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In the context of feature selection, there is a trade-off between the number of selected features and the

generalisation error. Two plots may help to summarise feature selection: the feature selection path and

the sparsity-error trade-off curve. The feature selection path shows the best feature subset for each

subset size, whereas the sparsity-error trade-off curve shows the corresponding generalisation errors.

These graphical tools may help experts to choose suitable feature subsets and extract useful domain

knowledge. In order to obtain these tools, extreme learning machines are used here, since they are fast

to train and an estimate of their generalisation error can easily be obtained using the PRESS statistics.

An algorithm is introduced, which adds an additional layer to standard extreme learning machines in

order to optimise the subset of selected features. Experimental results illustrate the quality of the

presented method.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection is an important issue in machine learning. On
the one hand, if not enough features are selected, prediction may
be impossible. On the other hand, using all features may reveal
impossible since the amount of available training data is usually
small with respect to dimensionality. Aside from generalisation
concerns, feature selection may also help experts to understand
which features are relevant in a particular application. For
example, in cancer diagnosis, feature selection may help to
understand which genes are oncogenic. In industry, it is interest-
ing to know which measures are actually useful to assess the
quality of a product, since it allows reducing the measurement
costs.

Usually there exists a trade-off between the number of selected
features and the generalisation error [1]. Indeed, more features
means more information, so an ideal model should perform better.
However, the curse of dimensionality and the finite number of
samples available for learning may harm this ideal view when too
many features are considered. Another issue is that the best
generalisation error is often not the only objective; interpret-
ability of the selected features may also be a major requirement.
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Therefore there is often a need for the user to select the number of
features by hand, with the help of appropriate tools.

For each fixed number of selected features, one may find (at
least in principle) the optimal subset of features, giving the best
generalisation error. However choosing between the subsets
created in this way for various sizes might be difficult. Two plots
may help to summarise feature selection: the feature selection
path and the sparsity-error trade-off curve. The feature selection
path shows the best feature subset for each subset size, whereas
the sparsity-error trade-off curve shows the corresponding
generalisation errors. From these plots, experts can choose
suitable feature subsets and extract useful domain knowledge.
Notice that the feature selection path and the sparsity-error
trade-off curve are strongly related, for the latter allows choosing
a feature subset in the former.

In real learning situations, the feature selection path and the
sparsity-error trade-off curve can only be estimated, since both
the target function and the data distribution are unknown. For
linear regression problems, the LARS algorithm [2] is an efficient
tool for finding the best features for linear models. However, the
problem remains open for nonlinear regression problems and
models.

For nonlinear problems, ranking methods can be used to rank
features using e.g. mutual information [3,4]. Thereafter, feature
subsets are built by adding features in the order defined by the
ranking. However, feature subsets can evolve discontinuously for
nonlinear problems: the best feature subset of size dþ1 does not
necessarily contain the best subset of size d [1]. Methods like
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forward or backward search [1] allow searching through the
space of possible feature subsets, but they can only select or drop
one feature at a time. Moreover, many possible feature selections
must be considered at each iteration by such methods based on
greedy search.

This paper proposes a new algorithm to build the feature
selection path and the sparsity-error trade-off curve for nonlinear
problems. Contrarily to e.g. forward search, the proposed iterative
algorithm considers only one neighbour at each iteration. Yet,
multiple features can enter or leave the current feature subset at
each step of the search. Extreme learning machines are used since
they are very fast to train and an estimate of their generalisation
error can easily be computed [5–10]. The proposed method is
theoretically and experimentally compared with other feature
selection methods. Experiments show that the proposed algo-
rithm obtains reliable estimates of the two plots: the feature
selection path and the sparsity-error trade-off curve. In some
cases, the proposed algorithm obtains (i) optimal test errors using
less features and (ii) feature selection paths with more informa-
tion, with respect to the paths obtained by the other feature
selection algorithms used here for comparison.

The following of this paper is organised as follows. Section 2
discusses feature selection. Section 3 introduces the feature
selection path and the sparsity-error trade-off curve and discusses
how they can be used in practice. Section 4 proposes an algorithm
and compares it theoretically with existing methods. Section 5
assesses the proposed algorithm experimentally and conclusions
are drawn in Section 6.
Fig. 1. Estimate of the feature selection path for the XOR-like problem. Columns

and rows correspond to subset sizes and features, respectively.
2. Domain analysis and feature selection

In many applications, feature selection is necessary. Indeed,
the number of available samples is usually small with respect to
the data dimensionality. In that case, the curse of dimensionality
prevents us from using all the features, since the necessary
number of training samples grows exponentially with the dimen-
sionality. Therefore, feature selection consists of choosing a trade-
off between the number of selected features and the adequacy of
the learned model. However, it is not always obvious what is a
good feature subset.

A common criterion for assessing the quality of a subset of
features is the generalisation error, i.e. the expected error for new
samples. This criterion relates to the capacity of the model to
generalise beyond training data. Sometimes, experts simply want
to minimise the generalisation error. However, in some contexts,
experts are searching for sparse feature subsets with only a few
features because interpretability is a major concern. In such cases,
the number of features is chosen in order to achieve sufficient
generalisation. Limiting the number of features may also be
necessary because of e.g. measurement costs. In conclusion,
feature selection requires flexible tools which are able to adapt
to specific user needs.

The next section discusses two strongly related tools for
addressing common questions in feature selection situations:
the feature selection path and the sparsity-error trade-off curve.
Section 4 proposes an algorithm to estimate both of them in the
case of nonlinear regression problems. In this paper, the focus is
set on regression and the mean square error (MSE)
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i ¼ 1

½ti�f̂ ðx1
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i 9yÞ�
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is used, where xi ¼ ðx
1
i , . . . ,xd

i Þ is instance i, ti is the target value,
n is the number of samples and f̂ is a function approximator with
parameters y.
3. Feature selection path and sparsity-error trade-off curve

Given a set of features, a feature selection path (FSP) shows the
best feature subset for each subset size. Here, best feature subsets
are selected in terms of generalisation error. Fig. 1 shows an
estimate of the feature selection path (FSP) for an artificial
problem, called here the XOR-like problem. The artificial dataset
is built using six random features which are uniformly distributed
in [0,1]. For each sample xi ¼ ðx

1
i , . . . ,x6

i Þ, the target is

f ðxiÞ ¼ x1
i þðx

2
i 40:5Þðx3

i 40:5ÞþEi ð2Þ

where (i) ðx40:5Þ is equal to 1 when x40:5 and is equal to
0 otherwise and (ii) Ei is a noise with distribution N ð0,0:1Þ. This
regression problem is similar to the XOR problem in classifica-
tion: the product term can only be computed using both features
2 and 3. In order to have a sufficient number of data for the
feature selection, 1000 training samples were generated. Fig. 1 is
obtained with the approach proposed in this paper (see Sections
4 and 5). Each column corresponds to a subset size, where black
cells correspond to selected features. Rows correspond to fea-
tures. In essence, a feature selection path is very similar to the
plots in Efron et al. [2], which show estimates of regression
coefficients for different coefficient sparsities.

Each feature subset corresponds to a generalisation error.
Indeed, for each subset size, one can estimate how well the
selected features allow generalising to new samples. These gen-
eralisation errors are required in order to choose one of the
feature subsets in the FSP. Therefore, one obtains a sparsity-error
trade-off (SET) curve, which shows the best achievable general-
isation error for the different feature set sizes. Here, sparsity
refers to the size of the feature subset itself: sparse feature
subsets contain less features.

Fig. 2 shows an estimate of the sparsity-error trade-off (SET)
curve for the XOR-like problem, where the generalisation errors
correspond to the feature subsets given in Fig. 1. The SET curve
shows that the generalisation error is large when only a few
features are selected, i.e. when the feature subset is too sparse.
The generalisation error improves quickly as sparsity decreases
and achieves its optimum for three features. Then, the general-
isation error starts to increase, because of the curse of dimension-
ality. Indeed, the number of training samples becomes too small
with respect to the dimensionality.

Using the feature selection path and the sparsity-error trade-
off curve, experts can answer many questions. It is possible to see
e.g. which features are useful, which features are necessary to
achieve correct results, which features do not seem to be worth
collecting, etc. These questions cannot be answered if one only



Fig. 2. Estimate of the sparsity-error trade-off curve for the XOR-like problem.
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has the best feature subset: the path of feature subsets is
necessary, as well as the corresponding generalisation errors.

Let us shortly discuss the XOR-like problem using the FSP and
the SET curve in Figs. 1 and 2. Here, three features are sufficient to
achieve optimal models. Indeed, the estimate of the general-
isation error has reached its minimum value. Notice that the
selected features are the relevant features in Eq. (2).

The FSP provides important additional information: features
2 and 3 should be selected together. Indeed, when only one feature
is selected, the feature subset is {1}. But when two feature are
selected, feature 1 is no longer used. Instead, features 2 and 3 are
selected jointly. This cannot be seen when looking only at the
optimal feature subset { 1,2,3}. The FSP reflects Eq. (2), where the
target depends on a nonlinear combination of features 2 and 3.
4. Estimating FSPs and SET curves

In practice, the true FSP and the true SET curve are impossible
to obtain. Indeed, both the true approximated functional and the
true data distribution are unknown. Instead, one has to rely on
estimates. This section reviews existing approaches and intro-
duces a new algorithm in order to overcome their weaknesses.

4.1. Estimating the generalisation error

In order to estimate the SET curve, it is necessary to choose an
estimator of the generalisation error. The generalisation error
corresponds to the expected value of the error on new, unknown
samples. Hence, techniques like e.g. cross-validation or bootstrap
can be used [11,12]. Namely, these methods use the available data
to build a training set and a test set. A model is trained using
training data and tested on test data. The resulting error gives an
estimate of the generalisation error, since none of the test
samples have been used for training. The process can be repeated
to obtain reliable estimates.

It should be pointed out that both cross-validation and boot-
strap estimate the generalisation of a given model, not the best
possible generalisation error. Therefore, using a good model is
necessary to obtain a reliable estimate of the SET curve. A
problem might be that the choice of the feature subsets may be
biased by the model. Indeed, it is possible for optimal feature
subsets to differ with respect to the model. However, it seems
reasonable to think that the problem will not be too important for
sparse feature subsets, which are precisely the feature subsets
which are looked for by experts.

In this paper, leave-one-out (LOO) cross-validation [13] is used
to estimate the generalisation error. First, a single sample is
removed from the dataset and a model is built using the remain-
ing data. Then, the prediction error on the unused sample is
computed. The process is repeated for each sample; the average
result gives an estimate of the generalisation error.

4.2. Optimising feature subsets

In practice, it is impossible to test all possible feature subsets,
since the number of tests grows exponentially with the dimen-
sionality of data. Instead, one typically starts with an arbitrary
feature subset, which is iteratively improved. Examples of such
methods include LARS and forward-backward search. The latter
can e.g. use mutual information to guide the search.

LARS [2] is an algorithm which solves efficiently the LASSO
problem [14], i.e. an L1-regularised linear regression. The con-
straint on the L1-norm enforces sparsity: the number of selected
features increases as the regularisation decreases. LARS can be
used for feature selection and the path of its solutions can be
converted into a FSP. However, LARS is optimal for linear
problems but not necessarily for nonlinear ones.

Mutual information [3,4] is a measure of the statistical
dependency between a set of features and a target variable. It
can be used to choose a subset of features using the strength of
the statistical link between the subset and the output. A simple
example of feature selection method based on mutual informa-
tion consists of (i) ranking features according to their mutual
information with respect to the output and (ii) adding features to
the feature subset in the order defined by the ranking. In such a
case, only d features subsets need to be considered, where d is the
dimensionality. Such procedures are simple, but they cannot deal
efficiently e.g. with XOR-like problems, where features must be
considered together to establish statistical dependencies. An
alternative consists of using multivariate greedy methods, like
e.g. forward or backward search.

Forward search [1] starts from an empty set of features and
iteratively selects a feature to add. Backward search [1] is similar,
but its starts with all features and iteratively removes them. At
each step, every feature which is not yet selected has to be
considered, which means that a total of Oðd2

Þ feature subsets are
considered. Mutual information or validation error can be e.g.
used to choose feature subsets and guide the search. Since
features are added (or removed) one at a time, successive feature
subsets can only differ by one feature, which may not be optimal
in practice.

In the above methods, it is impossible to add or remove several
features simultaneously. It means that for problems like the XOR-
like problem of Section 3, the FSP may not be optimal and may
not highlight the fact that some features must be selected
together. Indeed, Fig. 1 shows that when the number of selected
features changes from one to two, three features must be
changed. This cannot be achieved with e.g. forward search.
Moreover, for the above methods, a lot of possible feature subsets
have to be considered at each iteration.

In the rest of this section, a new algorithm is introduced to
overcome the weaknesses of the above methods. Namely, the
proposed algorithm allows obtaining FSP with significant differ-
ences in successive feature subsets. In Section 5, experiments
show that in some situations, the proposed algorithm obtains
(i) optimal test errors using less features and (ii) FSPs with more
information than the FSPs obtained by LARS and two other greedy
search algorithms.

4.3. Relaxing the feature selection problem

The generalisation error is seldom used to guide the search
for feature subsets. Indeed, this error is usually very costly to
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estimate, since one needs to rely on e.g. cross-validation. Instead,
the heuristic methods described above use other objective func-
tions like e.g. regularised training error or mutual information.
Here, a similar approach to LARS is proposed. The feature selec-
tion problem is firstly relaxed and a regularisation scheme is used
to enforce feature sparsity.

In order to approximate the FSP and the SET curve, let us focus
on finding good feature subsets and good models for each feature
subset size. Using Eq. (1), the corresponding problem can be
stated for regression as

min
b,y

1

n

Xn

i ¼ 1

½ti�f̂ ðb1x1
i ,: :,bdxd

i 9yÞ�
2 s:t: JbJ0 ¼ dsrd ð3Þ

where b is a vector of binary variables s.t. biAf0;1g, JbJ0 is the
L0-norm of b, i.e. the number of non-zero components bi, and ds is
the size of the feature subset. Here, each binary variable bi

indicates whether the ith feature is selected or not. The constraint
limits the number of active features. Notice that the general-
isation error is replaced by the training error in (3).

Because of the L0-norm constraint, the above optimisation
problem is still combinatorial and difficult to solve. In order to
simplify the optimisation problem, let us first rewrite Eq. (3) as a
regularisation, i.e.

min
b,y

1

n

Xn

i ¼ 1

½ti�f̂ ðb1x1
i ,: :,bdxd

i 9yÞ�
2þC0JbJ0 ð4Þ

for some regularisation constant C0ARþ . It is now possible to use
a common approach in machine learning, which consists of
replacing the L0-norm with an L1-norm [15]. Indeed, it has been
shown e.g. for linear models [2] and support vector machines
[16,17] that regularising with respect to the L1-norm decreases
the number of features actually used by the model. Moreover, the
L1-norm is easier to optimise than the L0-norm. The same idea is
used in LARS: [2] shows that a linear regression with an L1

regularisation can be used to reduce the number of selected
features. Notice that the above approach is similar to a common
approach in integer programming which is called relaxation [18].
Eq. (4) becomes

min
~b ,y

1

n

Xn

i ¼ 1

½ti�f̂ ð ~b1x1
i ,: :, ~bdxd

i 9yÞ�
2þC1J

~bJ1 ð5Þ

for some regularisation constant C1ARþ . Vector ~b no longer
defines a feature subset. Instead, Eq. (5) is related to feature

scaling, a problem similar to feature selection where ones tries to
find coefficients giving a different importance to each feature.

Eq. (5) is easier to solve than Eq. (4) since it is differentiable.
Yet, solutions of Eq. (5) can be converted into approximated
solutions of Eq. (4). Indeed, a non-zero ~b i variable can be
considered to mean that the corresponding feature is selected,
i.e. bi ¼ 1. Indeed, even for small values of ~b i, feature i is still used
by the model. The next subsection proposes an algorithm to build
the FSP and the SET curve using Eq. (5).

Notice that the C1 constant is controlling the regularisation on
~b. Indeed, the resulting feature scaling becomes sparser and
sparser as C1 increases. In general, an L1-norm regularisation on
a vector of coefficients causes the coefficients to become zero one
after another, until none of them remains [14,2,19,1]. Indeed,
using the L1-norm regularisation is equivalent to setting a
Laplacian prior on ~b [19]. Using the L2-norm, sparsity would be
lost [19,1], which explains why the L1-norm is used here. The L1-
norm regularisation behaviour is illustrated by Efron et al. in the
case of LARS [2].
4.4. Solving the relaxed feature selection problem

For various values of C1, the solutions of Eq. (5) have different
degrees of sparsity. The algorithm which is proposed here uses
this fact to span the different sizes of feature subsets. Indeed, if C1

is progressively increased, the sparsity of resulting feature subsets
will increase as well. In a nutshell, the proposed algorithm
therefore simply solves Eq. (5) for increasing C1 values.

Solving Eq. (5) is not trivial. Indeed, the objective function may
be non-convex and many local minima may exist. A possible
approach is gradient descent with multiple restarts. However,
gradient descent on continuous variables can be very slow, e.g. if
the minimised function has many plateaux. Moreover, it is
difficult to reach exact values like e.g. ~b i ¼ 0 or ~b i ¼ 1.

In this paper, feature scalings are discretised to overcome the
above problems. Indeed, exact solutions are not necessary, since
they are converted into binary feature subsets afterwards. The
space of all possible feature scaling 0;1½ �

d becomes a hypergrid
f0;1=k,: :,1gd with kþ1 non-zero values in each dimension. Next,
the gradient of the regularised training error is used to guide the
search. At each step, the search only considers the direct neigh-
bour pointed to by the gradient. Here, a direct neighbour of the
feature scaling ~b is a feature scaling ~b

0
s.t. maxi9

~bi
0
� ~b i9r1=k.

According to that definition, several feature scalings can change at
each step. In this paper, k is equal to 10 for the experiments.

The proposed procedure is detailed in Algorithm 1. A fast
implementation based on extreme learning machines is proposed
in Section 4.5. For each repetition of the main loop, the feature
scaling ~b is randomly initialised and C1 is set to zero, i.e. no
regularisation is initially performed. The current solution and the
current model are used to update the FSP and the SET curve for
J ~bJ0 features, if necessary. Given the current solution ~b and the
current value of C1, the gradient of the regularised training error is
used to find a candidate ~bnew in the direct neighbourhood of ~b. If
~bnew is actually better than ~b in terms of regularised training
error, then ~bnew becomes the new, current solution. Otherwise, a
local minimum has been found; C1 is increased and the algorithm
searches for a sparser solution with a smaller regularised training
error (with respect to the new C1 constant). The algorithm stops
when C1 is so large that the L0-norm J ~bJ0 becomes zero, i.e. when
the feature subset becomes empty.

Algorithm 1. Local search algorithm for the relaxed feature
selection problem
for all restarts do

C1’0
initialise ~b randomly
find the vector of parameters y corresponding to ~b (train a
model)

compute the regularised training error
while ~JbJ040 do
estimate the generalisation error obtained using ~b and y

convert the feature scaling ~b into a feature subset b

update the FSP and the SET curve, if necessary
compute the gradient of the regularised training error
find the direct neighbour ~bnew pointed by the gradient
find the vector of parameters ynew corresponding to ~bnew

(train a model)
compute the new regularised training error

if the regularised error has not decreased then
increase C1 until the gradient points to ~bnew s.t.

J ~bnewJ1oJ ~bJ1
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increase C1 until the regularised training error for ~bnew

becomes lower
find the vector of parameters ynew corresponding to ~bnew
compute the new regularised training error

end if
update the current solution ~b with ~bnew
update the vector of parameters y with ynew
update the regularised training error
Fig. 3. Feed-forward neural network with one hidden layer.
end while
end for

In Algorithm 1, y is the vector of model parameters introduced
in Eq. (1). The procedure to obtain y depends on the type of model
which is used. For example, in the case of linear regression,
instances can be first multiplied by scaling coefficients ~b. Then,
the weights y of the linear regression are obtained as usual using
the scaled instances and the target values. The case of non-linear
models is illustrated in Section 4.5, which proposes a fast
implementation of Algorithm 1 based on extreme learning
machines.

Since (i) each local minimum is reached in a finite number of
steps and (ii) C1 is increased whenever a local minimum of the
regularised training error is reached, Algorithm 1 is guaranteed to
terminate in a finite amount of steps. Eventually, the feature
subset becomes empty and the algorithm terminates. Feature
scalings are converted into feature subsets by simply assuming
that features with non-zero scalings ~bi are selected. Indeed,
simply rounding the scalings toward 0 or 1 could not be sufficient,
as even features which correspond to small scalings may never-
theless be used by the model.

Algorithm 1 is not guaranteed to find the optimal solution for
each feature subset size. However, by slowly increasing the
regularisation on JbJ1, the proposed algorithm spans the whole
spectrum of feature subsets sizes. Multiple restarts are performed
to decrease the influence of local minima.

Compared with e.g. forward search and backward elimination,
Algorithm 1 has several advantages. Firstly, the gradient informa-
tion is used to consider only one neighbour at each iteration.
Secondly, multiple features can be updated simultaneously.
Moreover, Algorithm 1 can select unselected features or remove
selected features, which is impossible in simple forward or back-
ward search.
4.5. Fast implementation of the proposed algorithm

Algorithm 1 requires (i) models which are fast to train and (ii)
a fast estimator of the generalisation error. Extreme learning
machines (ELMs) meet both these requirements [5–8]. Firstly,
their training is very fast, since it only requires solving a linear
system. Secondly, the LOO error of an ELM can be computed
quickly and exactly using the PRESS statistics [13,10]. The LOO
error is a special case of the cross-validation error, an estimator of
the generalisation error. This subsection firstly reviews ELMs,
then shows how to use ELMs in order to implement Algorithm 1.

ELMs are feed-forward neural networks with one hidden layer
(see Fig. 3). In traditional feed-forward neural networks, the
weights of both hidden and output weights are simultaneously
optimised through gradient descent. This learning procedure is
called back-propagation in the case of the popular multi-layer
perceptron [20]. However, gradient descent has many drawbacks.
In particular, it is slow and can get stuck in one of the many local
minima of the objective function [5].
Extreme learning machines [5–7] provide an interesting alter-
native to train feed-forward neural networks, which solves the
above problems. Firstly, the weights and biases in the hidden
layer are set randomly and remain fixed during the training
process. Then, the hidden layer output matrix of the ELM with
m hidden neurons is computed as

H¼

s
Pd

i ¼ 1 Wi1X1iþb1

� �
� � � s

Pd
i ¼ 1 WimX1iþbm

� �
^ & ^

s
Pd

i ¼ 1 Wi1Xniþb1

� �
� � � s

Pd
i ¼ 1 WimXniþbm

� �

2
6664

3
7775 ð6Þ

where s is the activation function of the hidden units, W is the
d�m matrix of random hidden layer weights, X is a n� d matrix
where each row corresponds to a training instance and b is the
m-dimensional vector of random hidden layer biases. Usually, s is
the hyperbolic tangent tanh, but any infinitely differentiable
function can be used [5]. For example, radial basis functions are
also considered in [21].

Since the output of an ELM is a linear combination of the
m hidden layer neuron outputs, the output weights are found by
solving the linear problem

min
w

JT�HwJ2
2 ð7Þ

where T is an n-dimensional vector containing the target values
and w is the m-dimensional vector of output weights. It is well
known that the unique solution of Eq. (7) is

w¼HyT ð8Þ

where Hy is the Moore–Penrose pseudo-inverse [22] of H. Using
e.g. singular value decomposition, Hy can be computed efficiently.

In the seminal paper [5], it is shown that ELMs achieve good
performances in terms of error, with respect to other state-of-
the-art algorithms. Moreover, ELMs are shown to be much faster
than traditional machine learning models. For example, they
can be trained up to thousands times faster than support vector
machines. Notice that there exist a significant number of variants
of ELMs. In particular, other activation functions can be used [21]
and ELMs can be trained incrementally [9]. The universal approx-
imation capability of ELMs is discussed in [23].

Another advantage of ELMs is that it is possible to obtain an
analytical expression for an estimate of their generalisation error



Fig. 4. Extreme learning machine with integrated feature scaling.
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[10]. Indeed, the LOO error for an ELM can be obtained using the
PRESS statistics [13], i.e.

PRESS¼
1

n

Xn

i ¼ 1

ei

1�zii

� �2

ð9Þ

where ei is the error for the ith training instance and zii is the ith
diagonal term of

Z ¼HHy: ð10Þ

Since ELMs are fast to train and a fast estimator of their
generalisation error exists, they are perfectly fitted to implement
Algorithm 1. Intuitively, as shown in Fig. 4, the feature scaling can
be seen as an extra layer put in front of the ELM. In the following,
the feature scaling is directly plugged into ELMs to make the
development easier. The hidden layer output matrix of the new
ELM becomes

~H ¼

s
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ð11Þ

and the optimal output weights of the new ELM are now given by

~w ¼ ~H
y
T ð12Þ

Using the above definitions, the gradient of the regularised
training error with respect to the scaling vector ~b becomes

r ~bMSE¼

� 2
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where ei is the error for the ith training instance and ~H
0

is defined
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since s is here the hyperbolic tangent tanh whose derivative is
tanh0ðzÞ ¼ 1�tanhðzÞ2.

Algorithm 1 can be implemented using (i) Eq. (12) to train an
ELM, (ii) Eq. (9) to estimate its generalisation error and (iii)
Eq. (13) to compute the gradient guiding the search. Notice that
the vector of model parameters y which appears in both Eq. (1)
and Algorithm 1 corresponds here to the vector of output weights
~w. In theory, one should optimise the ELM size m before starting

the scaling search. However, there is no guarantee that the
optimal ELM size is identical for different numbers of selected
features. Therefore, the solution chosen here is simply to choose a
random ELM size at each restart. Indeed, only ELMs with correct
sizes (with respect to the feature subset size) will eventually be
taken into account, since they are precisely the ELMs which will
be used to build the FSP and the SET curve.

In the rest of this paper, the proposed implementation of
Algorithm 1 is called ELM-FS, for ELM-based feature selection.

4.6. Remarks on the estimated SET curve

In the proposed approach, the SET curve is estimated by
selecting the best feature subsets among those which are con-
sidered during the search. The resulting SET curve can be used to
select a feature subset, e.g. the one with the lowest generalisation
error. However, two remarks hold here. Firstly, the estimate of the
generalisation error provided by cross-validation (and in particu-
lar LOO) tends to be less reliable when more and more features
are added, because of the curse of dimensionality. This could lead
experts to choose too large feature subsets. Secondly, the esti-
mated generalisation error is not valid any more as soon as a
particular feature selection is chosen. Indeed, since the estimate
was used to select a particular feature subset, it is biased for this
particular solution. An additional, independent set of instances
should be used to estimate the final generalisation error. Yet, the
estimated SET curve can be used to select a subset size.
5. Experiments

In this section, two goals are pursued through experiments.
Firstly, it is necessary to assess whether the proposed algorithm
obtains feature subsets which are either equivalent or better than
those obtained using standard feature selection methods. Sec-
ondly, since the proposed algorithm naturally provides a FSP, it is
important to assess whether the FSP provides useful information
or not, with respect to methods which only provide a best feature
subset.

The following of this section is organised as follows. Section
5.1 describes the experimental settings. Sections 5.2 and 5.3 show
the results for artificial and real datasets, respectively.

5.1. Experimental settings

ELM-FS is compared with three other methods, in terms of
feature subsets and test error: LARS, forward search with mutual
information (MI-FW) and forward-backward search with mutual
information (MI-FWBW). LARS searches for linear relationships in
data [2], whereas MI-FW and MI-FWBW search for more general,
possibly nonlinear relationships. Whereas the features and the
output are compared in terms of correlation for LARS, mutual
information estimates their statistical dependency. Each feature is
normalised using the mean and the standard deviation computed
on training samples.

MI-FW starts with an empty subset of features. At each
iteration, MI-FW computes the mutual information between the
current subset of features and the output. Then, the feature which
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increases the most this mutual information is added to the
current subset of features. The algorithm continues until all
features have been added. MI-FW is not repeated, since it always
starts with the same, empty subset of features. The implementa-
tion of MI-FWBW is similar, except that features can be either
added or removed at each step. Moreover, MI-FWBW is repeated
100 times with random initial feature subsets in order to
(i) reduce the effect of local minima and (ii) obtain a complete
FSP. Mutual information is estimated using a k-nearest neigh-
bours approach introduced by Kraskov et al. [3], where k is chosen
using cross-validation [24].
Fig. 5. Results for the XOR-like dataset: (a–d) the FSPs for LARS, MI-FW, MI-FWBW and

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FS

Fig. 6. Results for the functional dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FS
ELM-FS is performed using 100 repetitions. The neurons of the
100 corresponding ELMs are chosen in a fixed set of 100 neurons.
For each repetition, (i) a random number of neurons is chosen
between 1 and 100 and (ii) the corresponding number of neurons
are chosen in the fixed set of neurons.

The test errors are computed as follows. For each dataset, an
ELM is initialised with 100 neurons. Then, for each feature
selection algorithm and each feature subset size, the output
weights are optimised using the feature subset of the correspond-
ing size, the training samples and OP-ELM, a state-of-the-art
method in extreme learning [10]. Eventually, the predictions of
ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

P: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.

ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

P: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.
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the resulting ELM are compared on the test samples in order to
produce the test error. In order to be able to compare the different
feature selection algorithms, the test errors for a given dataset are
obtained using the same initial ELM. Therefore, identical feature
subsets correspond to identical test errors.

5.2. Results on artificial datasets

In this subsection, two artificial toy problems are used to
compare ELM-FS with LARS, MI-FW and MI-FWBW: (i) the XOR-
like problem introduced in Section 3 and (ii) a complex, nonlinear
functional [24]. For convenience, the definition of the XOR-like
problem is repeated below.

For the XOR-like problem, the artificial dataset is built using
six random features which are uniformly-distributed in [0,1]. For
each sample xi ¼ ðx

1
i , . . . ,x6

i Þ, the target is

f ðxiÞ ¼ x1
i þðx

2
i 40:5Þðx3

i 40:5ÞþEi ð15Þ

where (i) ðx40:5Þ is equal to 1 when x40:5 and is equal to
0 otherwise and (ii) Ei is a noise with distribution N ð0,0:1Þ. This
regression problem is similar to the XOR problem in classifica-
tion: the product term can only be computed using both features
2 and 3.

For the functional problem, the artificial dataset is built using
ten random features which are uniformly-distributed in [0,1]. For
each sample xi ¼ ðx

1
i , . . . ,x10

i Þ, the target is

f ðxiÞ ¼ 10 sinðx1
i Þx

2
i þ20ðx3

i �0:5Þ2þ10x4
i þ5x5

i þEi ð16Þ

where Ei is a noise with distribution N ð0,0:1Þ.
Table 1
Computation times in seconds of the different feature selection algorithms for the

XOR-like problem and the functional problem, including the search of the k

parameter for the Kraskov estimator.

LARS MI-FW MI-FWBW ELM-FS

XOR-like 1.2e�2 1.0eþ2 2.6eþ2 3.1eþ2

functional 1.3e�2 1.7eþ2 5.1eþ2 4.2eþ2

Fig. 7. Results for the diabetes dataset: (a-d) the FSPs for LARS, MI-FW, MI-FWBW and

methods. Notice the logarithmic scales for errors. (a) FSP: LARS. (b) FSP: MI-FW. (c) FS
For both artificial problems, 1000 training samples were
generated in order to have a sufficient amount of data for the
feature selection. Each test set consists of 9000 samples, so that
the test error accurately estimates the generalisation error.

For the XOR-like dataset, Fig. 5 shows (i) the FSPs for LARS, MI-
FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. The SET curve recom-
mends to use three features. In this case, the four methods choose
the correct feature subset, i.e. f1;2,3g. However, the FSP obtained
using ELM-FS provides additional information: features 2 and
3 should be selected together. Indeed, when ELM-FS selects only
one feature, feature 1 is selected. But when ELM-FS selects two
features, feature 1 is no longer used. Instead, features 2 and 3 are
selected jointly. This information cannot be seen on the FSPs of
LARS, MI-FW and MI-FWBW: they successively select feature
1 and either feature 2 or feature 3. In conclusion, the FSP obtained
using ELM-FS reflects well Eq. (15), where the target depends on a
nonlinear combination of features 2 and 3. Notice that when only
two features are selected, ELM-FS obtains a slightly smaller test
error, which supports its choice of features.

For the functional dataset, Fig. 6 shows (i) the FSPs for LARS,
MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. ELM-FS recommends to
use the five features which are actually the ones used to compute
the target. Identical feature subsets and test errors are obtained
using the other algorithms, except LARS which includes feature
3 only for large feature subset sizes and achieves larger test
errors.

According to results for the XOR-like and functional datasets,
ELM-FS is able to cope with nonlinearities and obtains sound
feature subsets. Moreover, for both datasets, the feature subset
which corresponds to the minimum of the SET curve also obtains
the minimum test error. In other words, the SET curve estimated
by ELM-FS using the PRESS statistics is a valuable tool for
choosing the size of the optimal feature subset.

An important difference between ELM-FS and the other
methods, i.e. LARS, MI-FW and MI-FWBW, is that the obtained FSP
highlight features which must be selected together. Indeed, ELM-FS
is able to drop a feature when the feature subset size increases,
ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four compared

P: MI-FWBW. (d) FSP: ELM-FS. (e) SET curve: ELM-FS. (f) test errors.
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in order to add two new features which must be used jointly. This
provides an insightful information about the target function.

Table 1 shows the computation times for the different feature
selection algorithms, including the computation time for the
selection of the k parameter used by the Kraskov estimator of
Fig. 8. Results for the Poland electricity load dataset: (a-d) the FSPs for LARS, MI-FW, MI

compared methods. Notice the logarithmic scales for errors.
the mutual information. In terms of computation time, ELM-FS is
comparable to MI-FWBW, whereas LARS and MI-FW are faster.
However, it should be highlighted that (i) LARS only searches for
linear relationships and (ii) MI-FW searches through a much
smaller space of possible feature subsets.
-FWBW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four
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5.3. Results on real datasets

In this subsection, four real datasets [25] are used to compare
ELM-FS with LARS, MI-FW and MI-FWBW: (i) the diabetes dataset
from Efron et al. [2], (ii) the Poland electricity load dataset [26],
(iii) the Santa Fe laser dataset [27] and (iv) the anthrokids dataset
[28]. The diabetes dataset consists of 442 samples with 10
continuous features. For comparison, a FSP is given for LARS
in [2]. The Poland electricity load dataset consist of 1370 samples
with 30 continuous features. The original time series is trans-
formed into a regression problem, where the 30 past values are
used to predict the electricity load of the next day. For example,
the first feature corresponds to the last day. The Santa Fe laser
dataset consists of 10,081 samples with 12 continuous features.
The anthrokids dataset consists of 1019 samples with 53 features.
For the experiments, the diabetes dataset, the Poland electricity
load dataset and the anthrokids dataset are split into two parts:
70% of the instances are used for training and the remaining 30%
of the instances are used for test. The Santa Fe laser dataset is split
into a training set of 1000 instances and a test set of 9081
instances.

For the diabetes dataset, Fig. 7 shows (i) the FSPs for LARS,
MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-FS and
(iii) the test errors for the four methods. For feature subsets of at
most three features, LARS and ELM-FS obtain lower test errors
than MI-FW and MI-FWBW. The FSP of LARS and ELM-FS are
identical for the three first subset sizes: feature 3 (body mass
index), feature 9 (one of the serum measurements) and feature
4 (blood pressure). For larger feature subset sizes, the four algo-
rithms achieve similar test errors. Here, ELM-FS has no advantage
over other methods, but it achieves performances which are similar
in terms of test error to those obtained by LARS, which it the best
other method for this dataset. The SET curve provided by ELM-FS
shows that using two or three features, almost optimal results can
be achieved, which is confirmed by the test errors.

For the Poland electricity load dataset, Fig. 8 shows (i) the FSPs
for LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for
ELM-FS and (iii) the test errors for the four methods. According to
the SET curve for ELM-FS, seven features are sufficient to achieve
Fig. 9. Results for the Santa Fe laser dataset: (a-d) the FSPs for LARS, MI-FW, MI-FW

compared methods. Notice the logarithmic scales for errors.
almost optimal generalisation error. For this subset size, LARS,
MI-FW, MI-FWBW and ELM-FS choose the feature subsets
{1,6,7,14,21, 23, 30} {1,7,8,14,15,21,22}, {1,7,8,14,15,21,22} and
f1;3,7;8,21;22,23g, respectively. In other words, the four methods
recommend to use the electricity load of yesterday (feature 1) and
the electricity load of previous weeks on the same day (e.g.
features 7, 14 or 21). Moreover, they recommend to use the
electricity load around these days (e.g. features 6, 8, 15 or 22),
which could e.g. be used to estimate the time series derivative. A
few other features are used (e.g. features 3, 23 and 30), which
may be explained by the important amount of redundancy in this
regression problem. Test errors are similar for the four methods.

For the Santa Fe laser dataset, Fig. 9 shows (i) the FSPs for
LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-
FS and (iii) the test errors for the four methods. For ELM-FS, the
SET curve shows that 4 features are sufficient to achieve almost
optimal results. The FSP for ELM-FS shows that the corresponding
subset is 1;2,4;7f g. But the FSP also shows that features 3 and
8 seem to be important. Here, the FSP provide additional informa-
tion: the analysis of the successive feature subsets for smaller
subset sizes reveals other interesting features. This cannot be seen
if only the selected feature subset is considered. LARS, MI-FW and
MI-FWBW do not select features 1, 2, 4, and 7 together for small
feature subsets. It explains that ELM-FS beats them in terms of
test error for these subsets sizes. Here, LARS needs eight features
to achieves a similar test error, whereas the methods based on
mutual information are not able to compare to ELM-FS. Notice
that the FSP obtained using ELM-FS has many discontinuities,
which suggests redundancy or complex interactions between the
features and the target function.

For the anthrokids dataset, Figs. 10, 11 and 12 show (i) the FSPs
for LARS, MI-FW, MI-FWBW and ELM-FS, (ii) the SET curve for ELM-
FS and (iii) the test errors for the four methods. For ELM-FS, the SET
curve shows that nine features are sufficient to achieve almost
optimal results. The test error achieves its minimum around this
point for all methods. No method seems to be significantly better
than the others. Yet, the FSP for ELM-FS is different from the three
other FSPs: whereas LARS, MI-FW and MI-FWBW choose successive
feature subsets which are very similar by design, ELM-FS does not
BW and ELM-FS, (e) the SET curve for ELM-FS and (f) the test errors for the four



Fig. 10. Results for the anthrokids dataset: (a-b) the FSPs for LARS and MI-FW.
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suffer from this constraint. The discontinuities in the FSP for ELM-FS
indicate that there is an important amount of redundancy between
features in this regression problem, what could not be seen with
LARS, MI-FW and MI-FWBW. A closer analysis shows that three
clusters of features are selected often in the nine first columns of the
FSP for ELM-FS: features 1–3, 19–21 and 35–39. These three clusters
are also found by the other feature selection methods. Notice that
ELM-FS also selects e.g. features 8, 12 and 49 which are not selected
by other methods.
Similarly to the case of artificial datasets, the results obtained
in this subsection show that ELM-FS obtains sound feature
subsets. For the diabetes dataset, the Poland electricity load
dataset and the anthrokids dataset, ELM-FS is equivalent to the
best methods in terms of test error. For all four datasets, the SET
curve obtained by ELM-FS can be used to select the best feature
subset size. For the Poland electricity load dataset and the Santa
Fe laser dataset, the feature subset which corresponds to the
minimum of the SET curve also obtains the minimum test error.



Fig. 11. Results for the anthrokids dataset: (a-b) the FSPs for MI-FWBW and ELM-FS.
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For the diabetes dataset and the anthrokids dataset, the feature
subset which corresponds to a sufficient LOO error in the
SET curve almost obtains the minimum test error, with 3 and
9 features respectively.

The results for the Santa Fe laser dataset show that ELM-FS can
be useful for problems with complex relationships between the
features and the output. Firstly, the optimal test error is achieved
with only four features, whereas LARS needs eight features to
achieve a similar result. For the Santa Fe laser dataset, the small
feature subsets obtained by ELM-FS allows reaching test errors
which are significantly better (for the same subset sizes) than the
test errors achieved by other methods. Secondly, the FSP obtained
by ELM-FS reflects the complex relationships between the fea-
tures and the target: there are many discontinuities in the FSP,
which is also the case for the anthrokids dataset.

Table 2 shows the computation times for the different feature
selection algorithms, including the computation time for the
selection of the k parameter used by the Kraskov estimator of
the mutual information. In terms of computation time, ELM-FS is
comparable to MI-FWBW, whereas LARS and MI-FW are faster.



Fig. 12. Results for the anthrokids dataset: (a) the SET curve for ELM-FS and (b) the test errors for the four compared methods. Notice the logarithmic scales for errors.

Table 2
Computation times in seconds of the different feature selection algorithms for the

diabetes dataset, the Poland electricity load dataset, the Santa Fe Laser dataset and

the anthrokids dataset, including the search of the k parameter for the Kraskov

estimator.

LARS MI-FW MI-FWBW ELM-FS

Diabetes 1.7e�3 1.2eþ1 5.5eþ1 6.0eþ1

Poland electricity load 9.7e�3 4.9eþ2 2.1eþ3 7.1eþ2

Santa Fe 2.9e�2 2.5eþ2 7.0eþ2 5.0eþ2

Anthrokids 2.4e�2 4.1eþ2 3.3eþ3 4.5eþ2
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Again, it should be highlighted that (i) LARS only searches for
linear relationships and (ii) MI-FW searches through a much
smaller space of possible feature subsets.
6. Conclusion

This paper reviews two visual tools to help users and experts
to perform feature selection and gain knowledge about the
domain: the feature selection and the sparsity-error trade-off
curve. The ELM-FS algorithm is proposed to build these two tools.
A specific implementation using ELMs is used to analyse different
datasets. The experimental results show that the proposed tools
and the proposed algorithm can actually help users and experts.
Indeed, they provide not only the optimal number of features but
also the evolution of the estimation of the generalisation error,
and which features are selected for different number of selected
features. The proposed methodology allows making a trade-off
between feature selection sparsity and generalisation error. This
way, experts can e.g. reduce the number of features in order to
design a model of the underlying process.
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F. Benôıt et al. / Neurocomputing 102 (2013) 111–124124
[26] A. Lendasse, J.A. Lee, V. Wertz, M. Verleysen, Forecasting electricity con-
sumption using nonlinear projection and self-organizing maps, Neurocom-
puting 48 (1–4) (2002) 299–311.

[27] A.S. Weigend, N.A. Gershenfeld, Results of the time series prediction
competition at the Santa Fe Institute, in: International Symposium on Neural
Networks, 1993.

[28] A. Guillén, D. Sovilj, F. Mateo, I. Rojas, A. Lendasse, Minimizing the delta test
for variable selection in regression problems, Int. J. High Perform. Syst. Archit.
1 (4) (2008) 269–281.
Benoı̂t Frénay received an Engineer’s degree from the
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