
Neurocomputing 74 (2011) 2526–2531
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

Neuve,

E-m
journal homepage: www.elsevier.com/locate/neucom
Parameter-insensitive kernel in extreme learning for non-linear support
vector regression
Benoı̂t Frénay a,b,�, Michel Verleysen a

a Machine Learning Group, ICTEAM institute, Université catholique de Louvain, Louvain-la-Neuve, BE 1348, Belgium
b Aalto University School of Science and Technology, Department of Information and Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland
a r t i c l e i n f o

Available online 12 May 2011

Keywords:

Extreme learning machine

Support vector regression

ELM kernel

Infinite number of neurons
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2010.11.037

esponding author at: Batiment Maxwell, pla

BE 1348, Belgium. Tel.: þ32 10 47 81 33; fax

ail address: benoit.frenay@uclouvain.be (B. Fr
a b s t r a c t

Support vector regression (SVR) is a state-of-the-art method for regression which uses the e-sensitive

loss and produces sparse models. However, non-linear SVRs are difficult to tune because of the

additional kernel parameter. In this paper, a new parameter-insensitive kernel inspired from extreme

learning is used for non-linear SVR. Hence, the practitioner has only two meta-parameters to optimise.

The proposed approach reduces significantly the computational complexity yet experiments show that

it yields performances that are very close from the state-of-the-art. Unlike previous works which rely

on Monte-Carlo approximation to estimate the kernel, this work also shows that the proposed kernel

has an analytic form which is computationally easier to evaluate.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In machine learning, regression is a well-known problem
which has been thoroughly studied. In the inductive setting, it
boils down to making hypotheses on the underlying model,
choosing an objective function and then estimating the model
parameters. In that process, the squared error loss is often used
for mathematical convenience, since it is differentiable. However,
the squared error loss leads to non-sparse models. In order to get
sparse models, Vapnik proposed to use the e-sensitive loss [1].
This loss allows data lying within a thick tube at no cost and
linearly penalises data outside the tube. Integrating the
e-sensitive loss into a regularised linear model leads to support
vector regression (SVR, see e.g. [2–4]). Used in conjunction with
kernels, SVRs are powerful non-linear models for regression
which have been shown competitive in a wide number of
applications.

However, even if SVRs are conceptually appealing, their train-
ing is difficultly affordable in practice. Indeed, three meta-para-
meters have to be tuned for non-linear problems (as detailed in
Section 2): the regularisation constant, the tube width for the loss
and the kernel parameter. Therefore, one rather uses least-square
support vector machines (LS-SVMs, see e.g. [5,6]). However,
LS-SVMs lack the sparsity of SVRs, since they relax the quadratic
ll rights reserved.

ce du Levant, 3, Louvain-la-

: þ32 10 47 2598.

énay).
programming problem solved in SVRs by using a squared error
loss instead of the e-sensitive loss.

A similar problem occurs in non-linear classification when
using Gaussian kernels. Recently, [7–9] have provided a solution
by proposing a new parameter-insensitive kernel inspired from
extreme learning. In other words, the choice of the meta-para-
meter associated to the kernel does not seem to affect the quality
of classification. This paper extends this concept to regression.
The proposed approach implies the optimisation of only two
meta-parameters: the regularisation constant and the tube width.
Therefore, the computational cost of non-linear SVR is signifi-
cantly reduced. Experiments show that the approach yields state-
of-the-art performances on various datasets.

The paper is organised as follows. Section 2 reviews SVR in the
regression framework. Section 3 shortly introduces the basics of
extreme learning. Section 4 derives the new kernel and shows
that it has an analytical form under some assumptions. Even-
tually, the experiments carried in Section 5 show that our
computationally cheaper approach achieves state-of-the-art
results.
2. Support vector regression

Given a dataset D¼ fðxi,tiÞgiA1: :n where xARd and tAR are
respectively the inputs and targets, regression consists in building
a model f : Rd-R which gives a good estimate y¼ f(x). Usually,
models are obtained by minimising an estimate of the expected
value of the loss Lðt,yÞ. This estimate is called the empirical risk
Rempðf Þ and is computed from D. In practice, the empirical risk

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.11.037
mailto:benoit.frenay@uclouvain.be
dx.doi.org/10.1016/j.neucom.2010.11.037

B. Frénay, M. Verleysen / Neurocomputing 74 (2011) 2526–2531 2527
corresponding to the squared error loss, i.e. the mean squared
error

Rempðf Þ ¼
1

n

Xn

i ¼ 1

Lðti,yiÞ ¼
1

n

Xn

i ¼ 1

ðyi�tiÞ
2

ð1Þ

is often used because it is mathematically convenient, but it leads
to non-sparse models taking into account every single data.
Vapnik has developed an alternative loss, called the e-sensitive
loss [1], which leads to sparse models depending only on a small
subset of the whole dataset. This section reviews how to embed
this loss into a linear model, called support vector regression
(SVR, see e.g. [2–4]), which can be extended to deal with non-
linear problems.

2.1. Linear support vector regression

The e-sensitive loss allows the estimate y lying in a thick tube
around the observed target t at no cost and penalises it linearly
outside the tube, i.e.

jy�tje ¼
0 if jy�tjre,
jy�tj�e if jy�tj4e,

(
ð2Þ

where e denotes the half-width of the tube, as illustrated in
Fig. 1(a). SVRs are linear models which try to find a compromise
between the model complexity and the total e-sensitive loss, i.e.

min
w,b,xi

JwJ2
2þC

Xn

i ¼ 1

ðxþi þx
�

i Þs:t:

/w,xiSþb�tiZeþxþi ,

ti�/w,xiSþbZeþx�i ,

xþi ,x�i Z0,

8><
>:

������� ð3Þ

where w is the weight vector, b is the bias, C is the regularisation
constant and xþi ,x�i are positive slack variables. The above
optimisation problem minimises the norm JwJ2

2 in order to
control the model complexity. Moreover, the objective function
is regularised by the e-sensitive loss: the regularisation constant C

determines the compromise between model complexity and
errors. Notice that the sum of xþi and x�i is equal to the
e-sensitive loss term for the ith data.

Using the dual form of its Lagrangian, it can be shown [2] that
Eq. (3) is equivalent to a quadratic programming problem
expressed only in terms of the Lagrange multipliers aþi ,a�i
corresponding to the tube constraints in the primal form. The
weight vector can then be expressed as

w¼
Xn

i ¼ 1

ða�i �a
þ

i Þxi, ð4Þ

where only data with different dual variables aþi ,a�i are used to
estimate w. These particular data are called support vectors.
Fig. 1(b) shows a simple example of SVR, where f and the
corresponding tube is shown, as well as the three support vectors
and two slack variables.
Fig. 1. (a) e-sensitive loss and (b) example of SVR
Here, the compromise between model complexity, sparsity
and over-fitting is determined by the regularisation constant C.
Low values of C correspond to simpler and sparser models,
whereas models inferred for large values of C better fit the
training data. Moreover, the e constant controls the width of the
tube. Therefore, both the values of C and e have to be selected
simultaneously from training data. For example, a grid search can
be done using 10-fold cross-validation (see e.g. [2]).

2.2. Non-linear support vector regression

SVR can be easily extended to handle non-linear regression
problems. Indeed, only dot products appear in the dual of Eq. (3).
Moreover, the model prediction for a new point is simply

f ðxÞ ¼w � x¼
Xn

i ¼ 1

ða�i �a
þ

i Þ/xi,xS: ð5Þ

Given a non-linear mapping f to a high-dimensional space, the
corresponding kernel is defined as

kðx,zÞ ¼/fðxÞ,fðzÞS: ð6Þ

Since k computes a dot product, the mapping itself is not
necessary. In practice, the Gaussian kernel

kðx,zÞ ¼ expð�gJx�zJ2
2Þ, ð7Þ

which corresponds to an infinite dimensional space is often used
and gives good results. However, using SVRs with a Gaussian
kernel induces the need to tune three meta-parameters: the
regularisation constant C, the tube half-width e and the kernel
scale g. Using 10-fold cross-validation and only 10 possible values
for each meta-parameter, not less than 104 SVRs have to be
trained. The rest of this paper shows that it is possible to obtain
results of the same quality by using a new parameter-insensitive
kernel and therefore to reduce strongly the number of SVRs to be
trained.
3. Extreme learning

This section introduces extreme learning, a recent trend in
machine learning which aims at producing fast, but accurate
models. The next section shows how to extend it to kernel-based
machines.

3.1. Extreme learning machines

In [10,11], Huang et al. propose a new way to optimise
networks with a single hidden layer of units that they call
extreme learning. Firstly, a large hidden layer is created with
random weights and biases, e.g. picked up uniformly in [�3,3].
Then, the output weights and bias are optimised by solving a
linear system. As opposed to back-propagation [12], this approach
does not get stuck in local minima and is very fast.
trained on a linear problem with two outliers.

B. Frénay, M. Verleysen / Neurocomputing 74 (2011) 2526–25312528
More formally, let us define W and w being respectively the
hidden and output weights. Moreover, we choose an activation
function s for hidden units and define X as the matrix whose rows
are data. An additional column of ones is added to X to embed the
biases directly in W, resulting in Xb. Therefore, the activation of
hidden units corresponding to the data is simply

H¼ sðXbWÞ: ð8Þ

Other types of hidden units can be used, e.g. radial basis function
(RBF) hidden units [13–15]. If hidden weights are held fixed and
the output activation is linear, the output weights are given by

argmin
w
LðT ,HbwÞ, ð9Þ

where L is the loss and Hb is the matrix H with an additional
column of ones added in order to embed the bias in w. Using the
squared error loss, the above equation becomes

argmin
w

JHbw�TJ2: ð10Þ

The resulting model is called an extreme learning machine (ELM)
and can be trained easily at a very low computational cost.
Indeed, Eq. (10) is simply a linear regression whose solution is

w¼HybT, ð11Þ

where Hyb ¼ ðH
0
bHbÞ

�1H0b is the Moore–Penrose pseudo-inverse of
the complete activation matrix Hb. Huang et al. [10,11] have
shown that, using the above setting, it is possible to solve
regression problems very fast and yet to obtain satisfying results.
Huang et al. [16] have also shown that the extreme learning
machines (ELMs) are universal approximators and can be built
incrementally, starting with one unit in the network.

3.2. Algorithms to train extreme learning machines

The number of units of an ELM cannot be set arbitrarily. For
example, let us consider the approximation of a simple sine
function, using 20 noisy training samples. Fig. 2(a) shows the
mean squared error on an independent test set for different ELM
sizes. Fig. 2(b) shows the resulting approximations with 2, 9 and
20 units, where 9 units is the optimal ELM size in Fig. 2(a). Here,
choosing too many or not enough units leads respectively to
overfitting or underfitting.

To our knowledge, three approaches have been proposed so far
to choose the number of units in ELMs. First, Huang et al. [10,11,16]
propose to build networks with different sizes, either incrementally
or not, and to pick the best size using e.g. cross-validation methods.
Second, Miche et al. [17,18] propose the OP-ELM framework which
Fig. 2. Sine function approximation from 20 noisy data using ELMs: (a) evolution of th

number of units increases and (b) models obtained with 2 units (dashed line), 9 units
uses the LARS/LASSO to compute a L-1 regularisation path for the
output weights, then pick up the set of units with the lowest LOO
error and eventually retrain the model. Third, Liu et al. [7] use L-2
regularisation, i.e. Ridge regression.

These algorithms do not produce sparse models since they are
essentially solving a linear regression with a squared error loss.
Notice that OP-ELM is sparse in terms of units, not in terms of
data. Indeed, only a few units are selected using L-1 regularisa-
tion, but output weights are computed from all the data. The next
section shows how to introduce the e-sensitive loss in ELMs in
order to obtain sparse models.
4. Extreme learning with kernel-based models

Recently, several papers [7–9] have emphasised the simila-
rities between ELMs and kernel-based methods. This section
reviews ELM from the kernel point of view and shows how to
create a new family of kernels inspired from extreme learning. An
analytical expression is derived for one of these kernels and it is
shown in Section 5 that the kernel parameter does not need to
be tuned.

4.1. A change of perspective: the ELM kernel

In standard ELMs, the role of the hidden layer is to map the
input to the hidden units. In other words, the first, hidden layer of
the ELM is mapping data from the data space to some higher
dimensional space, where each dimension corresponds to a
hidden unit. Hence, this new high-dimensional space can be
viewed as a feature space where the ELM just solves a linear
regression. This new interpretation leads to the definition of the
so-called ELM kernel.

Let us define the mapping f : Rd-Rp such that the ith
component of fðxÞ is equal to the activation of the ith hidden
unit. Given two data points x and z and an ELM with p units, the
corresponding ELM kernel function is defined as

kðx,zjpÞ ¼
1

p
/fðxÞ,fðzÞS, ð12Þ

which is simply the dot product in the feature space, normalised
by the number of hidden units p. By construction, k is a valid
kernel and can be used by any kind of kernel-based method.
Indeed, it corresponds to the dot product of x and z in the feature
space defined by the mapping f, i.e. the hidden layer of an ELM.

The feature space associated to the ELM kernel is built
randomly, since each dimension corresponds to a hidden unit
e mean squared error computed on an independent test set of 103 samples as the

(plain line) and 20 units (dotted line).

B. Frénay, M. Verleysen / Neurocomputing 74 (2011) 2526–2531 2529
with random weights and bias. However, each data is mapped to
the same feature space using the hidden layer of the same ELM.

4.2. Limit case and analytical form of the ELM kernel

It has been shown in [8,9] that the number of units used to
evaluate the ELM kernel does not matter for classification tasks, as
long as it is large enough. Let us assume a network with a single
hidden layer of units, whose hidden layer weights are picked
randomly from a given prior. If we let the number of units p grow
to infinity, the ELM kernel becomes

lim
p-þ1

kðx,zjpÞ ¼ lim
p-þ1

1

p
/fðxÞ,fðzÞS¼ lim

p-þ1

1

p

Xp

i ¼ 1

sðwixÞsðwizÞ

¼ Ew½sðwxÞsðwzÞ�: ð13Þ

In other words, the limit kðx,zjp-þ1Þ can be interpreted as the
expected value of sðwxÞsðwzÞ, i.e. the covariance between the
activations of a random hidden unit alternatively fed with x and z.
In the rest of this paper, kð�, � jp-þ1Þ is referred to as the
asymptotic ELM kernel.

Let us consider a particular case where (i) the weights and
biases of the hidden layer are picked randomly from an isotropic
Gaussian distribution with variance s2

w and (ii) the activation
function is the sigmoid erf function defined as

erf ðxÞ ¼
2ffiffiffiffi
p
p

Z x

0
expð�t2Þ dt: ð14Þ

It can be shown [19] that the asymptotic ELM kernel admits the
following analytical expression:

kðx,zjp-þ1Þ¼
2

p
arcsin

1þ/x,zSffi
1

2s2
w

þ1þ/x,xS
� �

1

2s2
w

þ1þ/z,zS
� �s :

ð15Þ

Since an analytical expression is available, it is no longer neces-
sary to actually build ELMs in order to implement this kernel.
Therefore, the implementation is straightforward. In the rest of
Fig. 3. Normalised asymptotic ELM kernel evaluated around zero for different

values of sw: sw ¼ 10�3 (plain line), sw ¼ 1 (dashed line) and sw ¼ 103 (dotted

line).

Table 1
Detailed list of datasets used for experiments, ordered by size and split into two group

Short name Group Size Dim

Triazines Small 186 60

Cancer 192 32

CPU 209 6

Stock 950 9

Abalone Large 4177 8

Ailerons 7129 5

CompActs 8192 21

Elevators 9517 6
this paper, we use the normalised version of the asymptotic ELM
kernel

~kðx,zjp-þ1Þ¼
kðx,zjp-þ1Þffi

kðx,xjp-þ1Þkðz,zjp-þ1Þ
p

¼
Ew½sðwxÞsðwzÞ�ffi

Ew½sðwxÞsðwxÞ�Ew½sðwzÞsðwzÞ�
p , ð16Þ

which can be interpreted as the correlation between the activa-
tions of a random hidden unit alternatively fed with x and z.
Hence, we have ~kðx,xjp-þ1Þ¼ 1. Fig. 3 shows the shape of the
resulting kernel evaluated around zero for different values of sw.
Even if the shape itself changes, the scale of the kernel is constant
and does not depend on sw. Section 5 shows that the sw

parameter does not affect the results obtained when using SVR
with this kernel, if it is chosen large enough.
5. Experiments

This section aims to answer two questions: (i) is it necessary to
tune the sw parameter for the normalised asymptotic ELM kernel
and (ii) does SVR get state-of-the-art results with that kernel?

5.1. Experimental setting

SVR results are obtained using the LIBSVM library [20] and
several datasets of various sizes coming from the UCI machine
learning repository [21] (Abalone, Cancer and Machine CPU) and
from [22] (Ailerons, CompActs, Elevators, Stock and Triazines);
see Table 1 for details. The datasets are separated into two
groups: small datasets (several hundred of instances) and large
datasets (several thousands of instances).

For each dataset, we used 10-fold cross-test (see Fig. 4). Each
dataset is split into 10 folds which are alternatively used as
independent test sets for the models built on the nine remaining
folds. These training data are then in turn split into 10 folds which
are alternatively used as validation sets for the models built on
the nine remaining folds. Validation sets are used to select the
best values for the meta-parameters. The criterion used here to
compare models is the mean squared error (MSE).

The standard Gaussian kernel and the normalised asymptotic
ELM kernel are used respectively with values in a logarithmic
scale from 10�3 to 100 for g and from 10�3 to 103 for sw. The
other meta-parameter values are respectively taken logarithmi-
cally from 10�2 to 106 for C and from 10�5 to 101 for e. For the
meta-parameters g, C and e, each logarithmic step consists in
multiplying their value by

ffiffiffiffiffiffi
10
p

: C takes e.g. 17 different values.
For each trained SVR, the inputs and targets are normalised using
the mean and standard deviations computed from the training
data. However, the differences between true targets and predic-
tions are multiplied afterwards by the standard deviation in order
to be expressed in terms of original units.
s.

ensionality Full name

Inhibition of dihydrofolate reductase by triazines

Wisconsin prognostic breast cancer

Relative CPU performance data

Daily stock prices dataset

Abalone data

Delta ailerons control

Computer activity database

Delta elevators control

Fig. 4. Illustration of the cross-test method.

Table 2
Means and 95% confidence intervals for the test MSE obtained on small datasets using SVR with (i) the Gaussian kernel and (ii) the normalised asymptotic ELM kernel for

different sw. Results which are not significantly different from the best result (underlined) are in bold font.

Gaussian kernel Normalised asymptotic ELM kernel

sw ¼ 1e�3 sw ¼ 1e�2 sw ¼ 1e�1 sw ¼ 1eþ0 sw ¼ 1eþ1 sw ¼ 1eþ2 sw ¼ 1eþ3

Cancer 1.1eþ3 1:0eþ3 1:0eþ3 1.1eþ3 1:0eþ3 1:0eþ3 1.1eþ3 1:0eþ3

[8.6eþ2, 1.3eþ3] [8.9eþ2, 1.2eþ3] [8.9eþ2, 1.2eþ3] [9.4eþ2, 1.2eþ3] [8.7eþ2, 1.2eþ3] [8.7eþ2, 1.2eþ3] [9.3eþ2, 1.2eþ3] [8.6eþ2, 1.2eþ3]

CPU 4.5eþ3 1.3eþ4 1.0eþ4 3:0eþ3 3.9eþ3 3.9eþ3 4.1eþ3 4.1eþ3

[�1.0eþ3, 1.0eþ4] [3.9eþ3, 2.2eþ4] [3.5eþ3, 1.8eþ4] [1.4eþ3, 4.6eþ3] [1.1eþ3, 6.7eþ3] [1.1eþ3, 6.8eþ3] [1.1eþ3, 7.1eþ3] [1.2eþ3, 7.0eþ3]

Stock 4.2e�1 5.0eþ0 4.8eþ0 6.8e�1 4.3e�1 3:5e�1 3.6e�1 3.8e�1

[3.7e�1, 4.8e�1] [4.3eþ0, 5.7eþ0] [4.5eþ0, 5.2eþ0] [6.1e�1, 7.6e�1] [3.8e�1, 4.9e�1] [3.2e�1, 3.8e�1] [3.2e�1, 4.0e�1] [3.5e�1, 4.2e�1]

Triazines 3.0e�2 2.2e�2 2.2e�2 2.2e�2 2.1e�2 2.1e�2 2:0e�2 2:0e�2

[1.4e�2, 4.7e�2] [1.8e�2, 2.7e�2] [1.5e�2, 2.9e�2] [1.6e�2, 2.8e�2] [1.3e�2, 2.9e�2] [1.5e�2, 2.7e�2] [1.4e�2, 2.6e�2] [1.4e�2, 2.6e�2]

Table 3
Means and 95% confidence intervals for the test MSE obtained on large datasets using SVR with (i) the Gaussian kernel and (ii) the normalised asymptotic ELM kernel for

different sw. Results which are not significantly different from the best result (underlined) are in bold font.

Gaussian kernel Normalised asymptotic ELM kernel

sw ¼ 1e�3 sw ¼ 1e�2 sw ¼ 1e�1 sw ¼ 1eþ0 sw ¼ 1eþ1 sw ¼ 1eþ2 sw ¼ 1eþ3

Abalone 4:4eþ0 5.2eþ0 5.0eþ0 4.5eþ0 4:4eþ0 4:4eþ0 4:4eþ0 4:4eþ0

[4.1eþ0, 4.7eþ0] [4.8eþ0, 5.6eþ0] [4.6eþ0, 5.4eþ0] [4.2eþ0, 4.7eþ0] [4.2eþ0, 4.6eþ0] [4.0eþ0, 4.8eþ0] [4.1eþ0, 4.7eþ0] [4.2eþ0, 4.7eþ0]

Ailerons 2:7e�8 3.6e�8 3.6e�8 2:7e�8 2.8e�8 2.8e�8 2.8e�8 2.8e�8

[2.6e�8, 2.9e�8] [3.4e�8, 3.9e�8] [3.4e�8, 3.8e�8] [2.5e�8, 2.9e�8] [2.6e�8, 3.1e�8] [2.7e�8, 2.9e�8] [2.6e�8, 3.0e�8] [2.5e�8, 3.1e�8]

CompActs 8:8eþ0 5.9eþ1 5.2eþ1 8.9eþ0 1.2eþ1 1.2eþ1 1.2eþ1 1.2eþ1

[8.3eþ0, 9.3eþ0] [5.2eþ1, 6.7eþ1] [4.6eþ1, 5.8eþ1] [8.0eþ0, 9.8eþ0] [1eþ1, 1.4eþ1] [1.0eþ1, 1.3eþ1] [1.0eþ1, 1.3eþ1] [1.0eþ1, 1.3eþ1]

Elevators 2:0e�6 2.2e�6 2.2e-6 2:0e�6 2:0e�6 2:0e�6 2:0e�6 2:0e�6

[2.0e�6, 2.1e�6] [2.1e�6, 2.2e�6] [2.1e�6, 2.3e�6] [1.9e�6, 2.1e�6] [2.0e�6, 2.1e�6] [1.9e�6, 2.1e�6] [1.9e�6, 2.1e�6] [1.9e�6, 2.1e�6]

B. Frénay, M. Verleysen / Neurocomputing 74 (2011) 2526–25312530
5.2. Results on real datasets

Tables 2 and 3 show the results obtained on the small and
large datasets, respectively. For each dataset and kernel, the mean
and 95% confidence interval of the MSE computed using 10-fold
cross-test are given. For each dataset, the MSE is expressed in
terms of original units. Best results are underlined and results
which are not significantly different are in bold font. Here, a result
is significantly different from the best result if its mean does not
belong to the confidence interval of the best result. The best
results are comparable to the results obtained in [18], except for
Triazines which is not used in that work.

Tables 2 and 3 show that the results obtained with different
values of sw are very similar. For six out of the eight datasets
(Cancer, CPU, Triazines, Abalone, Ailerons and Elevators), the
results are not significantly different when sw is equal to or
larger than 10�1. Moreover, these results are not significantly
different from the results obtained using the standard Gaussian
kernel, except for Triazines where the Gaussian kernel result is
slightly worst. For CompActs, the result obtained with sw ¼ 10�1

is still not significantly different from the result obtained using
the standard Gaussian kernel. Moreover, the results obtained
using larger values of sw are only slightly worst. For Stock, the
results obtained with swZ10 are not significantly different from
the best result. Moreover, the result obtained using the standard
Gaussian kernel is slightly worst.

According to Tables 2 and 3, it seems that using the normalised
asymptotic ELM kernel with e.g. sw ¼ 1 or 10 allows obtaining
results which are close if not identical to the results obtained
using the Gaussian kernel. It means that the proposed kernel is in
fact parameter-insensitive, in the sense that it is not necessary to
tune the parameter sw to obtain good results. In practice, this
observation reduces the number of meta-parameters from three
to two: the regularisation constant C and the tube half-width e.

B. Frénay, M. Verleysen / Neurocomputing 74 (2011) 2526–2531 2531
Therefore, the proposed approach speeds up the meta-parameter
optimisation step, so that non-linear problems can be tackled at
the same computational cost than linear problems.
6. Conclusion

This paper shows that the ELM kernel can be successfully used
for support vector regression. Using this kernel with SVR is in fact
equivalent to optimising extreme learning machines using the
e-sensitive loss. Moreover, this paper proposes a new asymptotic
view for the ELM kernel when the number of units grows to
infinity. In that limit case, this paper also shows that the proposed
kernel has an analytical form under certain assumptions on the
hidden units of the extreme learning machine.

Experimental results suggest that the performances do not
depend strongly on the only parameter of the ELM kernel. Indeed,
performances which are close if not identical to the state-of-the-
art performances are obtained as soon as the kernel parameter is
chosen large enough, e.g. sw ¼ 1 or 10. Therefore, the proposed
approach reduces the number of meta-parameters to be tuned
from three to two. As a matter of fact, the computational cost of
non-linear SVR is strongly reduced with almost no consequence
on the obtained performances.
Acknowledgements

The authors would like to thank Prof. Schrauwen (Ghent
University, Belgium) for his useful remarks concerning the ELM
kernel convergence, Mr. de Lannoy for his useful comments on
this paper and Mr. Durvaux from BELNET-BEgrid for his precious
technical help to get the experimental results on time. The
authors also used the UCL CISM in order to get additional
experimental results and would like to thank Mr. Van Renter-
ghem for his technical help. Benoı̂t Frénay would like to thank the
FNRS which supported him during his stay at the Altoo
University.

References

[1] V. Vapnik, The Nature of Statistical Learning, Springer, New York, 1995.
[2] A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics and

Computing 14 (3) (2004) 199–222.
[3] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,

Cambridge University Press, 2004.
[4] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond, The MIT Press, 2001.
[5] J.A.K. Suykens, J. Vandewalle, Least squares support vector machine classi-

fiers, Neural Processing Letters 9 (3) (1999) 293–300.
[6] J.A.K. Suykens, T.V. Gestel, J.D. Brabanter, B.D. Moor, J. Vandewalle, Least

Squares Support Vector Machines, World Scientific Publishing Co., Singapore,
2002.

[7] Q. Liu, Q. He, Z. Shi, Extreme support vector machine classifier, in: PAKDD,
Lecture Notes in Computer Science2008, pp. 222–233.

[8] B. Frénay, M. Verleysen, Using SVMs with randomised feature spaces: an
extreme learning approach, in: Proceedings of the 18th European Symposium
on Artificial Neural Networks (ESANN)2010, pp. 315–320.

[9] G.-B. Huang, X. Ding, H. Zhou, Optimization method based extreme learning
machine for classification, Neurocomputing, in Press, Corrected Proof.
[10] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1–3) (2006) 489–501.

[11] G.-B. Huang, C.-K. Siew, Extreme learning machine with randomly assigned
RBF kernels, International Journal of Information Technology 11 (1) (2005)
16–24.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall,
1998.

[13] G.-B. Huang, C.-K. Siew, Extreme learning machine with randomly assigned
RBF kernels, International Journal of Information Technology 11 (1) (2005)
16–24.

[14] G.-B. Huang, L. Chen, Convex incremental extreme learning machine, Neu-
rocomputing 70 (16–18) (2007) 3056–3062.

[15] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (16–18) (2008) 3460–3468.

[16] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental
constructive feedforward networks with random hidden nodes, IEEE Trans-
actions on Neural Networks 17 (4) (2006) 879–892.

[17] Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a
toolbox, ICANN, Lecture Notes in Computer Science, vol. 5163, Springer,
2008, pp. 145–154.

[18] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM:
optimally-pruned extreme learning machine, IEEE Transactions on Neural
Networks 21 (1) (2010) 158–162.

[19] C. Williams, Computing with infinite networks, in: Advances in Neural
Information Processing Systems, MIT Press, 1996, pp. 295–301.

[20] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, 2001.
Software available at /http://www.csie.ntu.edu.tw/�cjlin/libsvmS.

[21] UCI machine learning repository. /http://archive.ics.uci.edu/ml/datasets.
htmlS.

[22] /http://www.liaad.up.pt/� ltorgo/Regression/DataSets.htmlS.
Benoı̂t Frénay received the Engineer’s degree from the
Université catholique de Louvain (UCL), Belgium, in
2007. He is now Ph.D. student at the UCL Machine
Learning Group. His main research interests in
machine learning include support vector machines,
extreme learning, graphical models, classification, data
clustering, probability density estimation and
label noise.
Michel Verleysen was born in 1965 in Belgium. He
received the M.S. and the Ph.D. degrees in Electrical
Engineering from the Université catholique de Louvain
(Belgium) in 1987 and 1992, respectively. He was an
Invited Professor at the Swiss Ecole Polytechnique
Fédérale de Lausanne (E.P.F.L.), Switzerland, in 1992,
at the Université d’Evry Val d’Essonne (France) in 2001,
and at the Université Paris 1—Panthéon-Sorbonne in
2002–2004. He is a former Research Director with the
Belgian FNRS (Fonds National de la Recherche Scienti-
fique) and a Professor at the Université catholique de
Louvain. He is Editor-in-Chief of the Neural Processing

Letters journal, Chairman of the Annual European

Symposium on Artificial Neural Networks (ESANN) Conference, Associate Editor
of the IEEE Transactions on Neural Networks journal, and member of the editorial
board and program committee of several journals and conferences on neural
networks and learning. He is the author or the co-author of about 200 scientific
papers in international journals and books or communications to conferences with
reviewing committee. He is the co-author of the scientific popularisation book on
artificial neural networks in the series ‘‘Que Sais-Je?,’’ in French. His research
interests include machine learning, artificial neural networks, self-organisation,
timeseries forecasting, non-linear statistics, adaptive signal processing, and high-
dimensional data analysis.

http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html
http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html

	Parameter-insensitive kernel in extreme learning for non-linear support vector regression
	Introduction
	Support vector regression
	Linear support vector regression
	Non-linear support vector regression

	Extreme learning
	Extreme learning machines
	Algorithms to train extreme learning machines

	Extreme learning with kernel-based models
	A change of perspective: the ELM kernel
	Limit case and analytical form of the ELM kernel

	Experiments
	Experimental setting
	Results on real datasets

	Conclusion
	Acknowledgements
	References

