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Available online 22 March 2012 Feature selection is an important preprocessing task for many machine learning and pattern
recognition applications, including regression and classification. Missing data are encountered in many
real-world problems and have to be considered in practice. This paper addresses the problem of feature
selection in prediction problems where some occurrences of features are missing. To this end, the well-
known mutual information criterion is used. More precisely, it is shown how a recently introduced
nearest neighbors based mutual information estimator can be extended to handle missing data. This
estimator has the advantage over traditional ones that it does not directly estimate any probability
density function. Consequently, the mutual information may be reliably estimated even when the
dimension of the space increases. Results on artificial as well as real-world datasets indicate that
the method is able to select important features without the need for any imputation algorithm, under
the assumption of missing completely at random data. Moreover, experiments show that selecting
the features before imputing the data generally increases the precision of the prediction models, in
particular when the proportion of missing data is high.
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1. Introduction

Missing data are a very common problem which is important
to consider in many data mining, machine learning or pattern
recognition applications [1,2]. The reasons for which a value can
be missing in a dataset are numerous. As an example, in industrial
applications, data can be missing because of the dysfunction of an
equipment or the insufficient resolution of a sensor device. In the
socio-economic area, if data are collected from surveys, it is likely
that some people will refuse to answer too personal questions
about their income or their political opinions, leading to missing
values in the datasets [3]. An other example is the medical
domain where it is not always possible to conduct some experi-
ments on certain patients; this can be due to their condition, the
fact that they left the hospital or died or simply because of their
age or their sex. Eventually, some data can simply be lost. These
examples illustrate the different missingness mechanisms often
considered in the literature [4].

Denote by M the indicator coding which values are observed
and which are missing. In this paper, M is a matrix of the same
size as the dataset and whose elements are 1 or 0, depending
if the values are missing or not. Denote then the total dataset
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by A = {Ayps, Amis} Where A,y is the observed part of the data and
Amis 1 the missing part.

The first popular assumption is that the data are missing at
random (MAR), meaning that M (or its distribution) does not
depend on the missing values

P(M|4) = P(M|4ops). M

This corresponds, in the medical example, to the fact that an
experiment has not been carried out because the patient is (for
instance) a woman, as indicated by a feature in the dataset.

As a special case of MAR data, if the missingness is further-
more independent of the observed values, the data are said to be
missing completely at random (MCAR)

P(M|4) = P(M). 2)

This assumption is true for lost data or when a measure equip-
ment unexpectedly stops working properly. It is also verified
when one voluntarily does not ask all the participants of a test to
undergo a huge number of experiments but randomly selects a
few ones for each participant for time or cost reasons [5].
Eventually, when Eq. (1) does not hold, the data are missing not at
random (MNAR). In this situation, the probability to observe a missing
data thus depends on 4,,;; (and also possibly on A,); this can
happen for example when people having a too low or too high
income refuse to communicate it. MNAR missingness is a much
harder problem to address than MAR or MCAR since the missingness
distribution has to be modelled. In this paper the data will be
assumed to be MCAR and experiments will be conducted accordingly.
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Even in the presence of missing values, the feature selection
preprocessing step remains of great importance for many machine
learning tasks, including regression and classification. As it is well
known, feature selection aims at reducing the dimension of the
original feature space by determining a (small) subset of the most
relevant features for a given problem [6].

The benefits of feature selection can potentially be numerous.
First, it can improve the performances of the prediction models by
removing irrelevant and/or redundant features, and by preventing the
models to suffer from the curse of dimensionality [7]. It can also help
better understanding the problems by identifying the actually influ-
ent features (this is particularly important in the industrial and
medical fields) and better interpreting the prediction models built.
Due to these arguments, the areas for which feature selection
has proven essential are numerous and include bioinformatics [8],
text classification [9] or near infra-red spectra analysis [10] among
many others.

Despite the fact that the presence of missing values in a
dataset does not automatically lead to a great loss of information,
it usually prevents one from using traditional data mining or
machine learning tools. As an example, distances between obser-
vations, which are at the core of many algorithms, cannot be
computed anymore. Specifically, most of the existing feature
selection methods are designed to work with complete dataset
and cannot be trivially adapted to handle problems with missing
data. One obvious solution is of course to impute the data before
applying classical procedures. However, such a procedure would
add a bias whose effect on feature selection would be really hard
to estimate; it is thus important in practice to select features
independently of any imputation procedure.

The objective of this paper is precisely to propose a way to achieve
feature selection when missing data are present, without the need for
any imputation algorithm. Besides the motivation stated above, very
few prediction models are able to handle missing data. Consequently,
if one wants to achieve regression or classification with an incomplete
dataset, it is very likely that an imputation phase will still be
necessary after the feature selection step. In this case, it seems
obvious that useless features could harm the imputation procedure.
This will particularly be the case when distance-based imputation
strategies (such as the very popular k nearest neighbors imputation
and its variants) will be used.

To achieve imputation-free feature selection, the mutual
information (MI) criterion will be employed. More precisely, it
is proposed to estimate the MI directly from the dataset, adapting
a recently introduced k-nearest neighbors based MI estimator
[11]. As will be detailed later in this paper, this estimator offers
very desirable properties for this task.

Preliminary ideas to perform feature selection in the presence
of missing data were already published in [12]. This paper
extends the methodology and sets up a sound experimental
framework to assess the performances of the proposed algorithm.

The remaining of the paper is organized as follows. Section 2
draws a brief literature review about missing data analysis and
feature selection. In particular, basic concepts about the MI are
recalled and the MI estimator introduced in [11] is described. The
proposed feature selection algorithm is introduced in Section 3.
Section 4 is devoted to the presentation of experimental results
while Section 5 concludes the work and gives some future work
perspectives.

2. Missing data and feature selection: literature review
This section first gives a brief overview of the literature about

the treatment of missing data in data mining as well as the
feature selection problem. Basic definitions about MI are then

recalled, before a nearest neighbors based MI estimator [11] is
presented.

2.1. The missing data problem

As already stressed, the missing data problem is very common
in machine learning, and has thus been widely studied in the
literature, for a variety of purposes. Traditional approaches essen-
tially include case deletion, missing values imputation and learning
directly with missing data.

Case deletion, sometimes referred to as complete-case analy-
sis, consists in considering in the analysis only the samples for
which all the values are available, thus deleting the incomplete
ones [13]. Obviously, this strategy can lead to a loss of informa-
tion, especially when the proportion of missing data is high
but can be used in combination with any algorithm designed for
complete case problems.

On the other hand, imputation methods try to estimate the
missing values, producing complete datasets. Traditional data
mining or machine learning methods can then be applied. Lots
of different imputation methods can be thought of and have been
proposed in the literature, as will be discussed later in this work.
Those techniques are extremely popular and have been used
successfully, to name a few examples, in DNA microarray [14] and
environmental [15] data analysis.

One of the most widely used imputation technique is the
k-nearest neighbors imputation, which consist in finding, among
the complete samples, the k-nearest neighbors of an incomplete
data point. The missing values in this point are then replaced with
an average of the values of its neighbors. The performances of this
strategy are seriously limited when the proportion of missing
data is high, and when only a few samples are complete. A simple
improvement consists in looking also for incomplete neighbors of
a sample, provided these neighbors are observed for the features
missing in the sample. This strategy is called incomplete case
k-nearest neighbors imputation (ICKNNI) [16].

Another simple imputation technique is to replace each miss-
ing value with the mean of the observed values for the corre-
sponding feature. Other more sophisticated imputation methods
have also been proposed, including an expectation maximization
(EM) algorithm and regularized versions of it [17], as well as
multiple imputation [18].

Eventually, methods have been developed that deal directly with
missing data problems and do not require any imputation or deletion
phase. As an example, in [19], the authors perform logistic regression
with missing data by estimating conditional density functions using a
Gaussian mixture model. For clustering purposes, [20] proposed the
KSC algorithm, which encodes the partially observed features as a set
of supplemental soft constraints.

2.2. The feature selection problem

Currently, three approaches are mainly followed to achieve
feature selection: wrappers, filters and embedded methods.

Wrappers are directly based on the performances of a parti-
cular prediction model, and thus require the optimization of
many of such models, which can be extremely time-consuming
in practice. However, they are expected to lead to high prediction
performances, precisely because they are designed to maximize
the model performances [21].

On the contrary, filters search for the subset of features optimiz-
ing a criterion independently of any prediction algorithm. The most
popular criteria used for feature selection are the correlation
coefficient [22] and the mutual information (MI) [23,24] or other
information-theoretic quantities [25]; many others have been pro-
posed in the literature. Due to their simplicity and their rapidity,
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filters are very popular in practice. It is the approach that will be
followed in this work.

Eventually, embedded methods, which achieve simultaneously
prediction and feature selection, have received a lot of attention
recently, especially concerning extensions of the original LASSO
[26,27].

Despite the importance of considering both the missing values
and feature selection simultaneously, we have knowledge of only
two works addressing this question. In [28], the authors try to
infer the MI distribution using a second-order Dirichlet prior
distribution to achieve feature selection. The developments
are, however, limited to the classification problem. In [29], the
authors propose to combine feature selection and imputation of
missing values. However, the feature selection is only used to
increase the performances of a k-nearest neighbors imputation
algorithm and it is not clear if such a strategy can increase the
performances of a prediction algorithm.

2.3. Mutual information: state of the art

Since its introduction by Shannon in 1948 [30], MI has been a
very popular and successful criterion for feature selection (see,
e.g., [31,32]). The reasons for this are essentially twofold. First,
MI is able to detect non-linear relationships between variables,
which is a strong advantage over, for example, the correlation
coefficient which is limited to linear dependences. Then, MI can
be naturally defined for groups of features; such a multivariate
criterion can be very helpful in feature selection if many variables
are redundant or if they are only jointly relevant to the output
vector (as for the XOR problem).

2.3.1. Definitions

The MI is a symmetric measure of the dependence between
two (groups) of random variables X and Y, considered to be
continuous in this work. It can be defined in terms of another
information-theoretic quantity, the entropy

HX) = — / px(1) log px () dn, 3)

where py is the probability density function (pdf) of X. The MI is
then

IX:Y)=H(Y)-H(Y[X), “)

with H(Y|X) being the conditional entropy of Y given X.

Knowing that the entropy is a measure of the uncertainty
about a random variable, Eq. (4) can be interpreted as follows. Let
T be an output vector, whose values will have to be predicted for
new samples based on an associated training set S (this is a simple
supervised prediction problem). Let n be the number of samples
(T e ®™") and f be the original number of features in S=(S'...5)
(S e ™). Then, if one tries to find a subset S, of the features in S
maximizing I(Ssp; T), he actually tries to find a subset of features
whose knowledge minimizes the uncertainty about T. This is
obviously a quite natural criterion for feature selection.

An equivalent expression for the MI is

px,y(1,0)
px(Mpy ()

This last equation can be seen as the Kullback-Leibler diver-
gence between the joint distribution pxy and the product of the
marginal distributions px and py [33]. If the variables are inde-
pendent pyy =pxpy and I(X;Y)=0 as could already be deduced
from Eq. (4).

Unfortunately, in practice, for real-world problems, none of the
pdf px, py or px y in Eq. (5) are known, meaning that the MI cannot
be directly computed but has to be estimated from the dataset.

IX:Y) = //px,yw.c) log dy dt. 5)

2.3.2. Mutual information estimation

Mutual information estimation is a well-known and widely
studied problem in the literature. Traditional approaches essen-
tially consist in approximating the pdf by histograms or kernel
based methods [34,24], before plugging the obtained quantities in
Eq. (5) to obtain a MI estimation.

However, even if very popular, those methods are not likely to
work well when working with high-dimensional groups of fea-
tures. The reason is that the number of points needed to sample a
space at a given resolution grows exponentially with the dimen-
sion of this space [7]. As the number of available data points is
always limited in practice, if those samples are of high dimension,
most of the boxes of an histogram will be empty, leading to very
imprecise density estimations. Things will not be very different
for kernel-based density estimators, since they are essentially
smoothed histograms.

Nevertheless, considering a multivariate criterion for feature
selection can be useful and a way to properly estimate the MI in
high-dimensional spaces is thus needed. An estimator based on
the notion of nearest neighbors has been introduced in [11]. This
estimator has the crucial advantage that it does not directly
require the estimation of any pdf, thus bypassing one of the most
problematic issues in MI estimation. It has already been used
successfully for feature selection in the no missing value case
[10,35].

Let y={x,i=1...n} and Y={y;j=1...n} be the sets of
realizations of the random variables X and Y, respectively. The
estimator is based on the Kozachenko-Leonenko estimator of
entropy [36]

. dd :
HX) = —y(k)+y(n)+log(cq) + 1 Z log(ex(i,k)), (6)
i=1
where k is the number of nearest neighbors considered (a
parameter of the estimator), d the dimensionality of the data, cy4
the volume of a unitary ball of dimension d and ¢x(i,k) twice the
distance from x; to its kth nearest neighbor. Eventually,  is the
digamma function defined as follows:
I’k d _ [T k1,

Yk = T — dk In I'(k), I'(k)= /0 u“ ‘e " du. 7
Practically, the function i satisfies the following recursion: y/(u+1) =
Y(w)+1/uand y(1)=C,C=—-0.5772 ... being the Euler-Mascheroni
constant.

Based on (6), Kraskov et al. [11] derived two different estima-
tors for regression problems. The most popular is

IS 1 1& . .
1Y) =+ Y= == > W) + ¥ (1)), ®)
i=1

where 74(i) is the number of points located no further than €(i,k)
from x; and 1,(i) is defined similarly in Y. Here, €(i,k) is defined as
max(ex(i,k),ey(i,k)).

As can be seen, the estimator is only determined by the
distance between the samples either in y or in Y. In practice the
Euclidean distance is often used.

3. Feature selection with missing data

This section describes the proposed methodology to achieve
feature selection in the presence of missing data. A feature
selection algorithm is generally composed of a subset quality
criterion, a search procedure to optimize it and a stopping
criterion. In this work, we will essentially focus on the two first
elements, leaving the stopping criterion for further considera-
tions. In practice, the procedure can be stopped when a fixed
number of features have been chosen. If a sufficient number of
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samples is available, it is also possible to use a validation test to
determine the optimal number of features. Another more sounded
strategy, based on resampling methods, has also been proposed and
used successfully for MI based feature selection [37].

3.1. Mutual information with missing data

For the reasons described above, the MI is the criterion chosen
to achieve feature selection in this work. As already explained, the
estimator (8) is only determined by the distances between each
point and its k-nearest neighbors in both the X and the Y spaces.

Of course, the simplest strategy to compute these distances is
to impute the missing values in order to obtain a complete
dataset; the distances can then be directly obtained. As detailed
in Section 2.1, imputation is extremely popular and many differ-
ent strategies can be thought of.

However, to estimate the MI, the imputation of the missing
values is not required since only the distance between samples is
needed. Moreover, as detailed above, we would like the MI
estimation to be independent of any imputation procedure. To
this end, the partial distance strategy (PDS) will be used in this
work. The quite simple idea behind PDS is to compute the
distances based only on the available values, ignoring the missing
ones in the analysis.

Consider two samples a, be ® and denote by M, (M,) the
indices of the missing components for a (b). The distance between
a and b as estimated by the PDS is

dist(a,b) = \j \M G|
a

where | - | denotes the cardinality of a set. In this last equation,
the estimated distance is thus normalized by the number of
features (or dimensions) used to compute it. The objective is to
make the range of ¢x and ¢y comparable in (8). Indeed, in the
feature selection context, Y is the random variable indicating the
class; therefore its dimension is 1. Conversely, the dimension of X
can be higher in practice. Without the proposed normalization, it
is likely that ex would always be greater than ¢, (because it would
be calculated using more dimensions) and the MI estimation
would be harmed.

As a very simple example, the distance between the vectors
[3e872] and [19 e 3 4], where e denotes a missing value, is
computed by considering the first, fourth and fifth elements of
each vector; it is equal to

> (@b )

Mo M),

\/(31)2 H(7—3P +(2—4)
S .

Once the pairwise distances between samples have been
obtained, the nearest neighbors can be determined in both the
X and the Y spaces, and the MI can be estimated using (8).

PDS has already been used successfully in other domains such
as clustering [38], inference of prediction problems [39] and self-
organizing maps [40]. It is important to note, however, that the
term distance has been used abusively in this section since the
similarity measure defined by the PDS is not guaranteed to obey
the triangle inequality.

3.2. Subset construction strategy

Once the subset quality criterion has been defined, a strategy to
optimize it has to be chosen. In this paper, a greedy forward search
procedure is employed, mainly because of its simplicity and its low
computational cost. The idea of such a procedure is to start by
selecting the feature whose MI with the output vector is the highest.

Then, at each of the following steps, the feature whose addition to the
already selected features produces the subset having the highest MI
with the output vector is selected, hence the name greedy. The term
forward comes from the fact that once a feature has been chosen, it is
never removed from the set of selected features.

At each step of the feature selection algorithm, the dimension
of the feature set whose MI with Y has to be estimated thus
increases by one unity; the need for an estimator able to handle
multidimensional vectors clearly appears.

Obviously, other choices of greedy search procedures could have
been made as well. For example, a backward step, consisting in
removing a variable if its removal increases the estimated MI, could
have been added after each forward step described above [10].
Another idea would be to consider the backward elimination, whose
principle is to start with all the features, and to remove them one at
a time. Other more complex algorithms are also possible, including
genetic algorithms or hill climbing strategies. See [41] for a more
detailed overview of subset construction strategies.

3.3. Practical considerations

Before presenting experimental results in the following sec-
tion, some practical details about the proposed methodology have
to be discussed.

First, the MI estimator used in this work (8) has a parameter k
corresponding to the number of nearest neighbors considered
which needs to be determined. Following the recommendations
in the original paper [11], a moderate value of 6 will be arbitrarily
chosen in order to get a good tradeoff between variance and bias.

Then, it is obvious that the PDS distance strategy is not able to
produce a distance estimate between two points if they have no
common features for which their values are observed. In this case,
the distance between the points is considered as infinite such that
the points cannot be neighbors.

Eventually, before the MI estimation, the real-world datasets
have to be normalized by removing the mean of each feature and
dividing them by their standard deviation. This is because in
the absence of any prior knowledge, we do not want that, due to
their range, some features carry more weight than others in the
computation of the pairwise distances between samples.

4. Results and discussions

This section illustrates the interest of the proposed feature
selection methodology through various experimental studies, on
both artificial and real-world datasets. The objective is to com-
pare the performances of this new method with the strategy
consisting in imputing the datasets before running the classical
MI-based feature selection algorithm using the estimator (8) with
the Euclidean distance. The section begins by the description of
the datasets that will be used before the experimental setup is
described. The results are then presented. Eventually, a discussion
about the results concludes the section.

4.1. Datasets

Both artificial and real-world datasets are considered in
this study.

4.1.1. Artificial datasets

Three artificial datasets are used to evaluate the performances
of the proposed algorithms. The three datasets consist in 10
continuous features, uniformly distributed between 0 and 1. They
are built such that only a subset of these 10 features are relevant
to predict the associated continuous output.
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Fig. 1. Two different approaches to the regression problem with missing values.

The first artificial problem is derived from Friedman [42]; its
output is defined as

Y1 = 10 sin(X1X2)+20(X3—0.5)% + 10X4 +5Xs5 +¢, (10)

where ¢ is a Gaussian noise with unit variance.
The second output is computed as

Y, =X X5 +sin(X3)+0.5X4 +¢, an
while the third is built as
Y3 = cos(X;1X3) exp(X3X4)+e. (12)

Obviously, only the five first features are useful to predict Y,
while only the four first ones are needed to predict Y> and Ys. The
quality of a feature selection method can thus be studied through
its ability to detect those relevant features.

4.1.2. Real-world datasets

Four real-world datasets are considered; two are high-dimen-
sional while the other two have a more reasonable number of
features around 15. The first one is the Delve census dataset,
available from the University of Toronto! for which only the 2048
first entries are kept. The first 1500 entries are used as training set
and the remaining ones as the test set. The objective is to predict,
based on demographic features, the median price of houses in a
region. The dimension of the dataset is 104.

The second dataset is the Nitrogen dataset, containing only
141 spectra discretized at 1050 different wavelengths. The goal is
to predict the nitrogen content of a grass sample. The data can be
obtained from the Analytical Spectroscopy Research Group of the
University of Kentucky.? As a preprocessing, each spectrum is
represented using its coordinates in a B-splines basis, in order to
reduce the amount of features to 105; see [43] for details. The
training set is composed of 105 data points, while the remaining
36 constitute the test set.

The third dataset is the Housing dataset, available from the UCI
Machine Learning repository.> The goal is to predict the values of
houses using 13 attributes. From the 506 instances, 337 are kept
for training the model while the 169 remaining ones constitute
the test set.

Finally, experiments are also carried out on the Mortgage
dataset which contains 16 features. From the 1049 data points
available, the 700 first ones are used to train the models. The
dataset can be downloaded directly from the website of the
Federal Reserve Bank of Saint-Louis.*

4.2. Experimental setup

As detailed above, the objective of this section is to compare
the proposed approach with the approach consisting in first
imputing the data before doing feature selection. To this end,

1 http://www.idrc-chambersburg.org/index.html.
2 http://kerouac.pharm.uky.edu/asrg/cnirs/.

3 http://archive.ics.uci.edu/ml/index.html.

4 http://www.stls.frb.org/fred/data/zip.html.

two imputation strategies will be used: the ICKNNI with 10
neighbors and a regularized version of the EM algorithm [17]. It
is important to note that the ICKNNI imputation method fails to
produce an estimation of the missing values if, for a given sample
whose value is missing for some features, no neighbors for which
those features are observed can be found; the mean value of the
feature is used instead in such situations.

4.2.1. Artificial problems

For artificial problems, the relevant features are known in
advance. No prediction model is thus needed to asses the quality
of the approaches. Three strategies are then compared: the
proposed approach, feature selection after imputation by the
EM algorithm and feature selection after imputation by ICKNNIL
For each problem (10)-(12), 50 datasets of sample size 100 have
been generated and the outputs have been built accordingly. Each
dataset has been filled randomly with 10% and 40% of missing
values, respectively. The different MI estimators have then been
used to rank the features containing missing values.

4.2.2. Real-world problems

For real-world datasets, since the relevant features are not
known in advance, the criterion of comparison between feature
selection techniques will be the root mean square error (RMSE) of
a prediction model using the selected features. In practice, very
little work has been done to design prediction models able to
handle missing values, with a few exceptions for classification
problems (see e.g. [44]). Because of this, an imputation phase is
still necessary after the feature selection step if one intends to
build a prediction model after having used the PDS based strategy
to select relevant features. Conversely, if the data have already
been imputed, any classical prediction model can be built based
on the selected features. Fig. 1 summarizes the two different
approaches to the prediction problem with missing data com-
pared in this paper. Two different regression models are used: the
well known k-nearest neighbors predictor, with k=10, and a
Radial Basis Functions Network model (RBFN). The parameters of
the RBFN have been optimized according to [45].

In each of the four complete datasets, 1, 5, 10 and 20% of
missing values are introduced. This generation is repeated 10
times, producing 40 new datasets. The feature selection proce-
dure is then conducted, either directly with the estimator
described in Section 3.1 or after imputation of the data, using
the classical estimator (8). When the PDS-based MI estimation is
used, the selected features are imputed; a prediction model is
then built (see the lower part of Fig. 1).

4.2.3. Feature subset construction strategies

In addition to the forward search described in Section 3.2, feature
ranking is also considered in this section. Indeed, sometimes, one is
only interested in ranking the features according to their individual
MI with the output Y. Even if this strategy does not take into account
any possible redundancy between features or the fact that some
features can only be jointly relevant, it has the advantage of being
faster than the forward strategy and can be sufficient in some
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situations. Moreover, a multivariate MI estimation, even using the
nearest neighbors based estimator, will require more data points
than a one-dimensional one, those data points being not always
available. It is important to note that in the context of ranking
procedures, the PDS approach is equivalent to the classical estima-
tion of the MI based only on the samples for which the value of the
feature is not missing. The same consideration is also true for the
first step of the forward search procedure.

The ranking procedure will only be considered for the artificial
problems, while the forward search will be conducted on both the
artificial and the real-world problems. Indeed, a ranking proce-
dure is likely to fail on the real-world problems, as many features
are redundant, especially for the Nitrogen dataset. Moreover,
the main objective of this paper is to assess the possibility of
performing multivariate feature selection.

4.3. Results

The results obtained for the three experimental frameworks
described above are now presented.

Y4 problem with 10% of missing data
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4.3.1. Ranking procedure for the artificial problems

Fig. 2 shows the average MI for each individual feature
obtained over the 50 repetitions of the experiment. In order to
assess the added value of the proposed methodology in each
experiment individually, Table 1 shows the percentage of experi-
ments for which five, four, three, two and one relevant features
have, respectively, been ranked in the five first positions for the Y;

Table 1

Percentage of experiments for which a certain number of relevant features
(second line of the table) are ranked in the five first positions for the Y; problem
with 10 and 40% of missing data.

Imputation strategy  10% of missing data 40% of missing data

5 4 3 2 1 5 4 3 2 1

PDS
Regularized EM 0 1 6
ICKNNI 0 1 5

30 6 1 8 40 43 9 0
49 0 1 23 45
43 0 0 9 43

Y problem with 40% of missing data

0.3
0.25

Average MI with the output

1 2 3 4 5 6 7 8 9
Feature number

0.12
0.1
0.08

—e—PDS
—»—EM
—a— ICKNNI

0.06
0.04
0.02

Average MI with the output

-0.02

1 2 3 4 5 6 7 8 9
Feature number
Y3 problem with 40% of missing data
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0.05
0.04

—e—PDS

—— 1
—a— ICKNNI

0.03
0.02
0.01

Average MI with the output

-0.01
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Feature number

Fig. 2. Average MI between each individual feature and, from top, to bottom Y,Y>,Y3 with 10% (left) and 40% (right) of missing values; o, PDS; O, ICKNNI; %, regularized

EM imputation.
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problem. Results, which are similar for the two other artificial
problems, are not shown for space reasons.

4.3.2. Forward procedure for the artificial problems

A forward procedure has been run on the datasets and stopped
when the actual number of relevant features had been selected,
i.e. five for the first problem, four for the last two ones. The
percentages of relevant features among all the features selected
by each of the strategies have then been computed. Table 2
summarizes the average performances of the three compared
approaches when the output to predict is Y;. For the two other
problems, all methods always select the relevant features first. To
complete those results, we show in Table 3 the percentage of
experiments for which all relevant features have been selected.

4.3.3. Forward procedure for the real-world problems

For real-world problems, the number of selected features is
arbitrarily limited to half the number of original features, with a
maximum of 25. This allows us to see which methods quickly
detect the most relevant features. Moreover, in [37], the authors
propose an efficient stopping criterion using resampling methods
for MI based forward feature selection. In [37], three out of the
four datasets used in the present paper are also considered and

Table 2
Average percentage of relevant features selected on the Y; artificial problem.

% of missingness PDS Regularized EM ICKNNI
10 100 100 100
20 96,80 94,40 93,60
30 94,80 94 94

Table 3
Percentage of correct selection of the relevant set of features by a forward search
procedure for the Y; artificial problem.

% of missingness PDS Regularized EM ICKNNI
10 100 100 100
20 84 70 62
30 66 46 44

Table 4

the number of features selected is 8 or 9, 25 and 4 for the Delve
census, the Nitrogen and the Housing dataset, respectively. Even
if the criterion in [37] is designed for complete datasets, it
indicates that only a small number of features is generally needed
to obtain good prediction performances.

Table 4 shows the average best prediction performances
obtained over the 10 incomplete datasets, together with the
standard deviation, for the four missing data rates. EM or ICKNNI
means that the data have first been imputed using the regularized
EM algorithm or the ICKNNI. PDS then EM or ICKNNI means that
the feature selection has been achieved without any imputation
and indicates which imputation method has been used before
building the prediction model. Cases for which one of the two
strategies (imputation before or after feature selection) performs
significantly better than the other one according to a paired test
with a 95% confidence level are shown in bold.

4.4. Analysis of the results

The performances of the compared approaches presented in
Section 4.3 are now discussed in details.

4.4.1. Ranking procedure for the artificial problems

Results clearly show, in this configuration, the advantage of
the PDS. More precisely, the results are quite similar when only
10% of missing values are missing (the left column of Fig. 2); in
this situation, the three approaches are all able to discriminate
between the irrelevant and the relevant features, giving the latest
a higher value of MI. However, when the proportion of missing
values is raised to 40%, it clearly appears that imputation based
methods are not able anymore to clearly decide whether or not a
feature is relevant to the output. Indeed, the difference between
the values of the MI for the relevant and the irrelevant features is
greatly reduced. As an example, for the second problem, it
appears that the MI between feature 5 and the output is greater
than the MI between the output and feature 1 or 2 when both
imputation techniques are used. As another example, when the
third problem is considered, imputation-based feature selection
techniques indicate that feature 9 is more relevant to Y3 than
feature 1. Thus, such strategies could easily lead a user to wrong
conclusions about the importance of each feature in a regression

Best RMSE reached by a RBFN and a KNN prediction models on four real-world datasets for various rates of data missingness. Significantly better results for one of the two

compared approaches are shown in bold.

Dataset % RBFN KNN

EM PDS then EM ICKNNI PDS then ICKNNI EM PDS then EM ICKNNI PDS then ICKNNI

Delve 1 193744+0,0904 1,8922+0,0543 1,5976+0,1112 1,9023 +0,1106 2,1075+0,4644 2,0790 + 0,2827 2,0846 +0,2778 1,9263 40,6923
5 21483 +0,0526 1,9114+0,0730 2,7002 +0,2820 2,2726 +0,0985 2,7126 +0,5282 2,4226 +0,5564 2,8999 + 0,4434 2,0288 + 0,7085

10 2,4166+0,3927 1,9725+0,1132 3,4510+0,1469 2,6745+0,2521 2,4421+0,3269 2,6606+0,2374 3,1966 +0,1442 2,3994 + 0,2787

20 2,6002+0,1262 2,1744 +0,1262 4,5044 +0,2578 2,8726 +0,1439 3,5703+0,5510 3,6363 +0,4690 4,5026 +0,5780 3,4126 + 0,3856

Nitrogen 1 06871+0,0296 0,6796+0,0297 0,7068 +0,0838 0,7052 +0,0419 0,7573 +0,0072 0,7541 +0,0323 0,7384 +0,0439 0,7330+ 0,0303
5 0,7297 +£0,0079 0,7247 +£0,0079 0,7921 +0,0213 0,7210+0,2420 0,7566 + 0,0098 0,7383 +0,0268 0,7362 +0,0455 0,7282 + 0,0253

10 0.7529+0.0537 0.725440.0232 1.0198 +0.1252 0.7582 +0,0293 0,7707 +0,0612 0,7502 +0,0277 0,8669 +0,0710 0,7546 + 0,0322

20 0,7728 +0,0417 0,7683 +0,0375 0,8309+0,0924 0,8213+0,3390 0,7722 +0,0498 10,7618 +0,0261 0,77414+0,0274 0,7728 + 0,0356

Housing 1 7,7308+0,6103 7,6343+0,7922 7,7187+0,4537 7,6061+1,2242 29366+ 0,1277 2,8252 +0,0690 2,8896 +0,1783 2,8522 40,0590
5 8,1533+0,9341 7,0395+0,2474 7,0163 +0,7397 6,9950+0,4565 3,1365+0,1341 3,1083 +£0,1548 3,9726+0,2323 2,9732 + 0,1551

10 7,6845+0,3980 7,3737+0,2737 7,8922+2,1218 7,4886+0,5520 3,5232+0,3061 3,4998 +0,3617 4,4350+0,2238 3,4646 + 0,1942

20 8,3647 +0,4642 7,6461 +0,4159 9,3573+09904 7,6116+0,3985 3,6588+0,5177 3,7271+0,3508 6,0218 41,0507 4,0720 +0,3173

Mortgage 1 0,1819+0,0692 0,1517+0,0521 0,1714+0,0919 0,2184 + 0,098 0,3709 +0,0193 0,3700 +0,0149 0,3515+0,0401 0,3571 40,0250
5 0,2680+0,0750 0,2668 +0,0646 0,3568+0,1576 0,2664 +0,1344 0,3986 + 0,0640 0,3545+0,0394 0,4339 +0,0227 0,3778 + 0,0595

10 0,3068 +0,0757 0,1901+0,0624 1,006 + 0,463  0,2556 + 0,1106 0,3908 + 0,0337 0,3519 +0,0388 0,4950 + 0,0986 0,3589 + 0,0428

20 0,3964+0,1784 0,2244+0,0722 1,6213+0,284 0,5071 +0,2719 0,4854 +0,0501 0,3680 +0,0686 0,835540,0946 0,4057 + 0,0435
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problem. On the contrary, when the PDS is used, the average MI is
always higher for the relevant features than for the irrelevant
ones.

Table 1 confirms these claims as the PDS-based strategy
obviously leads to the selection of relevant features in a much
bigger proportion of the experiments. As an example, for both 10%
and 40% of missing data, at least three relevant features are
chosen in more than 90% of the experiments.

4.4.2. Forward procedure for the artificial problems

The differences in performance, shown in Table 2, are not huge
for the forward search procedure on the artificial datasets.
However, the simple PDS-based strategy leads to the best results,
confirming what had been observed above for the ranking
procedure. Moreover, the results obtained are very encouraging
showing that the method was effectively able to detect the most
useful features in a very large majority of the experiments carried
out. To support these claims, Table 3 shows that the percentage of
experiments for which all relevant features have been selected is
obviously higher for the proposed approach when the proportion
of missing data grows; the interest of the PDS-based algorithm is
clearly confirmed when both 20% and 30% of the data are missing.

4.4.3. Forward procedure for the real-world problems

The interest of the proposed approach on the real-world
problems is clearly demonstrated by the results. Indeed, it leads
to better average regression performances than the imputation-
based feature selection techniques in all but five of the 64 cases.
Moreover, it seems much less sensitive to the increase of the
percentage of missing values. As an example, for the Mortgage
dataset, Table 4 shows a reduction of the mean RMSE by more
than 25% for ICKNNI imputation and by more than 50% for the
regularized EM imputation with both prediction models when
20% of the values are missing. More generally, the RBFN model
always performs better with the PDS-based method when 5% of
values at least are missing. When 1% of data are unavailable, it is
only less efficient for the ICKNNI imputation on the Mortgage and
on the Delve datasets.

The results obtained with the KNN predictor confirm the good
behavior of the proposed approach: results are always better with
PDS when using ICKNNI imputation, and better in 13 out of 16
cases when using the regularized EM imputation.

As can further be seen in Table 4, the results obtained with the
proposed strategy are statistically significantly better in 26 out of
the 64 cases; on the contrary, imputing before doing feature
selection only leads once to a significantly better prediction
performance. The observations are in good agreement with the
previous considerations and clearly establish the advantage of the
proposed methodology.

4.5. Discussion

Even if the obtained results are clearly in favor of the PDS-based
approach, some points still need to be discussed.

As mentioned above, parameter k of the Kraskov estimator has
arbitrarily been set to 6. In practice this parameter plays a role in
the bias-variance trade-off of the estimation. Experiments with
different values of k chosen in a reasonable range have produced
very similar results in our simulations. However, in some cases,
results could vary and the value of k could then be important to
set correctly. One way to proceed is to use resampling methods
and the permutation test [37], which have proven to be successful
for problems without missing data.

Then, the proposed methodology potentially suffers from a
few drawbacks. First, as it is the case of most methods dealing

with missing data, the performances of the algorithm are likely to
decrease if the rate of missing data becomes very high. More
precisely, the methodology is theoretically not limited to a certain
percentage of missing values. However, for high rates of missing-
ness, the first steps of the forward procedure could be achieved
based only on a very few number of data points, leading to
uncertain results. One possible solution would be to rather use a
backward search strategy, or to begin the forward procedure with
groups of two or three features instead of singletons; in this way,
the whole procedure would not be affected by a bad choice of the
first few features.

Closely related, the second problem is that there is currently no
possible way to determine whether the estimated MI values are
meaningful. In other words, the proposed methodology can poten-
tially estimate the MI for any rate of missing value; however, once a
given rate of missingness will be reached, the estimated values will
probably not reflect the true dependencies anymore because the
estimator will be given too few information. Knowing whether or
not a value is relevant is obviously of great importance for feature
selection. Here again, one solution could be found in the permutation
test. Comparing the obtained estimations of the MI with the values of
the MI between a random vector and the output could give valuable
information on whether or not the estimations correspond to true
dependencies.

5. Conclusions and future work

This paper proposes an approach to the feature selection problem
for datasets where values are missing. The method is based on the
concept of mutual information which has been widely used to
achieve feature selection for complete datasets. To this end, a recently
introduced MI estimator is adapted to handle missing data using the
partial distance strategy and a greedy forward search is used to
construct an optimal feature subset. One of the main advantages of
the proposed feature selection algorithm is that it does not require
any prior imputation of the data. On the contrary, traditional
approaches consist in imputing the missing values before using any
existing feature selection algorithm and are thus strongly dependent
of the chosen imputation strategy.

Experimental results have first showed on three artificial
datasets that the proposed algorithm is effectively able to identify
the features relevant to a problem and that imputing the missing
values leads in general to worse performances. Then, when working
with real-world datasets, experiments indicate that imputing the
missing values after the feature selection step generally allows us to
build more precise prediction models, especially when the propor-
tion of missing data is high.

As all the developments presented in this work could as well
be applied to the classification-specific MI estimator introduced
in [46], future work could be focused on experiments for this
particular class of problems. Eventually, since the similarity
measure defined by the PDS is not a metric, the effects of such
a measure on the MI estimator should also be studied.
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