a quantitative analysis of such data,
acquiring prior knowledge is of primary importance to guide the
choice between models and data analysis methods. Extracting
relevant and useful information may be performed by data
projection, or dimensionality reduction methods [9,13,18,23,26,
29,38]; data projection aims at visualizing high-dimensional data
in a lower dimensional space, for example a two- or three-
dimensional representation. Note that data projection must be
understood here as covering both linear and nonlinear methods.
By removing or reducing redundancies and noise, data projection
makes easier the observation of proximity relationships between
data, specificities in the data distribution such as clusters, etc.

Data projection methods try to minimize the loss of informa-
tion between the original data and the projected ones. The loss of
information can, however, be defined in various ways, including
the ability of the method to preserve distances between data
[15,16,26,29,32-34], and/or to preserve the topology or the
neighbourhood relationships [2,4,13,17,39]. Methods based on
these families of criteria are named distance-based and topology-
based dimensionality reduction methods, respectively. CCA and
CDA [15,16] for example aim at minimizing a suitable pairwise
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distance criterion, while Isotop [17] and LLE [12,28,31] try to
preserve the neighbourhoods, i.e. the local topology.

Most of these methods have been developed to project data on
a low-dimensional Euclidean manifold, i.e. R? or R® in most cases.
Nevertheless, when the data structure is too complex, restricting
the projection space to an Euclidean manifold constrains the
method and does not make use of a possible specific nature of the
data.

To circumvent this problem, first ideas are sketched in
manifold learning methods where original data are assumed to
be close to an unknown manifold, i.e. a topological space which
can be Euclidean only locally. Some manifold learning methods
motivate the use of graph distances to avoid some shortcomings
due to Euclidean distances; [7,8,16,33,34] relate the graph
distance to the geodesic distance.

Other methods directly use the structure of the manifold to
improve the projection results. Using geometric arguments, these
methods map the data onto a tangent space of the manifold which
is therefore Euclidean [6,21,44]. However, they make the strong
hypothesis that the manifold does not intercept itself: loops in the
data set are not allowed. Having for example in mind a cylindrical
or spherical manifold, it is easy to see that its projection cannot
avoid flattening or tearing effects, possibly yielding a poor global
projection quality.

Topology-based dimensionality reduction methods such as
self-organizing maps release this hypothesis by projecting data on
manifolds; actually, in this context, the projection on manifolds
with loops, such as spheres, cylinders and tori, is widely
used [11,20,22,27,30,41,42]. In addition to allowing a better
projection of distribution with loops, projecting on spheres or
tori reduces border effects that make interpretation of the
resulting visualization more difficult. These possible advantages
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are, however, not exploited in distance-based dimensionality
reduction methods.

This paper presents a methodology for distance-based dimen-
sionality reduction on manifolds, even with loops. It offers the
already mentioned advantages of increasing the flexibility to
adapt the projection to the intrinsic nature of the data, and of
reducing the border effects if a compact manifold is chosen.

When data are projected on non-Euclidean manifolds, visua-
lization can become more difficult (though some non-Euclidean
manifolds are easy to visualize, like the sphere, the cylinder, etc.).
The choice between projecting on Euclidean or non-Euclidean
manifolds is thus both data- and application-dependent. This
paper does not address this question, which is left for future
research. Note, however, that the same question is important in
the context of topology-based projection methods (such as the
self-organizing map) too, and is nowadays mostly unanswered:
when is it better to use a rectangular grid, a cylindrical one, a
torus, etc. Only the expertise of the analyzer and some possible
information from the application is usually used to guide this
choice.

This paper first presents the methodology in the general case
where there is no restriction on the manifold, except some
regularity hypotheses; then, as an example, we will show how we
can take advantage of this framework to develop a projection
method on the surface of a sphere. Using a similar derivation, one
could develop methods to project on other manifolds.

A limitation of most traditional distance-based dimensionality
reduction methods is that they optimize a criterion that is
designed either to minimize the tearing effects or the flattening
ones. In this paper, a flexible criterion is adopted, in which the
user can define a priori (or by visualization feedback) the
compromise between these effects. It is shown that this flexibility
can be used to achieve a specific compromise between the
trustworthiness and the continuity of the projection, as detailed in
[36-38,40].

The sequel of this paper is organized as follows. Section 2
introduces the pairwise distance criterion and its relation to
quality criteria such as the trustworthiness and the continuity.
Section 3 then presents an appropriate optimization procedure of
this criterion, resulting in a projection on manifolds. To take into
account the manifold topology and its curvature, a line-search
approach is adopted, making use of the theory of the optimization
on manifolds [1]. The optimization procedure is first described in
a generic way, and then detailed in the specific case of the
projection on a sphere. Finally, first results are presented in
Section 4, including comparisons between the projection on a
sphere and the projection on the R? Euclidean space. The ideas of
this paper were first sketched in [25].

2. Pairwise distance criterion

Distance-based dimensionality reduction methods attempt to
make the distances between data in the projection space as close
as possible to the corresponding distances in the original space.
Making all corresponding distances equal is of course impossible:
the degrees of freedom are the locations of the data in the
projection space, while the constraints are the equality of the
distances between all pairs of data. In a standard situation (many
data, low-dimensional projection space), there will be much more
constraints than degrees of freedom. Furthermore, since projec-
tion methods aim at visualizing the data distribution, the
projection space is often R? (sometimes R>). In this context, the
dimension of the projection space is usually smaller than
the intrinsic dimension of the original data such that loss of
information cannot be avoided.

It is thus necessary to define an error (or objective) criterion
which will be minimized to achieve the projection results. As it is
illustrated in Section 2.1 through the simple example of a
cylindrical distribution projected on the two-dimensional Eucli-
dean space, some compromise between flattening and tearing is
bound to happen. Section 2.2 defines a pair of measures,
trustworthiness and continuity [36] to count the number of
errors linked to flattening and tearing. These errors, based on
ranks, are discrete and thus difficult to optimize directly.
Alternative continuous measures are then presented in Section 2.3,
and combined in a single criterion including a user-controlled trade-
off parameter. These error criteria are independent from a possible
constraint on the manifold shape. Optimizing the criterion under
manifold constraints will be addressed in Section 3.

2.1. Flattening and tearing: an illustrative example

Data projection methods have to deal with a trade-off between
the risks of flattening and tearing the data distribution. This
compromise is presented by an illustrative example. Let us
assume that data lie close to a cylinder embedded in the three-
dimensional Euclidean space. In order to project the data on the
R? Euclidean space, one option is to rip the manifold along a
generating line. After ripping, the cylinder can easily be unfolded
on the R? Euclidean space as shown in Fig. 1. In this simple
example, all pairs of data that are close in the R? projection space
are also close in the original space. The projection is said to be
trustworthy, as what is seen (proximity relationships in the
projection space) can be trusted. However, because the cylinder
has been torn, the projection is not continuous: close input data
(in the original space) do not necessarily lead to close output data
(in the projection space).

Another option to project the cylinder on R? is to flatten it, as
illustrated in Fig. 2. In this case, two opposite generating lines are
projected one on another. In this case, all pairs of data that are
close in the original space remain close in the projection space;
the projection is said to be continuous. However, it is not

Fig. 1. The cylinder is torn when projected on R?; the resulting projection is
trustworthy but not continuous.

Fig. 2. The cylinder is flattened when projected on R?; the resulting projection is
continuous but not trustworthy.
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trustworthy anymore: data that are seen close (in the projection
space) may come from opposite parts of the original distribution.

There is no answer to the question whether it is better to have
a trustworthy or a continuous projection. This depends on the
point of view of the user and on the objective of the projection
in the application context. For this reason, it is proposed in
Section 2.3 to optimize a user-controlled compromise between
both criteria.

2.2. Trustworthiness and continuity quality measures

The two types of difficulties encountered when projecting a
manifold with loops on an Euclidean space naturally lead to two
quality measures that count points that are close in one space but
not in the other space [36]. Let us consider a data set {X;, 1<i<N}
in the original high-dimensional space, and the corresponding
data set {y;, 1 <i<N} in the projection space.

Measuring if the projection is trustworthy consists in first
selecting the k closest points to y; in the projection space, or in
other words the points in the k-neighbourhood of y;. Then, the
corresponding points in the original space are identified. If they
are all in the k-neighbourhood of x;, then the projection is fully
trustworthy. The set of those points that are not in the
k-neighbourhood of x; while their corresponding points are in
the k-neighbourhood of y; is denoted Ui(x;). Let r(X;,X;) be the
rank distance of point X; with respect to x; defined by: r(x;,X;) = s
if x; is the sth-nearest neighbour of x;; if the point X; belongs to the
set Ur(X;), the rank r(x;,x;) is thus larger than k. Averaging these
ranks over all points in Ug(x;) and for all x; leads to the
trustworthiness measure [36]:

N

Te=1-AD_ > Xux)—k), (M
i=1 XjeUp(X;)

where A, = 2/Nk(2N — 3k — 1) is a coefficient that ensures the

bounds 0<T,<1.

Conversely, the continuity considers the set V(y;) of projected
points that are not in the k-neighbourhood of y; while the
corresponding points are in the k-neighbourhood of x; in the
original space. The rank distance in the projected space is denoted
by 7(y;,y;); the continuity measure is then defined by [36]

N
G=1-A4> 3 Gw.y)-h. @)
i=1 y;eVi¥i)

According to these definitions, the projection is trustworthy or
continuous if the corresponding quality measure is close to 1.
Again, except in specific circumstances such as the original data
lying on an Euclidean manifold, no projection method can achieve
both perfect trustworthiness and continuity. Comparisons be-
tween methods should therefore always keep this trade-off in
mind.

Note that other criteria have been defined in the literature to
measure the number of points that are close in one space but not
in the other one. The mean relative rank errors [18] (MRREs) are
among them. They differ from the trustworthiness and continuity
by the weightings applied to the ranks of the points in the U, and
Vi neighbourhoods. Recently, a unifying framework for rank-
based error criteria in dimensionality reduction methods has been
defined in [19].

2.3. Flattening and tearing errors

Once a compromise between trustworthiness and continuity
has been set, optimizing these criteria (or a mixture of them) with
respect to the locations y; in the low-dimensional space would

define the projection. However, the criteria are discrete and their
optimization is therefore difficult.

To circumvent this difficulty, most distance-based dimension-
ality reduction methods do not optimize ranks, but some
weighted differences between the distances D; between X; and
X; in the original space and the corresponding distances J; in the
projected space.

Let us first define the following unweighted criterion that
corresponds to the criterion of the classical multi-dimensional
scaling [35,43]:

N(N 12” %lwu 3. (3)
The problem with this criterion is that errors between large D
and o distances will dominate. The projection will therefore be
more influenced by pairs of points that are far one from the other,
rather than by pairs of close points. This is against the intuition:
pairs of neighbouring points should dominate, as in the
trustworthiness and continuity measures.

The solution is then to give more weight to pairs of close
points. Dividing each term by the distance Dj; in the original space
favours the continuity of the projection: a pair with small D; and
large J; will largely contribute to the error function [29]. The
tearing error is then defined as

N
Z Z (Dy 1]) (4)

Terr E N7 VY D
i=1 j=1j#i i

N(N -1
Conversely, by weighting each term with the corresponding
distance ¢; in the projected space, the trustworthiness of the
projection is favoured [14]. Actually, if two projected data are
close, i.e. 6; is small, whereas the corresponding points are not
close in the original space, the flattening error increases:

(Dl l)
Far =y 2 > 0 (%)

11] 1j#i U

Finally, as already argued, the trade-off between the flattening
and tearing errors should be controlled by the user [37,39,40]. This
leads to the final cost function to be optimized:

(Dy ij)2 ( ij 1]) )
f= — 4+ (1 - )07 (6)
oy, (25
where 1 € [0, 1] is a user-defined parameter controlling the trade-
off.

3. Projection on manifolds

This section explains how to minimize the cost function (6)
presented above. Because the projected points have to lie on a
manifold embedded in an Euclidean space, three main options can
be considered. First, one can simply consider using classical
constrained optimization techniques [5,24] and introducing
Lagrange multipliers to deal with the constraints that each of
the projected points has to satisfy to belong to the desired
manifold. Note, however, that in this case, the optimization
problem has as many constraints as the number of points which
means in our problem N constraints, and hence N additional
optimization variables (the Lagrange multipliers).

A second option would be to parameterize the optimization
problem using coordinates which directly express that the
projection belongs to the manifold. A parametric representation
of the manifold is, however, not always easily available (although
it is the case for the sphere that we will use later); moreover, such
a representation may have singularities which can result in
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numerical problems. As an example, the north pole of the sphere is
defined in the spherical coordinate space by the set
{(¢,0)|0 = /2,0< p<2m}). Furthermore, the implementation of
the optimization procedure has to deal with the non-Euclidean
topology of the projection manifold (the loops in data); in the case
of the sphere, the points corresponding to the extreme values of
the azimuth angle (0 and 27) must be identical. These topology
considerations are difficult to deal with when computing the
gradients of the optimization procedures.

The third option, which is followed here, is to apply the theory
of optimization on manifolds [1]. In this context, the problem is
reformulated as an unconstrained optimization problem in a
constrained search space; the geometric constraints express that
projected data must lie on a manifold at each step of the
optimization procedure but without other restriction. Because the
manifold is embedded in a larger dimensional Euclidean space,
the optimization on manifolds algorithm has a lower complexity
than classical constrained optimization algorithms on the embed-
ding space. This alternative has thus good numerical properties
and convergence results [1].

In Section 3.1, we will describe how the optimization problem
under consideration can be solved by making use of this theory
in the general case where no specific manifold is considered.
Section 3.2 will then deal with the specific optimization procedure
to project data on the surface of a sphere.

3.1. General algorithm for projection on manifolds

To search for a minimum of a cost function f, the classical line-
search algorithm (negative gradient search) is adapted. Actually,
optimizing on a manifold does not allow movement along a
straight line as it is the case in classical optimization procedures.
However, the curves of the manifold can favourably replace the
straight search directions since they include the curvature of the
manifold and the specificities of the manifold topology.

Section 3.1.1 introduces the principal concepts of differential
geometry while Section 3.1.2 briefly presents the theory of
optimization on manifolds. Then Section 3.1.3 develops the
methodology to minimize the cost function (6) on a manifold.

3.1.1. Differential geometry concepts

For the description of the algorithm, concepts from differential
geometry are used: a d-dimensional manifold ./ is informally
defined as a set in which the neighbourhood of each point is
homeomorphic to a subset of the RY Euclidean space.

Therefore, the product of two manifolds is also a manifold. In
other words, let .47y and ./, be two manifolds with respective
dimensions d; and d,; the Cartesian product of these two
manifolds .# = /"1 x A", is the (dy + dy)-dimensional manifold
of all pairs (y;,y,) such that the resulting manifold is defined by

= {1, Y2V € N1,¥2 € N3}

Moreover, we consider here differentiable manifolds em-
bedded in Euclidean spaces so that the tangent space of the
manifolds can be evaluated for each point y; € ./". Assuming that
the geometric constraints of the manifold ./" are defined by a
function F € €' (A):

A" = {y;|F(y;) = 0}, (7)

its tangent space .7 y,./" evaluated at point y; is defined by

Ty, N = (wu] VE(y;) = 0}, (8)

where VF is the gradient of F.

Note that it can be interesting to also consider a family of
manifolds /", parameterized by a vector v. For example, in
Section 3.2, the radius of the sphere is such a parameter.

In this paper, we use this concept to project N data on a
manifold. Since each projected data y; lies on the same manifold
Ny, the set of constraints is expressed by

yi €Ny,

: 9
Yy € -/Vv.
This projection will be performed by minimizing the cost

function (6) with respect to all the N projected data y;. Hence, the
cost function can be specified as

Ny xoox Ny =Ry, YN V1Y)

( 1] 1]) .1 2 ([)1']'_51']')2 10
N(N—l);]%;( ) 3ij - (0

To keep the notation short, the vector y = (y;,...,yy) that
gathers the projected data is defined on the manifold .#, which is
the Cartesian product of N manifolds .4"y:

x Ny, (11)

It follows that the cost function is defined on the manifold .#,.

Next, the manifold .#, is reformulated using the function Fe
%' () that expresses the geometric constraints which the vector
y has to satisfy

My ={Y1.. ... YN VIEY..... Yy V) = O} (12)
By differentiating F, the tangent space of the manifold .#, at

My =Ny x Ny x -t

point (y;,...,Y¥y,V) is defined as the set of vectors u=
(uq,...,uy,u,) satisfying
Tyly = {(uy, ... uy, w)|(uy, ... uy, u) JEyY,,....yy.v) = 0}

(13)

where JE(y;,...,yy,V) is the Jacobian of F evaluated at point

Y1, Yn>V)-

3.1.2. Optimization on manifolds

This section is dedicated to the theory of optimization on
manifolds. The section first presents the standard line-search
algorithm which is aimed at finding a point z* that minimizes a
cost function f without any additional constraint. Conceptually,
this algorithm translates a point z(t) in a gradient-related search
direction to find a minimum.

Second, the proposed optimization procedure that deals with
the manifold constraints is briefly described to show how the
standard line-search algorithm has to be adapted. The algorithm
requires mainly two adaptations. One has to define a search
direction that takes into account the manifold constraints and the
translation of the current point on the manifold has to be
performed.

The proposed optimization algorithm is an adaptation of the
standard line-search direction algorithm. Assuming that the
standard algorithm has to find a minimum z* ¢ R? of a cost
function f : R? — R, the classical algorithm translates a point z(t)
along a descent direction #, until a minimum is found; the
algorithm is thus iterative. Briefly described, assuming that the
classical line-search algorithm has successfully reached the k first
iterations, the location z(k) is updated by searching in a gradient-
related direction n, with a step size t; that ensures a sufficient
decrease of the cost function; this standard algorithm follows the
following scheme:

z(k 4+ 1) = z(k) + tia,. (14)

The theory of optimization on manifolds [1] adapts the standard
line-search scheme (14) to minimize a cost functionf : .4/"— Ron
a manifold ./". Note that we just consider here the minimization
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Fig. 3. Optimization iteration.

of a cost function on a manifold, not the projection on a manifold;
to avoid confusion, the notation z(k) is thus used. Two main tasks
will be described in the following of the section:

e An adequate search-direction #, has to be defined to consider
the characteristics of the manifold.

e The current location z(k) has to be translated with respect to
the direction #, while staying on the manifold.

The algorithm described below briefly introduces the main
steps which will be detailed in the sequel of the paper.
Optimizing on a manifold has to consider the geometric
constraints due to the manifold. As shown in Fig. 3 that illustrates
a single iteration of the adapted line-search algorithm, the search
direction #, has to stay close to the manifold, hence on the
tangent space .7 ,,./". This direction is achieved by orthogonally
projecting the descent direction —Vf on the tangent space:

Ny = Proj'a/‘z‘k'dy'(*vf). (15)

Secondly, the algorithm translates the location z(k) in the
gradient-related direction #, with a step size t;. Let z'(k) =
z(k) + ty1;, be the new location; this one is in the affine subspace
z(k) + 7y V. Next, z'(k) is “retracted” on the manifold ./" to
satisfy the manifold constraint; the retraction function gy, :
T yky N — A is a deterministic projection that smoothly maps
vectors of the tangent space to the manifold. The new iterate is
thus defined by

z(k + 1) = Ry (tihy)- (16)

This general scheme describing the principle of the optimiza-
tion on manifolds will be detailed (tangent space and retraction
function) in the next section in the specific case of the projection
on manifolds (optimization of Eq. (6)). It is shown in [1,3] that
optimizing a function on a differentiable manifold by such a
gradient-based technique converges, provided that the search
direction is gradient-related and that the step size is chosen; for
example, by the Armijo rule as it will be explained later.

3.1.3. Projection on manifolds

This section implements the above described general proce-
dure for optimizing a function on a manifold, in the specific case
of the projection (Eq. (6)). Let us denote

y(k) = (y1(k), ... yn(K), (17)

where vector y;(k) is the projection of the ith data on the manifold
at iteration k. It is thus necessary to define the search direction 7,,,
the retraction function %y, and the step size t;.

Search direction: To project on a manifold .#,, we first have to
define a search direction #,. The search direction is determined by
evaluating the gradient Vf(y;(k),...,yy(k),v(k)) of the cost
function f with respect to the variables y; and with respect to
the manifold parameter vector v if appropriate.

The aim of the gradient is to evaluate locally the decrease
of the cost function f. However, because of the geometric
constraints, this direction may point far away from the

manifold .#,,. In order to include the curvature of the manifold,
the gradient is projected on the tangent space .7 y,.# y, related
to the location y(k). The gradient-related search direction #, is
thus defined by

Me = Projfy(k)=/f/wk)(_vf)' (18)

Translation of a point and retraction function: Vector y(k) can thus
be translated in the direction 7. However, translating the point in
a straight direction is not allowed since the point will go far away
from the manifold. To stay on the manifold, y(k) has to move along
a curve Yy, (t) which is tangent to the direction 7, at y(k).

The construction of such a curve can be achieved by a
retraction function Py : 7 ygo-# vy A4 Which is a determi-
nistic smooth mapping from the tangent space 7 y,-#, to the
manifold .#,, as illustrated in Fig. 4. This retraction function
satisfies the two following conditions.

1. Denoting Oyy, the zero element of the tangent space
Ty iy, the retraction function has to map this point Oy,
on y(k):

Ryt Oy i) = y(K). (19)

2. Differentiating the retraction function satisfies

Dﬂy(k) (Oy(k)) = idf (20)

v vy ?

where ids , #,, denotes the identity mapping on 7 yg.# ).
The identity mapping satisfies the two following equations:

vn e g-y(k)ﬂv(k)a idy‘y(k,e,z/”k,ﬂ =, (21)
(id 7y, 0,) JFY1(K), ..., yn(k), v(K) = 0. (22)

See [1] for details on the retraction function and the identity
mapping.

Hence, the curve yy,(¢) can be defined by yyq,(£) = Py (tny)-
Actually, the first condition (19) ensures:

Yy (0) = Py (0k) = y(K), (23)

while the second condition (20) is related to the derivative
condition:

’i)y(k)(o) = D%y(k)(ok)[rlk] = id»”7y(k)<//1v(k)’7l< = - (24)

The numerical implementation of the curve 7y, is not
straightforward. The updating of y(k) and of v(k) can be seen by
first building a new vector (y'(k), v'(k)):

yT(k) y'(k)
( v/T(k) ) = ( VT(k) + tk"k' (25)
Because (y'(k),v'(k)) lies in the affine subspace

(y(ky, vt + 7 yio- v, it has to be retracted on the manifold
to (y(k + 1), v(k 4 1)) by using the retraction function Zy,.

T M»w T s,
AN

Fig. 4. Construction of the curve y,,

(t) with the retraction function Zyy,.
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Step size: Finally, the step size t, has to provide a sufficient
decrease of the cost function. Indeed, if the step size is too small,
the algorithm will converge slowly; conversely, if it is too large,
the cost function could increase. The algorithm has thus to
determine a suitable value for the step size. Let us denote o>0 an
upper bound on the step size (t,<a). To allow its adaptation
during the optimization procedure, the step size t; is implemen-
ted by the formula:

tk = ﬂmkoc, (26)

where f is a fixed scalar belonging to [0,1] that shows how the
step size can be decreased and my is a positive integer that
changes during the optimization iterations to adapt the length of
the step size.

To ensure a sufficient decrease of the cost function, my is the
smallest integer such that the Armijo condition (27) is satisfied.
The decrease of the cost function, f(y(k)) — f(y(k + 1)), is compared
with the first order approximation of the decrease of the cost
function. When the location y(k) is translated in the direction 7,
with a step size «f™, the cost function is estimated by
fayte+ 1)) = fyy) — o™ 1,1

The Armijo condition is thus expressed by

fyk) = fyk + 1) =oap™ |1n,f11%. (27)

Here, the scalar o belongs to [0,1] which is used to define a bound
on the expected decrease of the cost function during a single
iteration; typically ¢ is close to 0 (¢ =0.1). See [1] for more
details.

Algorithm: The algorithm to project data on a manifold is
finally summarized in Algorithm 1. The different steps are
repeated until convergence, i.e. until the norm of the search
direction #, is close to 0.

Algorithm 1. Projection on a manifold.

Input: Manifold ./ ,); cost function f € %*; retraction %y, from 7y %) to
A v); scalars a>0, $, o € [0,1]; an initial value of the manifold parameter vector
v(0); an initial iterate y(0) = (y;(0),...,yn(0), v(0));
Output: The optimal projected data y = (y;, ..., yy) and the optimal manifold
parameter vector v;
repeat
Evaluate the gradient Vf(y,(k),...,yn(k), v(k));
Evaluate the projection of Vf on the tangent space:

Nk = Projz . ., (V)i

Evaluate (VI{',:;) = ("I{fj;) — ™o, and retract it with Zy, on the manifold such

that the Armijo condition is satisfied:
f®k) — fyk+1)=af™allngll?;

k=k+1;
until ||57, | is close to O

3.2. Projection on a sphere

In this section, the general projection methodology using the
theory of optimization on manifolds is applied to the projection
on the surface of a sphere. The section begins by defining the
manifold and the tangent space. After these definitions, the
analytic expressions of the gradient Vf and of its projection on
the tangent space # are given. The presentation of the retraction
function %y ends this section.

Since the projection on the sphere is achieved by the
minimization of the cost function (6) where only pairwise
distances are required, the centre of the sphere is taken at the
origin, without loss of generality. Therefore all projected vectors
(¥;, 1<i<N) have the same norm and the geometric constraints of

the sphere are expressed by the function:

F:RVxR" > RY: (y,....¥0.R) = Fy1, ...y R
yiyi —
= : (28)
Yy — R

that must be equal to 0. Since the optimal sphere radius cannot be
determined a priori, it is considered as a parameter of the sphere
which has to be optimized as well (this is the v parameter
mentioned in the previous section). The manifold is then defined
by the expression

My = {15 -x S x RY|yly; —R? = 0,1<i<N}

(29)

which represents N geometric constraints. This is not exactly a

sphere but the Cartesian product of N spheres having the same
radius as it was discussed in the previous section (Eq. (12)).

Now, regarding Eq. (13), the tangent space related to a point

7yN7R) € Sz S

(y,R) = (¥;,---,¥n,R) is obtained by differentiating the constraint
function F:
Ty Mg = {(uq,..., 4y, ug) € R x -+ x RlyJu; — Rug = 0,1<i<N]}.

(30)

The distance J; in the projected space is obviously defined by
the geodesic distance d; = Racos(leyj/Hy,»H ;1D

One powerful property of the optimization on manifolds
assesses that if two functions are numerically equivalent on a
manifold, no matter how they are analytically defined, their
gradients remain equal after projection on the tangent space. In
our case, if one prefers to define the distance as 511 =
Racos(y; y]/RZ) despite the partial derivatives are different, they
will stay equivalent after their projection on the tangent space of
the sphere. The choice of the first definition is motivated by the
easiness of evaluating the projection on the tangent space and
thus by improvements in the computation time. Actually, the
projection of the gradient can be analytically defined when using
the first definition of the distance; conversely, the second
definition of the distance, Sij, necessitates the use of an orthogonal
projection algorithm to orthogonally project Vf on the tangent
space.

Now, the gradient of the cost function (6) is evaluated with
respect to the locations on the sphere y; and the radius R. To
improve the readability of the following results, the notation r;; is
introduced:

of —1 Dy — (>,J Dj - 55 52
Ki=x=s = 2 +(1 -4 31
The partial derivative of f with respect to R is given by
N N
of 00 yiy;
—-— = Kjj ACOS ————— (32)
;] aéij OR ;] %, v NATAN
The partial derivative with respect to the location y; is given by
g_ <6f 06 of 6§]1>
oy; AT 05; dy; ' 00j; dy;

N T
-1 y; Yivi v
=2 Kijj — ! ! .
> i 2 <||y,»||||y,-|| 2 :

J=1j#i 1_ y;ry] ly;ll ”yj” ly;ll
IANNAI
(33)

The last derivative is not defined when the locations y; and y;
are antipodal. The user can assign a constant value to
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(yiTyj/||yi||||yj||)2 when this expression is close to 1. Furthermore,
the derivative 0f /0y; is orthogonal to the location y;. This property
helps in the evaluation of the projection on the tangent space.

Condition (30) that the gradient —Vf has to satisfy to belong to
the tangent space is not fulfilled here:

of T of L, of o
—a—ylyl+Ra—R—Ra—R¢O, vi=1,...,N (34)

but the right-hand side (ROf/OR) is the same for all the N
conditions. Hence we need to project gradient —Vf on the tangent
space 7 y.4 as follows:

1 of of 1 of

RN+ 1)oRY! 3y; TRN+ DRV
n=-Vf- 1 of |=-| o 1 9 |- 35

RN+ DoR"N dyn T RIN+ DoRIN

N o, 1 o

R(N + 1)oR (N+ 1)oR

The last step of the iteration is to look for a new location in the
direction # along a curve 7(t) on the sphere tangent to this vector.
Denoting # = (111, ...,1y, ) be a vector of the tangent space, the
retraction function %y that satisfies conditions (19) and (20)
performs the deterministic projection from the tangent space to
the sphere:

Vit
R+ 1)t
R MRy, S,
Ry - Ty My — M0 — Ry, 0y Hg) = : 4
(R+71R)yN N
lyn + 1nll
R+ 1

(36)

4. Results

To evaluate the performance of the proposed methodology,
experiments are performed on real data. The improvements of
projecting on manifolds are assessed by comparing the projection
on a sphere with the projection on the R? Euclidean space by
means of the trustworthiness (1) and of the continuity (2) quality
measures.

In the first part, virtual face pictures are projected on a sphere
while the second part shows results on pictures representing
handwritten numbers 4.

4.1. Face pictures

A first experiment is performed on the widely known data-
base of virtual face pictures [18,21,34,44]. This data set gathers
698 pictures of 64 x 64 pixels of the same face taken from
different view angles and lighting. The dimension of the embed-
ding original space is thus 4096 while the intrinsic dimension of
the data distribution is only 3. Actually, the elevation and the
azimuth angles of the camera and also the angle of lighting
describe the pictures. These last three parameters are known and
can be used to evaluate qualitatively the performances of the
method although they are not used as input in the projection
method. Samples of these pictures are presented in Fig. 5.

The original data are not directly introduced in the algorithm;
the pairwise distances D; must be first estimated. As it is assumed
that the original data are close to an unknown manifold
embedded in the high-dimensional space, the pairwise geodesic
distances are approximated by building a graph in the data

Fig. 6. Face data projected on the sphere with 1 = 0.6.

distribution; the nodes of the graph represent the data and the
edges implement a proximity relationship between them. For
each original datum x;, we consider its k-neighbourhood that
includes the k closest data: edges are then defined to join these
points to X;.

Note that the size k of the neighbourhoods must ensure the
connectivity of the resulting graph. The value of k = 15 has been
chosen experimentally.

Each edge is then weighted by the corresponding Euclidean
distance. The distance between any pair of points can then be
evaluated by the shortest path in the graph, as proposed in
[8,7,16,33,34] for example with the Dijkstra algorithm, yielding an
approximation of the geodesic distances.

In order to assess the quality of the proposed method on
this data set, the faces are projected both on R? and on the sphere
according to the same criterion (6); these two search spaces have
the same intrinsic dimension. On the spherical manifold,
the distance used is the geodesic distance that was defined in
Section 3.2 (; = Racos(X[X;/|IXll2 Xill2)). Conversely, the geodesic
distance in R? is the Euclidean distance (3; = [Ix; — X;ll2). When
projecting on R?, criterion (6) is minimized by a standard line-
search algorithm. Different experiments are performed with
different values of the user-defined parameter A

The visualization of the projected data is represented on the
sphere in Fig. 6 and in the spherical coordinate space in Fig. 7. The
colour of the points varies with the azimuth angle of the camera;
as can be seen on these figures, the evolution of the colour is
generally smooth which confirms a good trustworthiness and
continuity of the projection.
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Oe[-n /2, /2]

¢ €10, 27]

Fig. 7. Face data projected on the sphere for A = 0.6, in the spherical coordinate space (¢, 0) where the colour varies with the azimuth angle of the camera.

In the spherical coordinate space, only a few pictures are
represented as pictures to increase the readability of the result
and to show the smoothness of the projection. Since the azimuth
angle ¢ =0 corresponds to the azimuth angle ¢ =2n in the
spherical coordinate space, the data on the left of Fig. 7 are
close to the right ones. Moreover, because of the singularities in
the north and south poles, the upper data (close to 6 = 7/2) are
close from each other and so are the lowest (0 = —71/2).

The distribution seems to intercept itself in the centre of Fig. 7
where dark points are close to lighter ones (see also the right side
of the sphere represented in Fig. 6); this is probably due to the
poor light. Indeed, the construction of the geodesic distances is
such that these two pictures are close in the original space as they
are both dark.

To assess objectively the quality of the projection, the
comparison is performed by evaluating the trustworthiness and
continuity quality measures, as defined in Egs. (1) and (2); the
next results show the preservation of the 15-neighbourhood. As
previously discussed, the closer these measures are to 1, the most
trustworthy and continuous the projection is. As shown in Fig. 8,
the results of the projection on a sphere are closer to (1,1) than
those corresponding to the projection on R?.

Furthermore, the cost function (6) is smaller when it is
minimized on the sphere than when it is minimized in the R?
Euclidean space, as shown in Fig. 9.

Figs. 10 and 11 show, respectively, the resulting projection on
the sphere and on the R? Euclidean space. In these figures, the
colour varies with the elevation angle of the camera. One can see
that the colour varies more smoothly on the sphere than in the
Euclidean space.

4.2. Handwritten numbers

The second experiment is performed on the MNIST database
[10,12]. The data set gathers pictures of 28 x 28 pixels of all the

I Proj. on a sphere
095 |
&)
09 r
=0
0.85 L L ] . . . ,
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Ty

Fig. 8. Comparison between the projections of face data on R? and on the sphere
with the trustworthiness (Ty) and the continuity (C;) quality measures.

6r
5r i=1
=}
[0 7 =0
4t
A=05
3 L L L L L L L L )
1 2 3 4 5 6 7 8 9 10

T,

err

Fig. 9. Comparison between the projections of face data on R? and on the sphere
with the tearing (Ter) and the flattening errors (Fer).

numbers (from 0 to 9) that are often used to test classification
methods. Each class of handwritten numbers contains a training
and a test set; we will focus here on the projection of the number
4 whose test set contains 982 pictures.

Again, the data are projected with different values of the user-
defined parameter 2 both on the R? Euclidean space and on the
sphere. For the present data set, the geodesic distance matrix in
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¢e[0,2n]

Fig. 10. Projection on the sphere of the face data where the colour varies with the elevation angle of the camera.

60

Fig. 11. Projection on the Euclidean space of the face data where the colour varies with the elevation angle of the camera.

1452
|
i=1 Proj. on R”
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G 09t
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Fig.12. Comparison between the projections of handwritten numbers 4 on R? and
on the sphere with the trustworthiness (T,) and the continuity (Cy) quality
measures.

the high-dimensional space is approximated by building the
graph, as presented in the previous section, using the 20-closest
neighbours.

The trustworthiness and continuity quality measures are then
computed and plotted in Fig. 12; here, the parameter k of the
trustworthiness and continuity quality measures is 20 (the quality
measures evaluate the preservation of the 20-neighbourhoods).
This graph illustrates the improvements of the projection which is
more trustworthy and continuous on the sphere than on the
Euclidean space.

The resulting projection on the sphere with 1=0.5 is
illustrated in Fig. 13.

The trustworthiness of the projection seems good as the
largest handwritten numbers 4 are projected in the same region of
the sphere, here in the middle of the figure. The italic numbers
stay mainly on the right of the figure.

5. Conclusion

This paper describes a method to project data on non-
Euclidean manifolds by minimizing a pairwise distance criterion.
The data are assumed to be close to a low-dimensional manifold
embedded in a high-dimensional space, as commonly assumed in
nonlinear projection methods. However, loops in this manifold are
allowed (such as in the cylinder and the sphere). Projecting a
manifold with loops cannot be achieved without having to
implement a compromise between trustworthiness and continu-
ity. This is achieved by minimizing a pairwise distance criterion
including a user-defined balance between flattening and tearing
errors. Beside allowing the projection on any manifold, including
those with loops, the method presented in this paper decreases
border effects that appear when trying to project a non-Euclidean
manifold on an Euclidean one.

The minimization of the objective criterion is performed by
using the theory of optimization on manifolds. The methodology
is illustrated through the example of the projection on the sphere;
it can be easily extended to any other manifold. Results show the
improvement of projecting on manifolds achieved by the method,
both qualitatively (visual result) and quantitatively (flattening and
tearing errors, and trustworthiness and continuity).

The possibility to project on non-Euclidean manifolds, as
detailed in this paper, introduces new questions: When do we
have to project on a non-Euclidean manifold, and on which one?
As the main motivation behind the use of non-Euclidean
manifolds is to better model loops in the original data, the
detection of loops and their characterization seems the way to
address these questions and will be the topics of further work. A
related direction is to design measures of global topology that can
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Fig. 13. Handwritten number 4 data projected on the sphere with A2 = 0.5, in the spherical coordinate space (¢, 0).

objectively be compared between projections on various Eucli-
dean and non-Euclidean manifolds.
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