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Denoising is a cornerstone of image analysis and remains a very active research field. This paper deals

with image filters that rely on similarity kernels to compute weighted pixel averages. Whereas

similarities have been based on the comparison of isolated pixel values until recently, modern filters

extend the paradigm to groups of pixels called patches. Significant quality improvements result from

the mere replacement of pixel differences with patch-to-patch comparisons directly into the filter. Our

objective is to cast this generalization within the framework of mode estimation. Starting from

objective functions that are extended to patches, this leads us to slightly different formulations of filters

proposed in the literature, such as the local M-smoothers, bilateral filters, and the nonlocal means. A

fast implementation of these new filters relying on separable linear-time convolutions is detailed.

Experiments show that this principled approach further improves the denoising quality without

increasing the computational complexity.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Digital images are massively produced and used in many
domains, ranging from multimedia entertainment to professional
applications in medicine, security, or geography, for instance.
Considering each pixel of an image as a measurement with some
statistical uncertainty emphasizes the importance of denoising in
the process of image acquisition and generation. Statistical noise
can stem from poor light conditions, short exposure, low photon
detection efficiency, or electronic transmission faults. Depending
on its origins, noise can be additive or multiplicative, Gaussian or
Poissonian, or can require an even more complex model.

In this context, denoising techniques aim at reducing the
statistical perturbations and recovering as well as possible the
true underlying signal. An early and very popular approach was
to achieve filtering in the frequency domain, just by trimming
high-frequency components of the image spectrum. This compu-
tationally fast method has however a major drawback: it tends
to smooth out the salient features of the signal, such as edges and
textures. Wavelets [1–3] and other transformations in a combined
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space-frequency domain nicely address this issue and lead to very
efficient filtering schemes. This paper rather focuses on nonlinear
filtering methods in the space domain. Space domain filters often
share many procedural resemblances and most of them work by
computing weighted averages of similar pixels. Nevertheless,
these methods can emerge from various paradigms. For instance,
heat diffusion has inspired denoising techniques such as aniso-
tropic diffusion [4,5] and several other techniques based on
partial differential equations [6,7]. Total variation denoising (TV)
[8–11] is a special case of image regularization methods that
balances a smoothness measure and a fidelity term. The statistical
nature of noise can also be addressed by robust statistics and
mode estimation. The mean-shift procedure [12,13], the local M-
smoothers [14,7] and bilateral filtering [15,16] implement this
approach. Modeling images as random fields [18,19] provides yet
another strategy.

In the recent years, filtering in the spatial domain has deeply
evolved thanks to the introduction of patches. This term refers to
small neighborhoods around each pixel, which are used to refine
the computation of the pixel similarities. Extending filters to
patches has considerably improved their denoising quality.
Examples of patch-based filters are the nonlocal means
(NLmeans) [20,21], unsupervised information-theoric adaptative
filtering (UINTA) [22] and Bayesian approaches [27]. Adaptive
patch sizes [23] and iterative updates [23–25] have also been
investigated. Other developments of the NLmeans are related to
kernel regression [26], probabilistic weights [24], efficient
implementations with tree structures [28] or dictionaries [27].
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The connections between bilateral filtering, the mean-shift
procedure and (iterative) NLmeans on one side, and with diffusion
processes, partial differential equations, and spectral graph theory
on the other side are pointed out in [29,30]. Robust kernels [25],
variable width kernels [31] and specific patch-to-patch distances
[27,32] are also reported in the literature.

This paper extends the preliminary ideas in [33]. It aims at
casting patch-based filters within the framework of mode
estimation and robust statistics. For this purpose, we start from
local filtering and extend it to the local M-smoothers and bilateral
filtering. For each pixel, these two filters iteratively estimate the
closest intensity mode within a local neighborhood. In practice,
these filters involve the product of two similarity kernels. The first
one indicates whether two pixels are located close to each other
in the pixel grid, whereas the second one measures the tonal or
radiometric similarity between pixel intensities. Discarding the
spatial kernel in bilateral filtering leads to the well-known mean-
shift procedure [12,13,34,35]. Introducing patches in the afore-
mentioned filters can be done in two different ways. The first one
proceeds by replacing the pixel-to-pixel similarity directly in the
expression of the filter. Many publications [20,23,22] follow this
approach. Instead, we propose to introduce patches in the
objective functions from which the filter expressions are derived.
The analytical derivation starting from these generalized objective
functions yields filters that entail weighted averages of patches
instead of isolated pixels. For this reason we distinguish patchwise

and pixelwise filtering in the following of this paper. In the case of
the nonlocal means, patchwise versions are said to be vectorial
[27,25] or block-based [20]. In [20], patchwise averaging of partly
overlapping blocks is suggested as a way to reduce the computa-
tional cost of the nonlocal means. Fully overlapping blocks are
used in [27], but the running time of the implemented filter is
significantly higher than its pixelwise counterpart. We show that
patchwise averaging with fully overlapping patches does not
increase the computational cost of patch-based filters, as
compared to classical pixelwise averaging described in the
literature. Moreover, experiments with various images and
several noise levels show that for each considered filter (local
M-smoothers, bilateral filtering, nonlocal means), the patchwise
versions slightly outperform the pixelwise implementations in a
systematic way.

The remainder of this paper is organized as follows. Section 2
briefly defines the image model; it also describes the derivation of
state-of-the-art filters with spatial and/or tonal similarity kernels,
such as the local M-smoothers, bilateral filtering, and the mean-
shift. Section 3 introduces patches in these filters. This leads to the
nonlocal means and patch-based versions of local M-smoothers
and bilateral filtering. For all these filters we give the patchwise
update in addition to the classical pixelwise filter. Experiments
and results are detailed and commented in Sections 4 and 5,
respectively. Finally, Section 6 draws the conclusions.
2. Image model and nonlinear filters with spatial and/or tonal
kernels

Let us assume that an image is a set of pixels located on a
regular grid. Then let I denote the set of grid coordinates that are
associated with each pixel of the image. Each pixel can then be
uniquely identified on the grid by its coordinate vector iA I and
we (somewhat abusively) call it the ith pixel. The observed
intensity of each pixel is given by

fi ¼ uiþei; ð1Þ

where ui is the noisefree value and ei is the noise component. The
latter is independent and identically distributed for each pixel.
More specifically, we assume that the noise is Gaussian with zero
mean and standard deviation n, that is, ei � Gð0; n2Þ.

A model with Gaussian i.i.d. noise can be too simple in many
real situations. Noise can indeed result from a combination of
several physical phenomena and the assumptions of indepen-
dence and normality are often invalidated in practice. However,
the knowledge of an appropriate noise model can lead to a data
transformation whose purpose is to make noise (nearly) normal.
For example, Fisz’s and Anscombe’s variance stabilizing trans-
forms convert Poissonian noise into Gaussian noise [36], making
classical filters applicable. Bilateral filtering with Fisz’s transform
is studied in [39] whereas patch-based filters with a general-
ization of Anscombe’s transform are used in [17].

2.1. Isotropic local filter

Local filtering basically consists in replacing each pixel
intensity with an average of the surrounding pixel intensities.
Doing so is motivated by statistical considerations. If several
measurements were available for each pixel, computing their
average would yield a good estimate of the noisefree intensity. As
pixels unfortunately contain a single measurement, involving
neighboring pixels in the average might yield a useful surrogate,
provided they share the same noisefree intensity. If this is not the
case, for instance near an intensity jump, then there is a risk of
introducing a bias in the filtered values. This justifies that only
close neighbors of the pixel to be filtered bring a nonzero
contribution in the average.

Working locally in the image entails the definition of a
distance function on the image grid. Let Ji�jJp denote the
distance derived from the Lp norm between the ith and jth pixels
on the grid. It is noteworthy that in order to avoid boundary
effects, we consider that the image has a toroidal topology (in the
two-dimensional case). In practice, the torus consists of four
mirrored copies of the image. If the image depicts symbol p, then
mirroring leads to pq

bd. Next, the top and bottom borders of the
resulting image are connected together, and so are its left and
right borders. This produces a torus without any image dis-
continuity.

Given a distance on the grid, the neighborhood of the ith pixel
can be defined as

Ni ¼ fj s:t: Ji�jJprrg; ð2Þ

where r is some radius. The toroidal topology ensures that
jNij ¼ jNjj for all i and j. In other words, all pixels have the same
number of neighbors.

Isotropic local filtering can then be obtained starting from the
L2 error

EisoðûÞ ¼
1

2

X
iA I

X
jANi

wijðûi�fjÞ
2; ð3Þ

where û ¼ ½ûi�iA I denotes the denoised image and wij is a weight
that depends on Ji�jJ2. The global minimum of this error function
is attained when its gradient vanishes. Therefore, if its partial
derivative with respect to ûk is equated to zero, then the closed-
form solution

ûi ¼

P
jANi

wijfjP
jANi

wij
ð4Þ

comes out. Choosing a softly decaying window such as

wij ¼ exp �
Ji�jJ2

2

2s2

 !
ð5Þ

leads to a close approximation of Gaussian filtering, provided s is
small enough with respect to r. This ensures that the truncation
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due to the restriction to neighborhood Ni remains negligible.
Other options may work as well, such as a hard window, that is,
wij=1.

The total photometry of the image is approximately preserved
for zero-mean noise, as we haveX
iA I

û
t
i ¼
X
iA I

fi �
X
iA I

ui ð6Þ

just by expanding û
t
i with (4) and rearranging the terms of the

sum in the left-hand side. The last approximation results from (1);
the sum of ei (symmetric and zero mean noise) converges to zero
for a large number of pixels.

In practice, the values of s and/or r need to be chosen in order
to attain a good tradeoff between residual noise variance and bias.
In other words, noise should be attenuated without smoothing
the underlying signal. Anisotropic variants of local filtering, such
as the local M-smoothers and bilateral filtering elegantly
simplifies the search for this tradeoff.

2.2. Local M-smoothers

The local M-smoothers (LMSs) [14,7,40] are inspired by robust
statistics [37,38], which aim at deriving reliable estimators even
in the presence of outliers. In order to reduce the influence of the
latter in the calculations, standard L2 estimators are refined in
such a way that the contribution of outliers saturates. For
instance, one can rewrite (3) as

ELMSsðûÞ ¼
X
iA I

X
jANi

wijCrððûi�fjÞ
2=2Þ; ð7Þ

where

CrðzÞ ¼ r2ð1�expð�z=r2ÞÞ: ð8Þ

Observing that limr-1Crðz2=2Þ ¼ z2=2, one easily sees the
relationship with classical L2 estimators. Function ELMSs cannot
be minimized in closed-form, for it is no longer quadratic. Instead,
a gradient descent approach [39] allows us to write

û
tþ1
i ¼ û

t
i�a

t@ELMSs

@ûi
j
û

t
ð9Þ

¼ û
t
i�a

t
X
jANi

wijC
0

rððu
t
i�fjÞ

2=2Þðû
t
i�fjÞ; ð10Þ

where t denotes the iteration index and a is the step size.
Imposing

at ¼ 1
X
jANi

wijC
0

rððû
t
i�fjÞ

2=2Þ

,
ð11Þ

leads to update rule

û
tþ1
i ¼

P
jANi

wijC
0

rððû
t
i�fjÞ

2=2ÞfjP
jANi

wijC
0

rððû
t
i�fjÞ

2=2Þ:
ð12Þ

This particular value of the step size ensures that the total
photometry of the image is approximately preserved. With an
appropriate image padding, we have

lim
r-1

X
iA I

û
t
i ¼
X
iA I

fi �
X
iA I

ui ð13Þ

for all t. A similar limit can be expressed for r-0 as well. The
initialization of (12) is given by û

0
i ¼ 0.

The same update rule can alternatively emerge from a fixed-
point approach, wherein the partial derivatives are equated with
zero. Function C0 in the update rule is called the radiometric or
tonal kernel because it modulates the contribution of the
neighboring pixels according to their intensity. This dependence
on the surrounding pixel intensities makes the filter locally
adaptive and anisotropic. Width r proves to be an additional
parameter, compared to isotropic filtering. Its value is typically
adjusted with respect to both the noise standard deviation and
the height of the intensity jumps one wants to preserve.

The decaying influence of dissimilar pixel intensities makes
the LMSs robust against outliers as well as an efficient mode
estimator. This can be formally demonstrated by observing that
the same update rule comes out of a hill-climbing procedure on a
Parzen-window density estimator [34,40]. For this reason, the
LMSs is particularly good at denoising piecewise constant signal.

2.3. Bilateral filtering and the mean-shift procedure

Bilateral filtering (BF) [15,16,40] happens to be a slightly
different variant of the LMSs. More precisely, BF compares the
intensity of the pixel to be filtered with surrounding filtered
intensities instead of the noisy ones. Similarly, it computes an
average of the filtered intensities rather than the noisy ones.
These changes are summarized in update rule

û
tþ1
i ¼

P
jANi

wijC
0

rððû
t
i�û

t
j Þ

2=2Þ̂u
t

jP
jANi

wijC
0
ððû

t
i�û

t
j Þ

2=2Þ:
ð14Þ

The initialization remains the same as for the LMSs and both
techniques yield a different result starting from the second iteration.

As a matter of fact, LMSs are strictly local whereas BF is not.
Averaging intensities that are already filtered entails a diffusion
process. This explains why BF is even better than the LMSs at
denoising piecewise constant signals, provided width r is small
enough compared to the intensity jumps. If not, running BF for
many iterations can eventually lead to a flat image; the diffusion
process has to be stopped soon enough. Formally, one can observe
that BF minimizes

EBFðûÞ ¼
X
iA I

X
jANi

wijCrððûi�ûjÞ
2=2Þ; ð15Þ

which admits trivial solution ûi ¼ ûj, for i; jA I.
Choosing Ni as the whole image in (14) and discarding the

spatial kernel denoted by wij leads to the mean-shift procedure
[12,13,34,35].
3. Patch-based filters

Although the LMSs and BF perform pretty well with piecewise
constant images, the quality of their results significantly decreases
if the image exhibits a more complex structure, with fine textures
for instance. As these filters work as mode estimators, they poorly
behave if the intensity distributions of neighboring pixels tend to
overlap. This means that the signal modes are too close to be
efficiently identified. In order to circumvent this difficulty, the
problem can be reformulated in such a way that mode overlap is
less likely to occur. A classical strategy consists in working in a
higher dimensional space. As an illustration, consider two Gaussian
modes in a high-dimensional space, with moderate overlap.
Projecting this distribution along a single dimension is likely to
increase the overlap. The reverse statement is true as well: adding
more features or dimensions will probably decrease the mode
overlap. In the case of images, each pixel turns out to be a
dimension and therefore the idea of considering groups of pixels
rather than isolated ones naturally emerges. It sounds particularly
interesting to consider groups of adjacent pixels, which we call
patches, for they are able to represent the local image texture. More
formally, we define the patch centered on the ith pixel as

Pi ¼ fj s:t: Ji�jJ1rpg: ð16Þ
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2
2 w.r.t. uk is zero except if kAPi . In this case,

translating the shift from i to k towards j allows us to determine which index in Pj

is involved in the partial derivative.

A. De Decker et al. / Neurocomputing 73 (2010) 1199–12091202
The L1 norm (or city-block distance) allows Pi to represent square
block in the image, but any other choice is possible. The toroidal
topology of the image (or an appropriate padding) guarantees that
a patch can be constructed for each pixel. The intensities observed
in a patch are denoted by fi ¼ ½fj�jAPi

. The square brackets indicate
that intensities are arranged in a vector, always in the same order.
Similarly, symbols ui and ûi denote the noisefree value of the ith
patch and its estimate, respectively. The representation of patches
by vectors allows us to compute the pairwise distances in the usual
(Euclidean) way.

3.1. Pixelwise patch-based filters

Starting from update rules (12) and (14), intuitive extensions
to patches can be written as

û
tþ1
i ¼

P
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2ÞfjP

jANi
wijC

0

rðJû
t
i�fjJ

2
2=2Þ

ð17Þ

and

û
tþ1
i ¼

P
jANi

wijC
0

rðJû
t
i�û

t
jJ

2
2=2Þ̂u

t

jP
jANi

wijC
0
ðJû

t
i�û

t
jJ

2
2=2Þ;

ð18Þ

for the LMSs and BF, respectively. This modification involves patch
comparisons in the tonal kernel C0r. Choosing a patch radius equal
to zero trivially brings back the usual scalar filters. If the spatial
kernel denoted wij is constant over the whole image, the first
iteration of Eqs. (17) and (18) reduce to the nonlocal means [20].

Experiments confirm the expected performance gain (see Section
5). However, the introduction of patches directly into update rules
(17) and (18) breaks the connection with error functions (7) and
(15): one can no longer claim for sure that these modified update
rules actually optimize some objective function. In the case of BF, an
attempt to relate patch-based filtering to an error function can be
found in [41]. Unfortunately, it involves hybrid patches that mix
together noisy constant intensities coming from fi and a central
varying pixel taken from û

t
i . A similar approach is developed in [23].

3.2. Patchwise patch-based filters

As an alternative approach, we propose to introduce patches in
error functions (7) and (15) rather than in the update rules. In the
case of the LMSs, we write the modified error function as

EPWPBLMSsðûÞ ¼
X
iA I

X
jANi

wijCrðJûi�fjJ
2
2=2Þ: ð19Þ

Next, we minimize it by gradient descent. For this purpose, we
first notice that

@

@uk

Jui�fjJ
2
2

2
¼

uk�fjþk�i if kAPi;

0 otherwise:

(
ð20Þ

The index of f is visually explained in Fig. 1. Therefore, the partial
derivative of EPBLMSs with respect to ûk is given by

@EPWPBLMSs

@ûk
¼
X
iAPk

X
jANi

wijC
0

rðJûi�fjJ
2
2=2Þðûk�fjþk�iÞ ð21Þ

and the gradient descent can be written as

utþ1
k ¼ ut

k�a
t@EPBLMSs

@ûk
j
ut

ð22Þ

¼ 1�at
X
iAPk

X
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þ

1
Aut

k

0
@
þat

X
iAPk

X
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þfjþk�i: ð23Þ
Fixing the step size according to

at ¼ 1
X
iAPk

X
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þ

,
ð24Þ

leads to the update rule given by

utþ1
k ¼

P
iAPk

P
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þfjþk�iP

iAPk

P
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þ:

ð25Þ

As to patch-based BF, the same reasoning starting from

EPWPBBFðûÞ ¼
X
iA I

X
jANi

wijCrðJûi�ûjJ
2
2=2Þ ð26Þ

leads to

utþ1
k ¼

P
iAPk

P
jANi

wijC
0

rðJû
t
i�û

t
jJ

2
2=2Þ̂u

t

jþk�iP
iAPk

P
jANi

wijC
0

rðJû
t
i�û

t
jJ

2
2=2Þ:

ð27Þ

For both patch-based update rules, the initialization remains
unchanged, i.e. uk

0 = fk for all kA I. Classical LMSs and BF are found
back if the patch radius is set to zero. Just as with the previously
described pixelwise version, extending Ni to the whole image
and letting wij=1 leads to an iterative version of the nonlocal
means [20].

The difference between the pixelwise and patchwise versions
of the patch-based filters is obvious. In the former, the outer sum
over Pk is dropped and only the term associated with the central
pixel of the patch remains. This shows that the pixelwise updates
are approximations of the patchwise ones.
3.3. Computational complexity and implementation

At first glance, the patchwise updates seem to require more
operations than the pixelwise ones, because they involve an
additional sum. In order to show that this intuition is false, let us
first compute the complexity of LMSs and BF without patches.
Updates (12) and (14) are to be applied to whole image and are
thus repeated jIj times. Each update then requires OðjNijÞ

operations, in order to compute all filter weights and their sum
in both their numerator and denominator. This leaves us with a
total time complexity of OðjIjjNijÞ.

The introduction of patches in the tonal kernel, such as in the
pixelwise updates, increases the number of operations to
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compute each weight of the filter. Computing the patch-to-patch
distance has a complexity of OðjPijÞ, instead of Oð1Þ previously.
This brings the total time complexity to OðjIjjNijjPijÞ.

As to the patchwise updates, let us first notice that the terms in
the numerator and denominator of (25) and (27) depend on indexes
i and j. A given pair (i,j) occurs in the computation of several filtered
intensities. More precisely, looking once again at Fig. 1 shows that
this pair is involved in ûk for kAPi. Starting from this observation,
we rewrite the filtered intensity in (25) and (27) as

û
tþ1
i ¼ vi=ni; ð28Þ

where temporary variables vi and ni accumulate the terms of the
numerator and denominator, respectively. Next, let us assume that
these variables already account for all terms except those related to
index pair (i,j), with i fixed and j running in Ni. Then, in the case of
the LMSs, we accumulate the last terms by writing

ni’niþ
X
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þ; ð29Þ

vi’viþ
X
jANi

wijC
0

rðJû
t
i�fjJ

2
2=2Þfj; ð30Þ

where ni and vi are as usual the patch values centered on the ith
pixel. If other terms than those associated to the given value of i are
missing, then the two last updates can be applied for them as well.
Eventually, we conclude that the updates can be applied for all iA I,
starting from the initialization ni=0, vi=0. This means that
computing (29) and (30) for all iA I, followed by (28) for all iA I

is equivalent to update (25). A similar reasoning can be followed
for BF. In both cases, the computational complexity is distributed as
follows. The computation of the patch-to-patch distance requires
OðjPijÞ operations. This leaves us with a total time complexity of
OðjIjjNijjPijÞ in order to update ni for all i. On the other hand,
updating vi entails patch-to-patch additions. Fortunately enough,
all patch elements are premultiplied by the same factor, meaning
that the patch-to-patch distance and the patch-to-patch accumula-
tion can be carried out sequentially. Therefore, the time complexity
remains the same and experimental runtimes for the patchwise
and pixelwise filters are not significantly different.

Provided the patches are rectangular blocks, the patch-to-patch
distances and the patchwise update can be sped up by carrying them
out with separable convolutions. Moreover, the convolution along
each dimension of the image with a constant window can be
implemented in linear time, by using accumulators. These computa-
tional simplifications have been described in [42] for the patch-to-
patch distances; we have implemented the same tricks for the
patchwise updates. More precisely, in the one-dimensional case, let us
assume that the image is a vector with L pixels, the support of the
spatial kernel encompasses 2M + 1 pixel, and that the block-shaped
patch contains 2K + 1 pixels. The image must be padded with 2K+M

pixels at both ends, so that we can fetch pixel intensities fi and û
t
i with

1�2K�Mr irLþ2KþM; û
t
i is initialized to fi. If dði;mÞ ¼

Jui�f iþmJ
2
2 denotes the squared Euclidean patch-to-patch distance,

with �MrmrM, then for fixed m we can compute

dð1�K;mÞ ¼
XK

k ¼ �K

ðû
t
1þk�f1þmþkÞ

2
ð31Þ

and for all 1�Ko irLþK we iterate

dðiþ1;mÞ ¼ dði;mÞþðû
t
iþ1þK�fiþ1þKþmÞ

2
�ðû

t
iþ1�K�fiþ1�KþmÞ

2: ð32Þ

Once this is done, we can obtain the terms involved in (29) and (30)
by computing first

nð1;mÞ ¼
XK

k ¼ �K

wmC0rðdð1þk;mÞ=2Þ; ð33Þ
vð1;mÞ ¼
XK

k ¼ �K

wmC0rðdð1þk;mÞ=2Þû
t
1þm; ð34Þ

and next, for all 1o irL,

nðiþ1;mÞ ¼ nði;mÞþwmC0rðdðiþ1þK;mÞ=2Þ�wmC0rðdðiþ1�K ;mÞ=2Þ;

ð35Þ

vðiþ1;mÞ ¼ vði;mÞþwmC0rðdðiþ1þK;mÞ=2Þû
t
1þm

�wmC0rðdðiþ1�K ;mÞ=2Þû
t
1þm; ð36Þ

where wm is the spatial weight that corresponds to wij with j� i=m.
An outer loop running over �MrmrM allows us to compute

ni ¼
XM

m ¼ �M

nði;mÞ; vi ¼
XM

m ¼ �M

vði;mÞ; ð37Þ

and eventually û
tþ1
i ¼ vi=ni for 1r irL. The sequence of all

abovementioned steps amounts to a complexity of OðLMKÞ in this
one-dimensional case. The generalization to two or more dimensions
is straightforward but it requires much space and complicated
notations. The most noticeable difference is the need to repeat the
linear convolution for each dimension. The total time complexity is
then OðjIjjNijDÞ, where D is the image dimensionality.3 The complex-
ity does not depend on the patch size and only factor D makes it
higher than with scalar filters.
4. Images and experimental setup

Nine filters are compared in order to discuss their respective
advantages:
�
 classical (scalar) LMSs and BF,

�
 pixelwise patch-based (PB) LMSs, BF and NLmeans,

�
 patchwise patch-based (PWPB) LMSs, BF and PWNLmeans,

�
 SAFIR, a state-of-the-art filter [43,44].
The test images are shown in Figs. 2(a)–(c); they depict two ladies,
namely Lena and Barbara, and boats in a port.

These three well known benchmarks include 5122 pixels with
grayscale intensities ranging from 0 to 255. Each pixel intensity is
independently perturbated by Gaussian noise. Three noise levels
are retained, with standard deviations equal to 5, 10 and 15,
respectively. Each experiment involves M=5 noisy copies of each
image for the optimization of the parameters, and 100 copies of
each image for the final evaluation of the PSNR and its variance.

If ui and û
m
i , respectively, denote the noisefree intensity of the

ith pixel and its estimate starting from the m th noisy images,
then the denoising quality can be assessed by the mean square
error (MSE) or the peak signal to noise ratio (PSNR). The MSE is
defined here as

MSEðu; û
m
Þ ¼

1

jIj

X
iA I

ðui�û
m
i Þ

2: ð38Þ
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Fig. 2. Images used in this paper: (a) Len; (b) Barbara and (c) boat.

Table 1
RMMSE, PSNR, standard deviation of the PSNR, and parameter values for all images

with 100 repetitions, perturbated by additive i.i.d. Gaussian noise with standard

deviation equal to 5.

RMMSE mean(PSNR) std(PSNR) T r s p

Lena ðn¼ 5Þ

Noisy image 5.0032 34.1458 0.0749

LMSs 3.4073 37.4826 0.0414 1 10.5968 4.8111 0

BF 3.4073 37.4826 0.0414 1 10.5968 4.8111 0

PBLMSs 3.0942 38.3198 0.0410 1 6.0353 4.4747 2

PWPBLMSs 3.0915 38.3274 0.0485 1 5.8082 1.4476 2

PBBF 3.0942 38.3198 0.0410 1 6.0353 4.4747 2

PWPBBF 3.0915 38.3274 0.0485 1 5.8082 1.4476 2

NLmeans 3.1777 38.0885 0.0349 1 5.2161 n.a 1

PWNLmeans 3.1726 38.1025 0.0361 1 5.0932 n.a 1

SAFIR 3.1523 38.1584 0.0371 4 n.a. n.a. 6

Barbara ðn¼ 5Þ

Noisy image 4.9971 34.1564 0.0763

LMSs 4.0012 36.0870 0.0638 1 9.2913 3.7327 0

BF 4.0012 36.0870 0.0638 1 9.2913 3.7327 0

PBLMSs 3.5035 37.2408 0.0545 1 6.4241 4.8099 2

PWPBLMSs 3.5014 37.2460 0.0585 1 6.4704 4.1992 2

PBBF 3.5035 37.2408 0.0545 1 6.4241 4.8099 2

PWPBBF 3.5014 37.2460 0.0585 1 6.4604 4.1992 2

NLmeans 3.5289 33.2780 0.0507 1 5.2578 n.a 1

PWNLmeans 3.5258 33.2829 0.0523 1 5.0766 n.a 1

SAFIR 3.5598 37.1024 0.031 4 n.a. n.a. 6

Boat ðn¼ 5Þ

Noisy image 4.9967 34.1571 0.0638

LMSs 3.9241 36.2560 0.0646 1 10.1310 2.9358 0

BF 3.9241 36.2560 0.0646 1 10.1310 2.9358 0

PBLMSs 3.6842 36.8039 0.0763 1 6.4056 3.2491 1

PWPBLMSs 3.6822 36.8087 0.0786 1 6.2953 3.1796 1

PBBF 3.6842 36.8039 0.0763 1 6.4056 3.2491 1

PWPBBF 3.6822 36.8087 0.0786 1 6.2953 3.1796 1

NLmeans 3.7213 36.7169 0.0669 1 5.3213 n.a 1

PWNLmeans 3.7177 36.7253 0.0695 1 5.1682 n.a 1

SAFIR 4.0460 35.9903 0.0431 3 n.a. n.a. 6

T, number of iterations, r; radiometric kernel width, s, spatial kernel width, p,

patch radius (in pixels).

Table 2
RMMSE, PSNR, standard deviation of the PSNR, and parameter values for all images

with 100 repetitions, perturbated by additive i.i.d. Gaussian noise with standard

deviation equal to 10.

RMMSE mean(PSNR) std(PSNR) T r s p

Lena ðn¼ 10Þ

Noisy image 10.0011 28.1298 0.0865

LMSs 5.1218 33.9424 0.0591 1 25.9477 2.9327 0

BF 5.1218 33.9424 0.0591 1 25.9477 2.9327 0

PBLMSs 4.5251 35.0182 0.0542 1 12.3355 2.9156 2

PWPBLMSs 4.5153 35.0371 0.0576 2 8.2242 1.8088 2

PBBF 4.5251 35.0182 0.0542 1 12.3355 2.9156 2

PWPBBF 4.5150 35.0376 0.0590 2 8.2221 1.8301 2

NLmeans 4.6258 34.8271 0.0436 1 10.1293 n.a 2

PWNLmeans 4.6052 34.8658 0.0444 1 9.9683 n.a 2

SAFIR 4.4367 35.1897 0.0343 4 n.a. n.a. 6

Barbara ðn¼ 10Þ

Noisy image 10.0027 28.1285 0.0696

LMSs 6.0288 32.5262 0.0591 1 26.8511 2.8409 0

BF 6.0288 32.5262 0.0591 1 26.8511 2.8409 0

PBLMSs 5.5583 33.2320 0.0652 1 12.6075 3.4908 2

PWPBLMSs 5.5458 33.2515 0.0591 1 11.6827 3.6703 2

PBBF 5.5583 33.2320 0.0652 1 12.6075 3.4908 2

PWPBBF 5.5458 33.2515 0.0591 1 11.6827 3.6703 2

NLmeans 5.6171 33.1406 0.0494 1 10.6273 n.a 2

PWNLmeans 5.6013 33.1650 0.0429 1 10.1083 n.a 2

SAFIR 5.3935 33.4935 0.0343 3 n.a. n.a. 6

Boat ðn¼ 10Þ

Noisy image 9.9983 28.1323 0.0844

LMSs 6.8405 31.4290 0.0502 1 19.2729 4.0971 0

BF 6.8405 31.4290 0.0502 1 19.2729 4.0971 0

PBLMSs 5.5042 33.3169 0.0363 1 9.2067 11.2660 2

PWPBLMSs 5.4621 33.3836 0.0415 1 9.3434 8.6191 2

PBBF 5.5042 33.3169 0.0363 1 9.2067 11.2660 2

PWPBBF 5.4621 33.3836 0.0415 1 9.3434 8.6191 2

NLmeans 5.4968 33.3286 0.0346 1 9.5284 n.a 2

PWNLmeans 5.4782 33.3580 0.0362 1 9.1022 n.a 2

SAFIR 5.6425 33.1014 0.0385 3 n.a. n.a. 6

T, number of iterations, r; radiometric kernel width, s, spatial kernel width, p,

patch radius (in pixels).
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The M repetitions allow us to compute the square root of its
average value, which is called the RMMSE:

RMMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
m ¼ 1

MSEðu; û
m
Þ

vuut : ð39Þ

Another widely used error criterion is the peak signal to noise
ratio; it is defined as

PSNR¼ 10 log10
maxðfÞ2

MSE

 !
ð40Þ
and therefore depends on the intensity range of the image. In
practice, since the images used in the experiments have an
intensity range of 0–255, max(f) is replaced by 255 in (40).

The filter parameters are s (the width of the spatial kernel),
r (the width of the radiometric kernel), T (the number of
iterations), and p (the patch radius). All four parameters have
been optimized in order to maximize the PSNR. The parameters
s and r were initialized at 10 for all experiments and then
optimized for each patch size, each and number of iterations. In
the specific case of the NLmeans and PWNLmeans, the spatial
kernel is constant over large 21-by-21 blocks (a true global
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Table 3
RMMSE, PSNR, standard deviation of the PSNR, and parameter values for all images with 100 repetitions, perturbated by additive i.i.d. Gaussian noise with standard

deviation equal to 15.

RMMSE mean(PSNR) std(PSNR) T r s p

Lena ðn¼ 15Þ Fig. 3

Noisy image (b) 14.9981 24.6101 0.0826

LMSs (c) 6.4146 31.9874 0.0512 1 44.2942 3.2892 0

BF (d) 6.4146 31.9874 0.0512 1 44.2942 3.2892 0

PBLMSs (e) 5.5889 33.1843 0.0531 2 12.5253 3.5749 2

PWPBLMSs (f) 5.5462 33.2509 0.0594 2 11.7869 4.6313 2

PBBF (g) 5.5887 33.1846 0.0523 2 12.5114 3.5811 2

PWPBBF (h) 5.5464 33.2506 0.0678 2 11.7814 4.6281 2

NLmeans (i) 5.7116 32.9956 0.0418 1 13.2817 n.a 2

PWNLmeans (j) 5.7003 33.0128 0.0421 1 12.4728 n.a 2

SAFIR (k) 5.5541 33.2389 0.0764 4 n.a. n.a. 6

Barbara ðn¼ 15Þ Fig. 4

Noisy image (b) 15.0007 24.6086 0.0821

LMSs (c) 9.2642 28.7946 0.0677 1 28.5618 4.8083 0

BF (d) 9.2642 28.7946 0.0677 1 28.5618 4.8083 0

PBLMSs (e) 7.1058 31.0985 0.0741 1 12.2734 13.0870 2

PWPBLMSs (f) 7.0581 31.1570 0.0770 1 12.4715 10.3464 2

PBBF (g) 7.1058 31.0985 0.0741 1 12.2734 13.0870 2

PWPBBF (h) 7.0581 31.1570 0.0770 1 12.4715 10.3464 2

NLmeans (i) 7.1158 31.0863 0.0379 1 13.2215 n.a 2

PWNLmeans (j) 7.0992 31.1066 0.0404 1 12.7798 n.a 2

SAFIR (k) 6.9016 31.3516 0.0601 4 n.a. n.a. 6

Boat ðn¼ 15Þ Fig. 5

Noisy image (b) 14.9953 24.6117 0.0979

LMSs (c) 7.6514 30.4560 0.0485 1 42.8622 3.0811 0

BF (d) 7.6514 30.4560 0.0485 1 42.8622 3.0811 0

PBLMSs (e) 6.9901 31.2411 0.0508 2 14.1054 2.9948 2

PWPBLMSs (f) 6.9442 31.2984 0.0550 2 12.9953 3.1038 2

PBBF (g) 6.9895 31.2419 0.0468 2 14.1169 2.9893 2

PWPBBF (h) 6.9440 31.2986 0.0414 2 13.0046 3.1070 2

NLmeans (i) 7.3249 30.8348 0.0370 1 13.8132 n.a 1

PWNLmeans (j) 7.2949 30.8704 0.0332 1 12.0148 n.a 2

SAFIR (k) 6.999 31.2301 0.0449 4 n.a. n.a. 6

T, number of iterations, r; radiometric kernel width, s, spatial kernel width, p, patch radius (in pixels).
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search is too expensive). The patch radius p was allowed to take
any integer value between 0 and 7 and the number of iterations
was chosen between 0 and 5. Once the optimal parameter
values are determined, the quantitative results given in Section
5 stem from the evaluation of PSNR and RMMSE on a larger set
of 100 noisy images.

It is worth mentioning that the number of iterations of the
filters was optimized according to criteria (39) and (40). Early
stopping looks natural for bilateral filtering and other filters
involving diffusion processes that lead to spurious steady
states. In contrast, one might wonder why early stopping
should be applied to filters with limited diffusion such as the
local M-smoothers, whose steady state is intuitively not
expected to be spurious. Actually, any filter can be considered
to be a statistical estimator, for which the unknown parameter
is the noisefree image. Though unknown by the estimator, the
true parameter value can however be available to the
experimenter for quality assessment purposes. Within this
framework, a pertinent estimator is a function that owns the
same optima as the quality criterion, without referring to the
actual parameter value. In other words, the estimator is a
surrogate of the quality criterion and it can be characterized
by both its bias and variance. It is intuitively easy to observe
that all filters considered in this paper are biased. They achieve
weighted averages of noisy pixels or patches that come from
different parts of the image. Thus, nothing prevents these
filters to average together pixels or patches that have different
distributions. This intuitively shows that filters with and
without diffusion are biased, except if the radiometric width r
is zero (no filtering at all). If r¼1, the expected worst-case
bias for the LMSs is the difference between the noisefree
image and the noisefree image convolved with the spatial
kernel. Similarly, the expected bias for BF is the difference
between the noisefree image and the noisefree image con-
volved with the spatial kernel as many times as the number of
iterations. In the case of an iterative estimator, a nonzero bias
means that its steady state might be irrelevant. On the other
hand, any intermediate state can be roughly seen as a mixture
of the steady state (low variance but nonzero bias) with the
initial noisy image (high variance but unbiased under reason-
able assumption). Early stopping then proves to be an easy
way to improve the bias/variance tradeoff. In machine
learning, early stopping is a way to prevent overfitting, which
turns out to be closely related to the abovementioned bias/
variance tradeoff.
5. Results

This section details the results obtained with the various
images and noise levels. Visual examples are only provided for the
highest noise level as it provides the best support to evaluate the
differences between the filters. The visual evaluation will be done
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Fig. 3. Samples of Lena’s image: (a) noisefree; (b) noisy with n¼ 15; (c) LMSs; (d) BF; (e) PBLMSs; (f) PWPBLMSs; (g) PBBF; (h) PWPBBF; (i) NLmeans and (j) PWNLmeans.
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for a selected part of the image in order to be able to analyze the
behavior of each filter in a finer way.
5.1. Images with additive Gaussian noise of standard deviation:

n¼ 5

This first experiment features noise of very low intensity and is
mainly used to control for eventual distortions, smoothings or
artifacts generated during the filtering process. However, even with
this small noise level, it is already possible to show that the filters
perform differently. The RMMSE, along with the mean and
standard deviation of the PSNR, are reported in Table 1 for all
images. For this noise level, the best results are obtained with a
single iteration, which explains the identical figures for the LMSs
and BF, PBLMSs and PBBF, and PWPBLMSs and PWPBBF: in this
case, these filters are identical. In all cases, the PSNRs given by
scalar filters (LMSs and BF) are significantly lower than those of the
patch-based filters. The scalar filters also use a wider s and r than
the patch-based filters. For the other filters (PBLMSs, PBBF,
NLmeans), the PSNR values are systematically slightly higher for
the patchwise versions than for the pixelwise ones. However, when
having a look to the standard deviations, they cannot be considered
to be statistically significant. The performances of the SAFIR filters
are very close to the best results obtained by the principled filters.
These results show that the patchwise version perform slightly
better than the pixelwise versions, even if the small performance
gain shows that the contribution of the additional terms in the
patchwise filters remains limited, at least when the parameters of
the filters (including the number of iterations) are optimized.
5.2. Images with additive Gaussian noise of standard deviation:

n¼ 10

The second experiment involves the same three images with a
higher noise level, which significantly distort the image details.
The fine features of the noisy images are now harder to see and
the capability of the filters to recover these features becomes
another criterion to consider. Table 2 indicates the RMMSE, mean
and standard deviation of the PSNR and parameter values of each
filter. As in the first experiment, the scalar filters perform
systematically worse than the patch-based filters. For all
images, the patchwise versions of the patch-based filters exhibit
a slightly higher PSNR than their pixelwise counterparts. The
results from the principled filters are comparable to those
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Fig. 4. Samples of Barbara’s image: (a) noisefree; (b) noisy with n¼ 15; (c) LMSs; (d) BF; (e) PBLMSs; (f) PWPBLMSs; (g) PBBF; (h) PWPBBF; (i) NLmeans and (j) PNLmeans.
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obtained by the SAFIR filter. Even if the performance gain is not
statistically significant, it is again present for all tested filters, and
on all images. For this experiment, optimum values of the PSNR
for the patch-based filters are found with patch radius equal to 2.
5.3. Images with additive Gaussian noise of standard deviation:

n¼ 15

In this third experiment, the standard deviation of the noise is
high enough to completely absorb the fine details in the images.
In Lena’s picture, the noise distorts the textures of the hat fabric,
eyelashes, and some parts of the feathers. In Barbara’s picture, the
features on the hand and wrists are lost in the noise, while the
stripes are salient enough to be recovered by the filters. In the
boat image, the features on the boats and the sea are also lost due
to noise and should be hard to recover. Table 3 indicates the
RMMSE, mean and standard deviation of the PSNR and parameter
values for each image and filter. Once again, patchwise averaging
in patch-based filters slightly outperform their pixelwise versions
on all images even if the performance gain is not statistically
significant. The lower PSNR is given by the scalar filters.
Typical Lena, Barabara and boat images are displayed in
Figs. 3–5. Scalar filters attain their best RMMSE value by merely
achieving a light denoising; images (c) and (d) remain noisy. The
visual feeling for images (e)–(i) is much more satisfying and
barely frothy. Patch-based filters can attenuate noise without
distorting the image details, whereas the tradeoff for scalar filters
consists of a light denoising that prevents intensities from biases.
Most of the details that are not completely lost in the noise are
nicely preserved. However, the skin and wrist in the Barbara
picture and the sea and boats in the boat image are smoothed by
the denoising process. The images show that none of the filters
noticeably distorts the images or generates artifacts at this level of
noise.
6. Conclusions

Efficient image filtering can be carried out by computing
weighted averages of similar pixels. In recent publications, the
similarity kernel compares image patches rather than single
pixels, leading to the so-called patch-based filters. Within the
framework of robust statistics and mode estimation, this general-
ization into a higher-dimensional space allows for an improved
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Fig. 5. Samples of boat image: (a) noisefree; (b) noisy with n¼ 15; (c) LMSs; (d) BF; (e) PBLMSs; (f) PWPBLMSs; (g) PBBF; (h) PWPBBF; (i) NLmeans and (j) PWNLmeans.
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mode discrimination and thus increased performance. Patches
can actually be introduced either directly in the final expression of
the filters or in their underlying objective functions. This paper
has followed the second approach, which leads to filters that
achieve weighted averages of whole patches instead of averages
of pixels in the usual filters; the latter can then be seen as
pixelwise approximations of the patchwise filters. We demon-
strate that this modification does not increase the time complex-
ity of the considered filters and we describe an implementation
relying on separable linear-time convolutions. Moreover, experi-
ments with several images, filters, and noise levels show that
patch-based filters with patchwise averaging slightly outperform
the corresponding pixelwise versions in terms of RMSE and PSNR.
As the pixelwise approximations provide no computational
speedup, we therefore recommend using patchwise averages in
patch-based filters.
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