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Abstract. Principal Component Analysis, when formulated as a prob-
abilistic model, can be made robust to outliers by using a Student-t
assumption on the noise distribution instead of a Gaussian one. On the
other hand, mixtures of PCA is a model aimed to discover nonlinear
dependencies in data by finding clusters and identifying local linear sub-
manifolds. This paper shows how mixtures of PCA can be made robust
to outliers too. Using a hierarchical probabilistic model, parameters are
set by likelihood maximization. The method is shown to be effectively
robust to outliers, even in the context of high-dimensional data.

1 Introduction

Principal Component Analysis (PCA) is a well-known data analysis and visu-
alization tool. It provides a simple, algebraic way to choose axes in the data
space that most fit the data, i.e. that maximize the variance after projection on
the subspace spanned by these axes, or alternatively that minimize the projec-
tion error. A lower-dimensional representation of data is obtained by selecting
a restricted number of the principal axes. However, maximal variance and min-
imal projection error are quadratic measures: a few outliers may dramatically
influence the direction of principal axes, especially in high-dimensional spaces.

Probabilistic PCA [10,13] is a way to formalize the PCA problem as a latent
variable model into a probabilistic framework. One of the nice features of the prob-
abilistic framework is that non-traditional assumptions can easily be added to the
model, the only price to pay being that the optimization of the model may reveal
more difficult. For example, the traditional Gaussian noise hypothesis leads to the
above detailed quadratic measures of errors and variances; replacing this hypoth-
esis by, for instance, a Student-t noise distribution leads to a robust version of
PCA [2]. In contrast to other robust approaches to PCA which usually require to
optimize several additional parameters, the probabilistic formalism only requires
to choose the dimension of the projection space, the other parameters being set
automatically by maximum likelihood (ML). Another advantage is that the prob-
abilistic model provides likelihood measures, which can be used to compute pos-
terior probabilities and eventually to construct a Bayes classifier.
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Mixtures of (local) PCA may be used to uncover nonlinear manifolds in data,
and are also nicely formalized into a probabilistic framework [12]. The principle
is to attribute each observed data to a specific (unknown) local model (or com-
ponent), through an indicator variable, and then to mix the local models. An
expectation-maximization algorithm can be used to set the parameters of the
model, including these indicator variables. An advantage of mixtures of PCA,
compared to other mixtures models (a.o. Gaussian mixtures), is that the full-
rank, possibly ill-conditioned covariance matrices are approximated by low-rank
covariance matrices, without having to neglect the correlations between the (lo-
cal) principal directions to avoid numerical instabilities. The other way to avoid
ill-conditioned covariance matrices is to constrain them to be diagonal, leading
to suboptimal axis-aligned components [1]. Besides nonlinear manifold uncov-
ering, mixtures models can be used in a straighforward way for clustering, and
probability density estimation. In both cases the same limitations related to
ill-conditioned covariance matrices apply though.

Mixtures of probabilistic PCA [3] can be made robust to atypical observa-
tions by using a Student-t noise distribution hypothesis. This paper shows the
complete probabilistic learning procedure for this model. It is shown that all
parameters (with the exception of the number of components and their dimen-
sionality) may be easily optimized by an Expectation-Maximization procedure,
without additional complexity with respect to the non-robust version.

The following of this paper is organized as follows. The next section first
reminds the Probabilistic PCA model and its robust extension, and then intro-
duces the Mixtures of Robust Probabilistic PCA model. Section 3 details how
the parameters of the model may be optimized, and Section 4 illustrates the
robustness of the model to atypical observations.

2 Robust Probabilistic PCA and Mixtures

PCA can be formulated as the search for an optimal linear projection mini-
mizing a reconstruction error. The principal components are derived from the
observations by projecting them on the principal directions. In the probabilis-
tic formulation, the view is inverted in the sense that the observations {yn}Nn=1

where yn ∈ IRD, are assumed to be generated from a low dimension latent
representation {xn}Nn=1, where xn ∈ IRJ , J < D.

The principle of probabilistic modeling is to express the uncertainty about
(some of) the parameters of the model by prior distributions. Probabilistic PCA
(PPCA) was proposed in [10,13]; Gaussian priors are used in PPCA. Maximising
the likelihood of the observations in PPCA leads to principal axes that are
equivalent to the principal axes found by the standard PCA, up to a rotation
and a scaling [13]; the same subspace is thus spanned.

PCA and PPCA are sensitive to atypical observations and observations not
well confined in a low-dimensional subspace, because of their quadratic criterion
and Gaussian noise model respectively. The robust probabilistic PCA [2] extends
PPCA to make it applicable on datasets containing atypical samples. Instead
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Fig. 1. Left: Probability density functions of a Gaussian (−) and a Student-t with
ν = 2 (−−). Right: Negative log-likelihood of these same distributions.

of the Gaussian noise assumption, the randomness in observations is modeled
by a Student-t distribution with an additional parameter ν (called the number
of degrees of freedom), which regulates the thickness of the distribution’s tail.
Figure 1(left) shows unit-variance Gaussian and Student-t distributions (ν = 2).
Figure 1(right) shows the corresponding negative-log-likelihood which appears
in the training criterion of probabilistic models. We see that when ν is small, the
Student-t attributes a much smaller cost than the Gaussian to points lying far
from the mean. The sensitivity to atypical observations is therefore reduced.

PPCA makes the assumption that atypical samples might come either from
the generation of latent vectors x or from the noise contribution. This is expressed
by Student-t distributions on the prior of the latent vectors and on the condi-
tional distribution of observations: P (x) = St(x|0, IJ , ν), P (y|x) = St(y|Wx+
μ, τ−1ID, ν). Note that in the traditional PPCA model, the Student-t distri-
butions are replaced by Gaussian ones. To simplify the parameterization, both
distributions are attributed the same degree of freedom ν. This choice will be
commented below. The Student-t distribution can be reformulated as an infinite
mixture of Gaussian distributions St(y|μ,Σ, ν) =

∫ ∞
0
N (y|μ, 1

uΣ) Ga(u|ν2 , ν
2 )

du, ν > 0, where Ga(u|·, ·) is a Gamma distribution over the precision factor u.
Making use of this factorization, the generative model can be represented with
an additional level in the hierarchy where the latent precision u appears:

P (u) = Ga(u|ν2 , ν
2 ) (1)

P (x|u) = N (x|0, 1
u
IJ ) (2)

P (y|x, u) = N (y|Wx + μ,
1
uτ

ID) . (3)

From this generative formulation, we see that the uncertainty about the obser-
vation (i.e. expressed by the variance in (3)) can be amplified by a small latent
precision variable u, shared by the x and y conditional distributions. According
to intuition, this constraint implies that outliers y in the observation space are
also considered as outliers x in the latent space so their contributions to the
identification of the latent space are down-weighted.

For robust PPCA, the marginal distribution of the observations is tractable:
P (y) =

∫ ∞
0

∫
X P (y|x, u)P (x|u)P (u) dx = St(y|μ,Σ, ν) where Σ ≡WW� +



530 N. Delannay, C. Archambeau, and M. Verleysen

τ−1ID. The training procedure consists in maximizing this (marginal) likelihood
with respect to θ ≡ (W,μ, τ, ν).

In contrast with previous robust approaches to the PCA (see for example [15]
and [7], and the references therein), this probabilistic formalism only requires to
select the dimension of the projection space (see Section 3), the other parameters
being estimated by the maximum likelihood criterion.

Even in its robust and probabilistic versions, PCA is not adequate for repre-
senting clusters or nonlinear dependencies in the data. The mixture of PPCA [12]
may solve this problem, but is again too sensitive to atypical samples limiting
its use on many real world datasets. It is thus natural to look for a robust for-
mulation of the mixture of PPCA.

The probability distribution of a sample generated from a mixture ofK robust
PPCA is defined as P (y)=

∑
k πkPk(y) where {πk}Kk=1 is the set of positive

mixture proportions, with
∑

k πk = 1; the Pk(y) are defined as single robust
PPCA components Pk(y) = St(y|μk,Σk, νk) in which Σk ≡WkW�

k + τ−1
k ID.

The set of parameters of this model is θ ≡ {(Wk,μk, τk, νk, πk)}Kk=1.
Using a latent indicator variable z = [z1, . . . , zK ] (with zk = 1 if the kth com-

ponent generated the observation y, otherwise zk = 0) simplifies the derivation
of an EM algorithm. The factorized mixture of robust PPCA is then

P (z) =
∏

k π
zk

k , (4)
P (u|z) =

∏
k Ga(uk|νk

2 ,
νk

2 )zk , (5)

P (χ|u, z) =
∏

kN (xk|0, 1
uk

IJ)zk , (6)

P (y|χ,u, z) =
∏

kN (y|Wkxk + μk,
1

ukτk
ID)zk , (7)

where u = [u1, . . . , uK ] and χ = {x1, . . . ,xK}; the different components could
also have different latent dimensionalities {Jk}Kk=1.

Increasing the robustness by replacing Gaussian densities with Student-t ones
was also proposed for finite mixture models [8,1]. The main advantage of mixtures
of PPCA resides in the fact that the full-rank, possibly ill-conditioned covariance
matrices are approximated by constrained covariance matrices Σk, strongly re-
ducing the number of free parameters per component. By contrast, constraining
the covariance to be diagonal leads to axis-aligned components which does not
take the dominant correlations into account [1].

3 Learning Procedure

The factorization of the model (4)-(7) allows us to derive an exact Expectation-
Maximization (EM) algorithm. Note that this algorithm encompasses the op-
timization of the (mixture of) probabilistic PCA: one only needs to add the
constraint νk = ∞ (for all k) such that the Student-ts are in fact Gaussian
distributions.

We seek an optimum of the marginal distribution of the observations to esti-
mate the parameters θ ≡ {(Wk,μk, τk, νk, πk)}Kk=1. The simplest way to proceed
is by deriving an EM algorithm [6] on the factorised distribution (4)-(7). The
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starting point of the algorithm is to bound the marginal likelihood (making use
of the Jensen’s inequality):

logP ({yn}) ≥ EQ {logP ({yn}, {χn}, {un}, {zn})}
−EQ {logQ ({χn}, {un}, {zn})} . (8)

Equation (8) is valid for any distribution Q. The bound is tight when the dis-
tribution over the latent variable Q({χn}, {un}, {zn}) coincides with the poste-
rior distribution. Fortunately, the posterior distribution of the mixture of robust
PPCA model is still tractable. Indeed, applying the Bayes formula, one can show
that the posterior is

P ({χn}, {un}, {zn}|{yn}) =
∏

n

∏

k

P (xnk|unk, znk = 1,yn)

· P (unk|znk = 1,yn)P (znk = 1|yn) (9)

where the factor distributions are

P (xnk|unk, znk = 1,yn) = N (xnk|τkCkW�
k (yn − μk),

1
unk

Ck) (10)

P (unk|znk = 1,yn) = Ga(unk|αk, βnk) (11)

P (znk = 1|yn) =
πkSt(yn|μk,Σk, νk)

∑
k πkSt(yn|μk,Σk, νk)

(12)

and where we have defined C−1
k = τkW�

k Wk + IJ , αk = (D + νk)/2 , and
βnk = ((yn − μk)�Σ−1

k (yn − μk) + νk)/2. Notice that there is only a single
observation yn appearing in each of these posterior factor distributions.

The EM algorithm then consists in two successive and repeated steps. The
E-step consists in fixing Q to the distribution given by (9) and developing (8)
accordingly. Note that only the first term of (8) (called the log-complete likeli-
hood) has to be computed, as the second one does not depend on the values of
the parameters. This leads to a somewhat complex expression, not detailed here
for simplicity. Its evaluation necessitates to compute the following expectations:

ρ̄nk ≡ EQ{znk} = πkSt(yn|μk,Σk,νk)∑
k πkSt(yn|μk,Σk,νk) , (13)

ūnk ≡ EQ{unk} = αk

βnk
, (14)

log ũnk ≡ EQ{logunk} = ψ (αk)− log (βnk) , (15)

x̄nk ≡ EQ{xnk} = τkCkW�
k (yn − μk), (16)

S̄nk ≡ EQ{znkunkxnkx�
nk} = ρ̄nkCk + ω̄nkx̄nkx̄�

nk, (17)

where ω̄nk ≡ ρ̄nkūnk and ψ(·) ≡ Γ ′(·)/Γ (·) is called the digamma function.
The log-complete likelihood of course depends on the model parameters; the

M-step then consists in maximizing it with respect to the parameters, leading
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to a set of update rules for all k (tr{·} is the trace operator):

πk ← 1
N

∑
n ρ̄nk (18)

μk ←
∑

n ω̄nk(yn−Wkx̄nk)∑
n ω̄nk

(19)

Wk ←
(∑

n ω̄nk(yn − μk)x̄�
nk

) (∑
n S̄nk

)−1 (20)

τ−1
k ← 1

DNπk

∑
n

(
ω̄nk‖yn − μk‖2 − tr{WkS̄nkW�

k }
)

. (21)

In these updates rules, the contribution of each data point is weighted ac-
cording to ω̄nk, which accounts for both the effect of the responsibilities ρ̄nk and
the expected latent precision variables ūnk. The latter ensures robustness as its
value is small for yn lying far from μk, such that the contribution in the M-step
is small. For the non robust formulation (νk →∞) we have ūnk = 1 for all n and
all k. Note also that these updates are coupled: one could cycle through these
updates between each E-step until the M-step has converged.

There is no closed form update for {νk}Kk=1. Nevertheless, a solution can be
computed by line search at each EM iteration [2]. Alternatively, a heuristic was
proposed by Shoham [11] in the context of mixture modeling.

As the marginal likelihood of mixture models has local optima, it is recom-
mended to repeat the optimization with different initializations. A good strategy
to initialize the components is to set the centers μk with a quantization algorithm
and initialize the subspace orientation Wk from the first Principal directions in
the Voronoi region of μk.

Two hyper-parameters still need to be set: the number of components and the
dimensionalities of the latent representations. They can be set in a traditional
way by cross-validation, or added in a Bayesian way to the probabilistic for-
mulation; in the latter case however MCMC sampling techniques [9] or (mean
field) variational approximation [14,4] must be used instead of the exact EM
algorithm. Finally Automatic Relevance Determination was used in [5] to select
the dimensionality of latent subspaces.

4 Experiments

In this section, the (robust) probabilistic models are applied first on two artifi-
cial examples, and then on the USPS high-dimensional real dataset, using the
software available from http://www.ucl.ac.be/mlg/.

Figures 2(a)-(b) show an example where samples have been generated along
a one-dimensional manifold, with higher density in the right end and higher
noise at the other end. The PPCA estimates a global principal direction; the
mean of the component lies in an empty region and is thus not representative
of typical samples. On the other hand, the robust PPCA discards samples in
order to concentrate on the higher density region of the manifold. Using three
components in the model (Figures 2(c)-(d)), both the mixture of PPCA and
robust PPCA estimate quite well the local principal directions. However one of
the components of the mixture of PPCA (Figure 2(c)) tries to account for the
noisy samples, forcing its mean to move away from the manifold.
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Fig. 2. Samples generated along a 1-dimensional manifold with additional atypical
points. (a) Probabilistic PCA, (b) robust probabilistic PCA, (c) 3 components mixture
of PPCA, (d) 3 components mixture of robust PPCA. The sizes of the markers represent
their contribution to the estimation of the component parameters.
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Fig. 3. (a) Synthetic example with 3 Gaussian clusters. The squares represent outliers.
(b) Negative log likelihood of a validation set with respect to the number of components
K and the dimensionality of the latent space (◦: J = 1, �: J = 2). Dashed line:
standard. Plain line: robust. (c) Negative log likelihood with respect to the number
of outliers. (d) Degree of freedom parameters for the three components in the robust
mixture model with respect to the number of outliers.

The next example consists in data arranged in three 3-dim. Gaussian clusters
(see Figure 3(a)), with diagonal covariance matrices equal to diag{[5, 1, 0.2]}
before rotation around the second coordinate axis. Each component lies on an
intrinsic two dimensional space as the variance in the third direction is signifi-
cantly smaller. The two outer clusters make an angle of ±30 degrees with the
middle one and are respectively shifted by ±5 units along the axis of rotation.
For the first experiment, 30 data are generated for each cluster. The generalisa-
tion performances, measured as the log likelihood on a validation set averaged
on 50 experiments, are plotted in Figure 3(b) for K ∈ {1, . . . , 12} components
and J ∈ {1, 2} latent space dimensions. As expected, the true model with K = 3
and J = 2 performs the best. Interestingly, we see that the standard and ro-
bust mixture models have comparable performances when the model underfits
the data (i.e. K < 2) while the robust mixture has the edge when K increases.
Overfitting is thus reduced with the robust formulation.
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(a) Standard (b) Robust

Fig. 4. Mixture of 2 component PPCAs with 1-dimensional latent space to cluster
USPS digit 2 and 3, and outliers digit 0. (a) standard; (b) robust.

For the second experiment, K is set to 3 and J to 2 (their optimal values); we
look at the sensitivity of the model to the number of outliers. The outliers are
generated uniformly in the [−10, 10]3 box. Again, 30 points are generated from
each component; 1 to 60 outliers are added. The performances measured on a
validation set without outliers, and averaged over 50 repetitions as above, are
shown on Figure 3(c). Again, we see the increased robustness of the proposed
model, in particular when there are few outliers. When the number of outliers
increases to a significant proportion of the learning data the down-weighting of
the outliers in the robust model is reduced, and the gap between the perfor-
mances decreases. Figure 3(d) shows the average value of the degree of freedom
parameters (νk for k = 1 . . . 3). We note that the down-weighting of the outliers
obtained with small value of νk, comes mainly from a single component.

The last example illustrates the robustness of the proposed method on high-
dimensional data. The USPS handwritten digit dataset consists in 16×16 pixels
images of digits (0 to 9). Only the (respectively 731 and 658) images of digits
2 and 3 are kept (they form the two dominant clusters), as well as 100 (ran-
domly chosen) images of digit 0. We compare the mixtures of PPCAs and of
robust PPCAs in their ability to find the two main clusters (thereby identifying
the 0 as outliers) and to identify the main variability in these clusters with a
one-dimensional latent space. Figure 4 shows sample images close to the one-
dimensional subspace. The mixture of robust PPCAs completely ignores the
smaller cluster of digits 0. On the other hand, the mixture of PPCAs cannot
down-weight the contribution of the digits 0, influencing the two components.

5 Conclusion

This papers introduces the Mixtures of Robust Probabilistic PCA. The method is
aimed to represent nonlinear manifolds and possibly identify clusters in data. All
parameters of the method, with the exception of the number of clusters and the
dimensionality of the latent space, are learned trough the use of a probabilistic
latent formulation, and the optimization of the likelihood of the data. Compared
to its non-robust parent, the method shows a strongly reduced sensitivity to
outliers, even in high-dimensional spaces.
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