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Abstract. Blind Source Separation (BSS) consists in recovering
unobserved signals from observed mixtures of them. In most cases
the whole set of mixtures is used for the separation, possibly after
a dimension reduction by PCA. This paper aims to show that in
many applications the quality of the separation can be improved
by first selecting a subset of some mixtures among the available
ones, possibly by an information content criterion, and performing
PCA and BSS afterwards. The benefit of this procedure is shown
on simulated electrocardiographic data by extracting the fetal elec-
trocardiogram signal from mixtures recorded on the abdomen of a
pregnant woman.

INTRODUCTION

Most Blind Source Separation (BSS) algorithms require a number of observed
mixtures n equal to or larger than the number of sources m. In real situations
however, it is rather difficult to estimate m precisely. Consequently, a usual
way to circumvent the problem consists in measuring much more mixtures
than necessary n� m̂ (m̂ being the estimated value of m).

Unfortunately, the number of separated signals is equal to the number of
observed mixtures n and not to m̂. When n is large, this can produce con-
vergence problems or very high computational cost (especially for algorithms
based on joint-diagonalization e.g. Jade, which require the computing of the
fourth order cross-cumulants [2]). The method commonly used to satisfy
both arguments is to take many observations (n� m̂) and project them by
Principal Component Analysis (PCA) on the m̂-dimensional subspace before
performing the separation, so that only m̂ signals will be separated.

1 M.V. is a Senior Research Fellow of the Belgian National Fund for Scientific Research.
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However, Stone and Porrill [13] have shown that directly using PCA to
reduce the dimension of signals mixtures (from n to m̂) used as input to ICA
can compromise the ability of ICA to extract source signals.

We propose to use a slightly different procedure, sPCA (for selected PCA):
it consists in adequately selecting n′ mixtures among the n available ones
before performing the projection with PCA from n′ to m̂, with n > n′ > m̂.

Note that in both cases, we are still confronted to the difficulty of choosing
the dimension of the projected subspace (m̂).

In the following of this paper, we first introduce the bases of ICA and its
preprocessing (PCA and whitening), as well as several criteria to evaluate
the projection and separation performances. We then apply ICA on a simple
example, to emphasize the importance of the (number of) mixtures taken
into account. Next, the core of the paper is the presentation of a variable
selection method based on mutual information criteria and its application to
the extraction of the fetal electrocardiogram.

INDEPENDENT COMPONENT ANALYSIS

The problem of Blind Source Separation (BSS) consists in recovering m un-
observed signals S1, . . . , Sm called sources, from a set of n observed mixtures
signals X1, . . . , Xn. Usually, it is assumed that the number of sources is
lower or equal to the number of mixtures. In practice, it is necessary to make
assumptions on both sources and mixtures in order to be able to solve this
problem. In the simpler model, these assumptions are: i) the sources are
statistically independent and at most one source is Gaussian and ii) the mix-
tures are linear and instantaneous, without noise. Then, the relation between
the sources and the mixtures can be written as follows:

X = AS , (1)

with X = [X1, . . . , Xn]T , S = [S1, . . . , Sm]T and where A is the unknown
n-by-m mixing matrix.

Using the independence assumption leads to Independent Component
Analysis (ICA) methods. It can be shown [3] that, under mild assumptions,
in linear mixtures, ICA achieves BSS. In fact, using ICA, one can estimate a
m-by-n separating matrix B such that

BA = PD , (2)

where P denotes a m-by-m permutation matrix and D a diagonal one of the
same size.

Usually, statistical independence of the sources is expressed as follows:

p(S1, S2, . . . , Sm) =

m
∏

i=1

p(Si) , (3)
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where p(Si) is the marginal probability density function (pdf) of the i-th
source Si and p(S1, S2, . . . , Sm) the joint pdf. A more convenient criterion
for measuring independence will be proposed in equation (6).

The assumptions on the mixtures correspond to the linear BSS. ICA
methods can be extended to more complex (and realistic) mixtures, for ex-
ample by allowing additive noise [6], delays [15] or nonlinearities [14] in the
mixtures.

PREPROCESSING TO ICA

Two major processings are commonly used before ICA: dimension reduction
and whitening. Both can be achieved by PCA.

Actually, a projection by PCA decorrelates the mixtures. For Gaussian
sources, the decorrelation (or whitening) permits to reach the independence
but not to recover the sources. It means that Gaussian sources cannot be
separated by using independence. Decorrelation is not sufficient for ensuring
independence, which motivates the use of ICA afterwards. Intuitively, PCA
achieves ‘half the job’ of ICA. Sphering is similar to whitening, excepted that
the decorrelated mixtures are also normalized.

Principal Component Analysis aims to decorrelate variables or signals, in
order to find orthogonal directions with maximal variance [8].

The first step of PCA consists in removing the sample mean of each signal
(s is the number of samples): Xj ← Xj −

1
s

∑s

i=1 Xi
j .

The second step consists in applying a linear transformation on X. This
transformation rotates the coordinate system in such a way that the first new
axis points in the direction of maximal variance, the second axis, orthogonal
to the first one, collects the largest part of the remaining variance, and so on.

The new axes are determined by a spectral decomposition of the sample
covariance matrix CX = (XXT )/s = V ΛV T , where V is an orthonormal
matrix and Λ a diagonal one. As C is symmetric and semipositive definite,
all eigenvalues λi (the diagonal entries of Λ) are real and non-negative [11].
The variance along each of the new axes Vi is simply given by its associated
eigenvalue λi. In the same way, a projection on the m eigenvectors (m < n)
associated with the m largest eigenvalues conserves a portion ρm of the total
variance which can be written as

ρm =

∑m

j=1 λj
∑n

j=1 λj

. (4)

The projection gives the decorrelated signals Y according to Y = V T
1:mX,

where V(1:m) gathers the m eigenvectors associated to the m largest eigenval-
ues. It can be verified that the projected signals are decorrelated [7].

Sphered signals can be obtained with a slight modification of PCA. The

projection is given by Y =
√

Λ−1
(1:m,1:m)V

T
1:mX, yielding decorrelated signals

with unit variance.
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PROJECTION AND SEPARATION QUALITY CRITERIA

Projection (after PCA) and separation (after ICA) performances can be as-
sessed by several criteria.

Projection. After dimension reduction by PCA, the quality of the projec-
tion can be measured by equation (4). This criterion is always non-negative
and equals one when all non-zero eigenvalues are kept.

Separation. In the lack of any information about the mixing matrix or
the sources, the best way to assess the separation quality would be to check
whether equation (3) holds. Unfortunately, the evaluation of the joint pdf is
a very tedious problem. If the mixing matrix A is known, the performance
of a separation matrix B could be estimated by the Signal-Interference Ratio
(SIR, see [12]), defined as:

SIR =
1

n

n
∑

i,j=1

|[BA]ij |

max1≤k≤n(|[BA]ik|))
− 1 . (5)

This criterion measures the interferences between the recovered sources and
the true sources. A null SIR means that each recovered signal is strictly equal
to one source. If the sources are (partially) known, other criterions may be
based on correlation measures between true sources and recovered ones.

IMPACT OF THE NUMBER OF MIXTURES ON THE PCA
PROJECTION

The size of the separating matrix

From equation (2) it follows that B is a m-by-n matrix. Hence, the dimension
reduction achieved by PCA essentially determines the number of rows in B.

On the other hand, a selection among the n available mixtures decreases
the number of columns of B. Even if, from a numerical point of view, the
estimation of a small-sized matrix is easier, people usually project the whole
set of mixtures without any prior selection. This paper tries to answer to the
two following questions: i) how to choose the mixtures that, once projected
by PCA, will improve the quality of the separation? ii) is the whole set of
mixtures the best solution?

Analysis of the PCA variance ratio ρm on a simple example

Consider the situation of four independent uniform random sources (m = 4),
linearly and simultaneously mixed without noise. This situation corresponds
to the classical ICA assumptions. In this section, we respectively compare the
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situation where the number of sources is correctly estimated (m̂ = m = 4)
and the case where it is not (in our example: m̂ = 3)1. We have applied the
Jade algorithm in order to use the SIR criterion, but FastICA gave the same
results about the correlations.

We first analyze the situation where m̂ = m. The left column of the
figure 1 shows the quality of the source separation (locally with correlations
and globally with SIR values) versus the number of selected mixtures n:
the quality increases while n < m. To evaluate the local separation, we
have plotted the evolution of the absolute value of correlations between each
sources Si (i = 1, . . . , 4) and their best recovered signals Zj (j = 1, . . . , 4)2.
The SIR graph shows the difference between the SIR computed over the n
first observations and the SIR (SIRtot) computed over the whole mixture
set. ρm remains equal to one. When n = m, the PCA projection does
not reduce the dimension, and for n > m, even if the number of mixtures is
higher than the number of sources, the dimension of the space of the observed
signals stops growing, because of the redundancies induced by the ideality of
the mixture. In this case, an a priori selection of the first n′ signals among
n (with n′ > m) before projection has no consequence, because the whole
dimension of the initial set is kept after projection (ρm = 1).

The right column of figure 1 shows the same example but with a wrong
estimation of the number of sources (3 instead of 4). We see that taking the
whole set of the observations does not lead to the best possible separation.
The analysis of the ρm curve is interesting. For n < m̂, the initial space and
the projection space have the same dimension. But for n > m̂, increasing the
number of observations modifies the initial space (because m̂ < m), which
explains that the ρm curve decreases. The oscillations of this curve for obser-
vations with n > m prove that all observations do not have the same effect
over the projection quality: there are observations that complicate the pro-
jection on the sources space, and others that improve it. We can also see that
at each increase (resp. decrease) of ρm curve is associated an improvement
(resp. deterioration) of the separation of at least one signals.

In this section, we have considered a single imperfection of the model: a
wrong estimation of the number of sources. We have detailed that the se-
lection of some mixtures is better from the projection and separation point
of view. In addition, the mixture could have (even slightly) non-linear com-
ponents and/or noise, and the question of reducing the number of observed
signals n is also critical. It could be interesting to remove several observed
signals, which could have a bad influence on the convergence of the ICA al-
gorithms. In the above example, the selection method used was the random
choice.

1Of course, in this ideal unnoisy case, the number of sources is trivially equal to the

number of non-zero eigenvalues of the covariance matrix. Nevertheless the goal of this

comparison is to show the consequences of a bad estimation of m on the projection and

separation performances; therefore in this example we assume that m could be wrongly

estimated, leading to m̂ < m.
2The best recovered signal associated with one source is the one that maximizes the

absolute value of their correlations.
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Figure 1: Evolution of the local and global separation quality and of projection vs

the number of selected mixtures n. Left: correct estimation of the number of sources
(m̂ = m = 4), right: bad estimation of the number of sources (m̂ = 3, m = 4).

We propose in the next section a selection method based on the mutual
information.

VARIABLE SELECTION ALGORITHM

The proposed algorithm is based on the mutual information (I) between two
signals. The mutual information is defined as the Kullback-Leibler divergence
[5] between the joint pdf and the product of the marginal pdf (see for example
Thomas and Cover [4]):

I(X,Y ) =

∫

X,Y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy . (6)

Three major properties of I are: i) it is non-negative, ii) I(X,Y ) = 0
if and only if X and Y are independent, and iii) I(X,Y ) is maximum for
X = Y .

The aim of the selection algorithm is to select n′ signals (U1, . . . , Un′)
among a set of n mixtures (X1, . . . , Xn). The first signal U1 must be chosen
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by another method (e.g. randomly). At each step of the algorithm, we
choose the mixture which is as independent as possible from the already
selected mixtures Uj , j = 1, . . . , z − 1, i.e. which minimizes the sum of the
mutual informations with the Uj ’s; in other words, Xk is the zth selected
signals (Uz

.
= Xk) if the following cost function fz(i) is minimized for i = k:

fz(i) =
z−1
∑

j=1

I(Xi, Uj) . (7)

After the selection of Xk, it is removed from the initial set to avoid an
eventual second selection. The selected subset will contain signals which
are mutually “quite different”, because of the minimisation of the mutual
information. From another point of view, selecting signals which minimize
the mutual information between them is a good preprocessing to ICA, because
they have a low dependence level! We stop the algorithm when n′ signals are
selected (z = n′).

In the following, we call sPCA the classic PCA preceded by this selection
algorithm.

APPLICATION: THE FETAL ECG EXTRACTION

We compare PCA and sPCA in a real situation: the extraction of the fetal
electrocardiogram. In this application, it is difficult to estimate the number
of sources m. This is one of the reasons why we work with simulated signals:
to know exactly this number. Another reason is to be able to evaluate the
performances of the separation: we can use a correlation-based criterion.

The problem

Description. Consider hundred electrical signals coming from sensors placed
on a pregnant woman’s abdomen. The electrodes on the maternal surface pick
up the mother electrocardiogram (MECG) and, at lower level, the fetus one
(FECG). Electrodes are also sensitive to other signals (e.g. electromyographic
ones). The observed signals are thus a combination of all these sources. The
aim is to recover the electrocardiogram of the fetus (i.e. not only the heart
rate frequency and variability, which can be achieved for example like in [1],
but the whole PQRST wave). This is a BSS problem, where the sources
(mother’s heart, fetal heart, breath, . . . ) may be supposed statistically inde-
pendent. With this technique, one can obtain FECG signal during pregnancy
in a non-invasive manner (e.g. [10], [16]).

Simulation of ECG signals. The signals of the electrodes are the sums of
the electrical fields generated by several independent simulated sources: the
maternal heart, the fetal heart, the uterus and the diaphragm. For each of
these components, the equations of the electrical model are derived.
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The shape of the maternal abdomen was considered to be formed by a
parabolic function rotated around a middle axis. The difficulty of the task
is that an accurate model of the heart is needed because the model has
to provide the orientation of the heart dipole. This is achieved by using a
template ECG data file recorded at a sampling rate of 500 Hz (the heart
rate was 70 beats/mn). The signal was resampled so that a fetal heart rate
was built at about twice the maternal one. Similar manipulations follow for
the uterus and the diaphragm. The bioelectrical properties of the uterus
are derived from [9]. The bioelectrical model of the diaphragm consists of 6
dipoles, symmetrically located over the uterus. The exact position as well as
the amplitude can change over time. The calculation of the resulting (from
superimposition of FECG, MECG, uterus and diaphragm signals) electrical
field at the surface uses physics equations, which will not be detailed here,
allows to simulate signals observed on electrodes according to their locations.

Results

Here we compare results obtained by simulation using both schemes: projection-

separation (PCA) and selection-projection-separation (sPCA).

PCA. We have analyzed the ρm curve for a random growing set of mixtures
and we show that the best separation of the FECG signals is not achieved for
the projection of the whole set of observations (see figure 2). The bar-graph
shows the first eigenvalues of the covariance matrix of the measured signals:
we can observe two dominants components.
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Figure 2: Evolution of the FECG separation vs the number of observed mixtures,
with m̂ = m = 4.

sPCA. In this method, we apply our variable selection algorithm before
performing projection by PCA. This algorithm requires an initialization: we
have to choice the first signal of the selected subset. In the application of
the FECG extraction, we have chosen this signal as the one measuring (as
close as possible) the mother’s ECG. All the following selected signals will be
“quite different” from it, e.g. those which contain an important component
due to the fetal heart beats. Figure 3 shows the results of this method
after the selection of 15 signals (n′ = 15) by the variable selection algorithm
detailed in the previous section. The correlation between the FECG and
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the associated separated signal increases quickly (and reaches a value which
is higher than the global maximum of the curve in figure 2) and the ρm

decreases more slowly (see axes scales) with n. We can conclude that the
quality of projection and separation are increased by this selection. This
method requires to adjust a supplementary parameter: n′. Indeed, the graph
of correlation in figure 3 shows that choosing n′ = 5 is the optimal value n′

opt

of n′, from the separation of the FECG point of view.
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Figure 3: Evolution of the FECG separation vs the number of observed mixtures
for and of the ρm with a selection preprocess (sPCA): n

′=15, n
′

opt = 5.

Fig. 4 shows the measured signals (n = 5) selected by the mutual information
criterion (left) and the separated signals after ICA (right). The first selected
signal is the reference and corresponds to MECG. We can clearly observe that
the second one has an important component of FECG contribution. The first
separated signal is the MECG and the fourth one is the FECG.

Figure 4: Left: measured signals selected by the mutual information criterion; right:
separated signals.

CONCLUSION

Principal Component Analysis is a usual ICA preprocessing to project mix-
tures over a low-dimensional subset, with a dimension equal to the supposed
number of sources. We have shown how sPCA (PCA preceded by variable
selection using mutual information criterion) can improve the quality of the
projection with respect to the classical PCA, but also the quality of the sep-
aration (ICA) of the sources. We have illustrated this improvement on a
simulated problem of fetal ECG extraction from a set of signals measured on
the mother’s abdomen. One difficulty remains: the choice of the number n′
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of signals to select.
In the simulated case, we can choose n′ = n′

opt were n′
opt is the number

of selected electrodes which maximizes the correlation curve between the
FECG and the associated recovered signal. However, n′

opt is not known in
a real applications. Further work will adress the problem of choosing the n′

parameter used in the proposed method.
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